Members of the Forum Algebra produce more than a hundred publications every year. The list below is automatically generated and may not be complete.
▪▪▪ 2005 ▪ 2004 ▪ 2003 ▪ 2002 ▪ 2001 ▪▪▪
- David A. Plaisted, Armin Biere, Yunshan Zhu. A satisfiability procedure for quantified Boolean formulae. Discrete Appl. Math. 130(2):291-328 .
- David A. Plaisted, Armin Biere, Yunshan Zhu. A satisfiability procedure for quantified Boolean formulae. Discrete Appl. Math. 130(2):291-328.
- Anatolij Dvurečenskij, Thomas Vetterlein. Archimedeanness and the MacNeille completion of pseudoeffect algebras and po-groups. Algebra Univers. 50(2):207-230 .
- Anatolij Dvurečenskij, Thomas Vetterlein. Archimedeanness and the MacNeille completion of pseudoeffect algebras and po-groups. Algebra Univers. 50(2):207-230.
- Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu. Bounded model checking. Advances in Computers 58:117-148.
- Uwe Egly, Martina Seidl, Hans Tompits, Stefan Woltran, Michael Zolda. Comparing Different Prenexing Strategies for Quantified Boolean Formulas. Proc. SAT 2003, pp. 214-228.
- Peter Paule, Carsten Schneider. Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2):359-378.
- Peter Paule, Carsten Schneider. Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2):359-378 .
- Manuel Kauers. Computing limits of sequences. ACM SIGSAM Bulletin 37(3):74-77.
- Temur Kutsia. Equational Prover of THEOREMA. Proc. RTA 2003, pp. 367-379.
- Thomas Vetterlein. Existence of states on pseudoeffect algebras. Int. J. Theor. Phys. 42(4):673-695 .
- Thomas Vetterlein. Existence of states on pseudoeffect algebras. Int. J. Theor. Phys. 42(4):673-695.
- Wilfried Meidl. Extended Games-Chan algorithm for the 2-adic complexity of FCSR-sequences. Theor. Comput. Sci. 290(3):2045-2051.
- Wilfried Meidl. Extended Games-Chan algorithm for the 2-adic complexity of FCSR-sequences. Theor. Comput. Sci. 290(3):2045-2051 .
- Armin Biere, Cyrille Artho, Malek Haroud, Viktor Schuppan. Formal Methods Group ETH Zürich. Electr. Notes Theor. Comput. Sci. 80:289-293.
- Cyrille Artho, Klaus Havelund, Armin Biere. High-level data races. Softw. Test., Verif. Reliab. 13(4):207-227.
- Anatolij Dvurečenskij, Thomas Vetterlein. Infinitary lattice and Riesz properties of pseudoeffect algebras and po-groups. J. Aust. Math. Soc. 75(3):295-311 .
- Anatolij Dvurečenskij, Thomas Vetterlein. Infinitary lattice and Riesz properties of pseudoeffect algebras and po-groups. J. Aust. Math. Soc. 75(3):295-311.
- Jaime Gutierrez, Igor E. Shparlinski, Arne Winterhof. On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators. IEEE Trans. Inf. Theory 49(1):60-64.
- Wilfried Meidl, Arne Winterhof. On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inf. Process. Lett. 85(1):13-18.
- Wilfried Meidl, Arne Winterhof. On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inf. Process. Lett. 85(1):13-18 .
- Wilfried Meidl, Harald Niederreiter. Periodic sequences with maximal linear complexity and large $k$-error linear complexity. Appl. Algebra Eng. Commun. Comput. 14(4):273-286.
- Wilfried Meidl, Harald Niederreiter. Periodic sequences with maximal linear complexity and large \(k\)-error linear complexity. Appl. Algebra Eng. Commun. Comput. 14(4):273-286 .
- Erhard Aichinger, Peter Mayr. Polynomial functions and endomorphism near-rings on certain linear groups. Commun. Algebra 31(11):5627-5651 .
- Erhard Aichinger, Peter Mayr. Polynomial functions and endomorphism near-rings on certain linear groups. Commun. Algebra 31(11):5627-5651.
- Ofer Strichman, Armin Biere. Preface. Electr. Notes Theor. Comput. Sci. 89(4):541-542.
- Wilfried Meidl, Harald Niederreiter. The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19(1):61-72.
- Wilfried Meidl, Harald Niederreiter. The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19(1):61-72 .
- Tim Boykett. Towards a Noether-like conservation law theorem for one dimensional reversible cellular automata. ArXiv nlin/0312003v1.