We start with the group G8/2 (classification according to [TW80]), which is and construct, as a very easy example, the zero-ring on this group.
gap> ZR8_2 := AsRing(G8_2,zero); RingfromGroup(G8/2 , function ( x, y ) return (); end gap> ZR8_2.name := "ZR8/2"; "ZR8/2"We can easily analyze the ideal structure of this ring.
gap> I := Ideals(ZR8_2); [ Ideal ( ZR8/2 , [] ), Ideal ( ZR8/2 , (5,6) ), Ideal ( ZR8/2 , (1,2,3,4) , (5,6) ), Ideal ( ZR8/2 , (5,6) , (1,3)(2,4) ), Ideal ( ZR8/2 , (1,3)(2,4) , (1,2,3,4) ), Ideal ( ZR8/2 , (1,3)(2,4) , (1,2,3,4)(5,6) ), Ideal ( ZR8/2 , (1,3)(2,4) ), Ideal ( ZR8/2 , (1,3)(2,4)(5,6) ) ]From a ring and an ideal we construct the factor-ring.
gap> F := ZR8_2 / I[2]; FactorRing ( ZR8/2 , Ideal ( ZR8/2 , (5,6) ) ) gap> Elements(F); [ FactorRingElement ( () + Ideal ( ZR8/2 , (5,6) ) ), FactorRingElement ( (1,2,3,4) + Ideal ( ZR8/2 , (5,6) ) ), FactorRingElement ( (1,3)(2,4) + Ideal ( ZR8/2 , (5,6) ) ), FactorRingElement ( (1,4,3,2) + Ideal ( ZR8/2 , (5,6) ) ) ]The result is again a ring. We continue investigating this factor-ring:
gap> IsSimple(F); false
gap> P := PG (G24_12); P(G24/12) gap> Size (P); 22265110462464
gap> E := EG (G24_12); E(G24/12) gap> Size (E); 927712935936
gap> endo := Endomorphisms (G6_2); [ [ 1, 1, 1, 1, 1, 1 ] , [ 1, 2, 2, 1, 1, 2 ] , [ 1, 2, 6, 5, 4, 3 ] , [ 1, 3, 2, 5, 4, 6 ] , [ 1, 3, 3, 1, 1, 3 ] , [ 1, 3, 6, 4, 5, 2 ] , [ 1, 6, 2, 4, 5, 3 ] , [ 1, 6, 3, 5, 4, 2 ] , [ 1, 6, 6, 1, 1, 6 ] , [ 1, 2, 3, 4, 5, 6 ] ] gap> Mend := MsG ( MG (G6_2), endo );; gap> PrintNr (Mend); F : Subgroup( Group( (1,2), (1,2,3), (4,5), (4,5,6), (7,8), (7,8,9), (10,11), (10,11,12), (13,14), (13,14,15), (16,17), (16,17,18) ), [ (10,11,12)(13,15,14), ( 5, 6)( 7, 8)(16,18) ] ) Size : 6 G : 6/2 Size : 6 ------------------------------- Elements of G [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ----------------------------------------- The additive group of F is generated by ----------------------------------------- f: [ (), (), (), ( 1, 2, 3), ( 1, 3, 2), () ] f: [ (), (2,3), (1,2), (), (), ( 1, 3) ] ----------------------------------------- gap> Size (Mend); 6
gap> P := PG (G11_1); P(11/1) gap> Size (P); 121 gap> C := LocalNr (P, 2); L_2 P(11/1) gap> Size (C); 285311670611
gap> P := PG (G6_2); P(6/2) gap> L := LeftIdeals (P); [ Subgroup( Group( (1,2), (1,2,3), (4,5), (4,5,6), (7,8), (7,8,9), (10,11), (10,11,12), (13,14), (13,14,15), (16,17), (16,17,18) ), [ ] ), Subgroup( Group( (1,2), (1,2,3), (4,5), (4,5,6), (7,8), (7,8,9), (10,11), (10,11,12), (13,14), (13,14,15), (16,17), (16,17,18) ), [ (10,11,12)(13,15,14) ] ), Subgroup( Group( (1,2), (1,2,3), (4,5), (4,5,6), (7,8), (7,8,9), (10,11), (10,11,12), (13,14), (13,14,15), (16,17), (16,17,18) ), [ ( 7, 8, 9)(16,18,17) ] ), .....This is the internal representation of left ideals. Now we look how many left ideals there are.
gap> Length (L); 50Is the lattice of left ideals distributive ?
gap> IsDistributive (L); false
gap> P := PG (G24_12); P(G24/12) gap> N := NoetherianQuotient (P, A4, G);; gap> Size (N); 5566277615616 gap> N2 := NoetherianQuotient (P, TrivialSubgroup (G24_12), A4);; gap> Size (N2); 4718592 gap> N2 := NoetherianQuotient (P, TrivialSubgroup (G24_12), G);; gap> Size (N2); 1