
Fast Computations in the Lattice
of Polynomial Rational Function Fields

Franz Binder

Abstract

By Lüroth’s theorem, all intermediate fields of the ex-
tension k(x) : k, k an arbitrary field, are simple. Those
that contain a nonconstant polynomial, the polynomial
rational function fields, constitute a sublattice (with re-
spect to set inclusion). We give a fast algorithm for
computing a generator of k(p, q), which is similar to
the Euclidean algorithm, and also an extended version,
that expresses this generator in terms of p and q. These
algorithms work over any computable field, in particu-
lar, no assumption on the characteristic is needed.

Additionally, if k has zero characteristic, we use a
deep result of Ritt to give a fast method to compute
the other lattice operation, i.e., a generator of the in-
tersection field k(p) ∩ k(q).

1 Intermediate Fields and Composition

If not specified differently, polynomials have coefficients
in some fixed field k, and are univariate using x as vari-
able, i.e., they usually are elements of k[x]. Similarly, a
rational function is considered an element of the simple
transcendental extension k(x). Polynomials and ratio-
nal functions can be composed by

f ◦ g(x) := f(g(x)).

We also use the notation f(g) for f ◦ g, if convenient.
For nonconstant rational functions f and p there is

at most one rational function r such that f = r ◦p; it is
denoted by f ÷ p in the affirmative case. If f is a poly-
nomial and the degree of the numerator of p is greater
than its denominator then both r and p are polynomials
(see e.g. [6], [4], or [3] for such basic properties).

The degree of a polynomial p will be denoted by [p],
and we use the convention [0] = 0. This notion can be

extended to a rational function f = p
q , where p and q

have no common divisor, by

[f] = max([p] , [q]).

If K is a subfield of L, the extension will be denoted
by L : K, and its degree by [L : K]. A rational func-
tion is called indecomposable or prime if it cannot be
decomposed into ones of smaller degree. The interme-
diate fields of the extension k(x) : k can be described
easily:

1.1. Theorem (Lüroth). All intermediate fields of
the extension k(x) : k are simple, i.e., of the form k(f)
for some rational function f ∈ k(x).

Lüroth’s theorem can be found in many advanced
text books, e.g. [9] contains an elementary proof, and
some more results in this topic. Now we have an inti-
mate relation between the intermediate fields and func-
tional composition. We summarize some important
properties:

1.2. Proposition. Let p, q, f, t ∈ k(x).

1. k(f) ⊆ k(p) iff there exists a rational function r
such that f = r ◦ p.

2. k(q) = k(p) iff there exists a rational function a of
degree 1 such that q = a ◦ p. If both p and q are
polynomials then so is a.

3. k(p) : k(f) has no intermediate fields iff f ÷ p is
indecomposable.

4. The lattice of intermediate fields of k(x) : k can be
determined completely by all essentially different
decompositions of f into prime components. (cf.
[2]).

5. t generates k(p, q) iff it is a greatest common right
component of p and q, i.e., if there exist rational
functions p̂ and q̂ such that p = p̂ ◦ t and q =
q̂ ◦ t, and such that for any other t̃ ∈ k(x) with this
property there is a rational function t̂ with t = t̂◦ t̃.

6. f generates k(p) ∩ k(q) iff it is a least common
left multiple of p and q, i.e., if there exist rational
functions r and s such that f = r ◦ p = s ◦ q, and
such that for any other f̃ ∈ k(x) with this property
there is a rational function f̂ with f̃ = f̂ ◦ f .

7. If an intermediate field contains a non-constant
polynomial, then it can be generated by a polyno-
mial.

8. If f is a polynomial then each intermediate field
of k(x) : k(f) is generated by a polynomial. In
particular, the generator of k(p, q) is a polynomial
whenever p and q are polynomials.

9. The intersection field of two polynomially gener-
ated fields is generated by a polynomial.

10. [k(x) : k(p)] = [p].

11. [f ◦ g] = [f] [g].

A more detailed treatment of such properties is con-
tained e.g. in [3].

2 A Compositional Euclidean Algorithm

The key result used for our algorithm is essentially con-
tained in [4]. We state and prove it here for convenience.

2.1. Proposition. Let f, p, q, r be polynomials such
that

f = q · p+ r, [r] < [p] .

Then

k(f, p) = k(p, q, r).

Proof. The ⊆-part is trivial. For the converse assume
that k(t) = k(f, p) for some polynomial t ∈ k[x], thus
there exist polynomials f̂ and p̂ such that

f = f̂(t), p = p̂(t).

Then, by Euclidean division,

f̂ = q̂ · p̂+ r̂; [r̂] < [p̂] ,

and substituting t into this equation gives

f̂(t) = q̂(t) · p̂(t) + r̂(t); [r̂(t)] < [p̂(t)] ,

i.e.,

f = q̂(t) · p+ r̂(t); [r̂(t)] < [p] .

As the quotient and remainder are unique, it follows
that q = q̂(t), r = r̂(t), thus k(t) ⊇ k(q, r), and
k(f, p) = k(t) = k(p, t) ⊇ k(p, q, r).

2.2. Remark.

1. Note that [q] + [r] = [f]− [p] + [r] < [f]. Therefore
the sum of the degrees of the generators decreases
if we take p, q, r instead of f and p. This gives the
termination of the following algorithm (generators
that are constants may be omitted).

2. The degree of a generator of k(p1, p2, . . .) is a di-
visor of gcd([p1] , [p2] , . . .). Thus if this gcd is = 1,
x is a generator, and no computation is needed for
this quite probable case.

2.3. Algorithm. For any finite set F = {p1, p2, . . . }
of polynomials, the following method computes a gener-
ator of k(p1, p2, . . .).

Remove all constants from the set F ;
if F = ∅ then return 0;
while F contains at least two elements

and the gcd of their degrees is > 1
repeat choose polynomials

f ∈ F and p ∈ k[F \ {f}], [f] ≥ [p] > 0;
use Euclidean division of f by p,

giving q and r;
remove f from F ;
add q and r instead, if nonconstant;

return the single element of F
or rather x if the gcd was = 1.

2.4. Remark. There is a lot of arbitrariness in this
algorithm, involved by the word choose.

1. Most simply, we may just choose p in F . If F
contains e.g. exactly one polynomial of rather high
degree n, we have to expect O(n) repetitions.

2. To get a more balanced version, we can choose
the polynomial f ∈ F of highest degree n, and p
such that [p] ≈ n

2 . Computing appropriate poly-
nomials of any order of magnitude between the
smallest and the biggest elements of F can be done
with O(M(n) log n) field operations, where M(n)
denotes the number of field operations necessary
for multiplying or dividing two polynomials of de-
gree n. With this strategy, a polynomial of de-
gree n is replaced by two ones of degree ≈ n

2 . Thus
we get the asymptotic bound of O(M(n) log n)
field operations.

This technique is somewhat similar to that pro-
posed in [10] to test and compute f ÷ p.

3. Though we have got a quite satisfactory complex-
ity bound for the worst case, there may be even
better strategies. This is an open problem.

2.5. Remark. The algorithm should be compared
with previous ones, though most of these were designed
primarily for use with rational functions (cf. [1]). The
method using minimal polynomials uses either matrix
algebra (via the companion matrix) or Gröbner bases.
Netto’s method has to compute the gcd of polynomi-
als in two variables. All these methods have worst
case complexities rather high polynomial or even ex-
ponential. Sederberg’s method uses just one univariate
gcd computation, gcd(p(x) − p(α), q(x) − q(α)), thus
has about the same complexity as our one, but α ∈ k

must be chosen such that (p(α), q(α)) is regular, thus
it is only probabilistic and works satisfactory only for
char 0-fields. In fact, our method can be considered an
improvement and extension of Sederbergs method (for
polynomials).

The method computing right components of speci-
fied degrees is fast only if char k = 0 (or if the poly-
nomials are at least tame, cf. [10]), and it may happen
that a lot of decompositions have to be tested.

Thus, for polynomials, we have obtained a faster and
more general algorithm. Additionally, observe that it is
usually particularly fast in the rather probable case that
the trivial solution (generator x) comes out.

2.6. Remark. The method used in the proof of Propo-
sition 2.1 also provides an elementary proof, i.e., not de-
pending on Lüroth’s theorem, of the essentially unique
(cf. 1.2.2) existence of a greatest common right compo-
nent of polynomials p, q with respect to composition.
Lüroth’s theorem is used only to prove that it also gen-
erates k(p, q) (cf. Section 3). As a corollary, there is
always a least common left multiple, which generates
k(p) ∩ k(q) (cf. Section 4). In particular, one obtains
that the polynomial subfields of k(x) : k form a lattice,
and that the generators of k(p, q) and of k(p)∩ k(q) do
not depend on the ground field k, even in the so-called
wild case (cf. [11]). Note that it may happen (and is
quite probable) that k(p) ∩ k(q) = k; in this case, the
generator is just a constant. The details are explained
e.g. in [3] or [1].

2.7. Remark. In is not known whether Algorithm 2.3
can be generalized in order to compute a generator of
k(r1

s1
, r2

s2
, . . . , rk

sk
), i.e., the greatest common right com-

ponent of general rational functions. But the genera-
tor of k(r1, s1, r2, s2, . . . , rk, sk) is the greatest common
right polynomial component of r1

s1
, r2

s2
, . . . , rk

sk
. Using

1.2.7 we see that our algorithm can also be used to
compute the generator of the field k(r1

s1
, r2

s2
, . . . , rk

sk
) if it

is polynomial, in particular, if at least one of the given
generators is a polynomial.

3 An Extended Compositional Euclidean Algorithm

Let d be the gcd of the polynomials p and q. Then
Bezout’s relation says that there exist polynomials r, s
such that

d = r · p+ s · q.

In other words, d can be expressed as a linear function
of p and q. For a compositional version of this, we might
expect that the greatest common right component of p
and q, i.e., the generator of k(p, q), should be a nonlinear
function of p and q. In fact, as a trivial consequence of
Lüroth’s theorem, we obtain:

3.1. Corollary. Let p, q be polynomials. Then there
exists a rational function ϕ in two variables such that

k(p, q) = k(ϕ(p, q)).

The problem now is, how to find such a ϕ. For exam-
ple, if p = x3 + 3x and q = x5 +x4, we see immediately
that k(p, q) = k(x), simply because gcd(5, 3) = 1, but
it is considerably less obvious that

x =
p3 − 3p2 + p · q + 36p+ 9q
7p2 + p · q − 9p− 3q + 108

.

As the usual proofs of the part of Lüroth’s theorem
needed here can be considered constructive, the prob-
lem is solved, in principle. We try to develop an ex-
tended version of our compositional Euclidean algo-
rithm. First there is an easy, though surprising result.

3.2. Corollary. Let f = q · p+ r be polynomials, with
[r] < [p]. Then there exist bivariate rational functions
ϕ,ψ such that

r = ϕ(p, f), q = ψ(p, f).

In fact, this follows immediately from proposition
2.1 and 3.1. If we had a direct (constructive) proof of
this corollary then we could compute f recursively by
a straightforward extension of Algorithm 2.3. Unfortu-
nately we have not, so a slightly different approach has
to be used.

We set up an important relation between functional
decomposition and factorization. The first part is in [5].
We give a considerably simpler proof than the original
one. A slight modification of this proof works also for a
multivariate generalization. [2] contains a similar result
for rational functions.

3.3. Theorem (Fried&McRae). Let p,q,f ,g be non-
constant polynomials. Then p(y)− q(x) divides f(y)−
g(x) if and only if there exists a polynomial r such that

f = r ◦ p, g = r ◦ q.

Proof. The if-part is trivial. Thus assume that

f(y)− g(x) = u(x, y) · (p(y)− q(x))

We apply Euclidean division of f(y) by p(y) − q(x).
Doing this in k(x)[y], we see that g(x) is the remainder,
as it has degree 0 in y. But both elements are in the
polynomial ring k(q)[y]. Hence by the uniqueness of the
remainder, g(x) ∈ k(q). Thus there exists a rational
function r such that g = r ◦ q. As both g and q are
polynomials, so is r. Symmetrically we get f = s ◦ p. It
just remains to prove r = s.

Suppose p(α) = q(β) = c for some α, β, chosen pos-
sibly in the algebraic closure k

alg; thus for every c ∈ k
alg

there is a solution. Now substituting α and β in the fac-
torization at the beginning, r(c) = f(α) = g(β) = s(c).
Because k

alg is infinite, r = s

Suppose that k(h) = k(f, g). Then, from Theo-
rem 3.3, h(y)−h(x) divides gcd(f(y)−f(x), g(y)−g(x))
(trivial part). Conversely, if the gcd has the form
ĥ(y)− ĥ(x), then ĥ = h (by the non-trivial part). Now
we prove that the gcd always has this form.

We will write indices (e.g. gcdy or gcdx,y) to denote
the variables that are considered not to be in the coef-
ficient field.

3.4. Lemma. Let p, q be polynomials, and suppose that
k(p, q) = k(x). Then

gcd
y

(p(y)− p(x), q(y)− q(x)) = y − x.

Proof. According to our convention, we do the compu-
tations in the polynomial ring k(x)[y]. We show that x
is the only common zero of p(y)− p(x) and q(y)− q(x).
Suppose x̂ ∈ k(x) is another one, thus

p(x̂) = p(x), q(x̂) = q(x).

Now, by 3.1, x = ϕ(p, q). We apply ϕ to both sides of
the equations, giving

ϕ(p(x̂), q(x̂)) = ϕ(p(x), q(x)),

thus x = x̂.
If x were a common multiple zero then p′ = q′ = 0,

which is possible only if p = p̂(xc) and q = q̂(xc), c =
char k 6= 0; but this contradicts k(p, q) = k(x).

This lemma is just what we need for our Algorithm.
But the following generalization is worth mentioning.

3.5. Corollary. Let p, q be polynomials and k(h) =
k(p, q). Then

h(y)− h(x) = gcd
y

(p(y)− p(x), q(y)− q(x))

= gcd
x

(p(y)− p(x), q(y)− q(x))

= gcd
x,y

(p(y)− p(x), q(y)− q(x)).

Proof. Again computations are done in k(x)[y]. We
write p instead of p(x). Let p̂ = p ÷ h and q̂ = q ÷ h.
Then k(p̂, q̂) = k(x) and by the lemma, together with
Bezout’s relation,

y − x = r(x, y) · (p̂(y)− p̂) + s(x, y) · (q̂(y)− q̂).

We substitute h(y) and h(x) = h for y and x, respec-
tively, thus

h(y)−h = r(h, h(y))·(p(y)−p)+s(h, h(y))·(q(y)−q).

Because h(y)− h is a common divisor and satisfies Be-
zout’s relation, it must be the greatest one.

Of course, the second equality follows by symmetry,
and for the third observe that h(y) − h(x) is a com-
mon divisor, and that p(y) − p(x) and q(y) − q(x) are
primitive.

3.6. Algorithm. Given polynomials p and q, the fol-
lowing method computes a birational function ϕ such
that k(p, q) = k(ϕ(p, q)).

h := the generator of k(p, q);
if h 6= x then use p̂÷ h and q̂ ÷ h instead.
“Thus we can assume k(p, q) = k(x).”
Introduce new variables α, β;
Apply Euclid’s algorithm on

p(y)− α and q(y)− β) (in k(α, β)[y]);
The last non-constant remainder must be linear

(by proposition 3.5);
Let its monic form be y − ϕ(α, β);
return ϕ.

In contrast to the non-extended version the quotients
are not added. They seem to be included in the remain-
ders by the appearance of the new variables.

It should be noted, that this algorithm works similar
to the method used in Netto’s proof of Lüroth’s theo-
rem (cf. [8], [1]). The new thing about this is that, for
polynomials, Netto’s method computes the generator
already in the first step.

3.7. Remark. An alternative approach uses matrix al-
gebra, similar to most elementary proofs of Lüroth’s
theorem: Note that both x := {1, x, x2, . . . , xn−1} and
p := {1, p, p2, . . . , pn−1} are bases of k(x) = k(p, q) over
k(q) (n := [q], m := [p]). The matrix T transforming
the basis p into x can be computed easily. Because
x = T−1 · p we can set

ϕ(p, q) :=
∑

i

aip
i,

where a1, . . . , an ∈ k(q) constitute the second row of the
inverse T−1. Thus with this approach we have to invert
an n × n matrix containing polynomials of degree m.

This seems to be faster then Algorithm 3.6, but the re-
sult is generally larger. (Note that the requested bira-
tional function is not unique). It is not known, whether
the function constructed in Algorithm 3.6 is minimal in
some appropriate sense. Additionally, the algorithm for
the gcd-computation over k(p, q) (we have used Euclid’s
algorithm with cancellation before the last step) is open
for improvements.

4 Faster Computation of Intersection Fields

The computation of a generator of an intersection field
given in the form k(p) ∩ k(q) is much more delicate,
because, in general, we have no constructive proof of
its existence. The problem can be reduced to deciding
whether the intersection field contains a non-constant
element or not, but a general solution for this problem
is not known either.

Things are much better in case char k = 0. In par-
ticular, Proposition 4.1 and Theorem 4.3 will need this
assumption. Therefore:

Throughout this section, we will assume char k = 0.

4.1. Proposition. Let p, q ∈ k[x]. Then either

• k(p) ∩ k(q) = k or

• [k(x) : k(p) ∩ k(q)] = lcm([p] , [q]).

In the latter case, we also have

[k(x) : k(p, q)] = gcd([p] , [q]).

Again this goes back to [4]. In more abstract terms
this means that the lattice of intermediate fields of
k(x) : k(f), f a polynomial, ordered by ⊇, is embedded
by the degree function into the lattice of divisors of [f],
ordered by divisibility ([3]).

From (the first part of) this proposition we know
the degree of a possible non-trivial result in advance,
and an approach with indetermined coefficients works
and leads to a linear system of equations ([1]). From
Ritt’s strong result on bidecompositions we will obtain
a considerably faster algorithm.

4.2. Definition. A bidecomposition consists of poly-
nomials r, p, s, q non-trivially satisfying

r ◦ p = s ◦ q.

Note that if a, b, c, d are linear polynomials then
(a ◦ r ◦ b) ◦ (b−1 ◦ p ◦ c) = (a ◦ s ◦ d) ◦ (d−1 ◦ q ◦ c) is an
associated bidecomposition. Of course, the inverses are
with respect to composition.

4.3. Theorem (Ritt). Every bidecomposition with
relatively prime [r] = [q] and [p] = [s] is associated to
one of the two forms

xn ◦ (xm · u(xn)) = (xm · un) ◦ xn

Dn(x, am) ◦Dm(x, a) = Dm(x, an) ◦Dn(x, a),

where u denotes an arbitrary polynomial, a ∈ k, and
the Dn(x, a) are the Dickson polynomials (of the first
kind), as defined e.g. in [7].

This theorem, in the generality used here, is in [8].
Note that a generator of k(p ◦ t) ∩ k(q ◦ t) is just a

generator of k(p) ∩ k(q) composed with t.

4.4. Algorithm. A generator of k(p) ∩ k(q) for poly-
nomials p, q over a field of characteristic 0 can be com-
puted in the following way.

Compute a generator t of k(p, q);
if [t] 6= gcd([p] , [q]) then return 0;
if t 6= x then compute the generator of

k(p÷ t) ∩ k(q ÷ t)
instead and compose it with t.

“Thus we can assume k(p, q) = k(x).”
Test whether p and q match Theorem 4.3
if there is no match

then return 0
else we get corresponding polynomials r and s

and return r ◦ p.

4.5. Remark. The computation of the generator of
k(p, q) at the beginning of the algorithm can be can-
celed, as soon as it is detected that its degree is <
gcd(p, q). This optimization is particularly important
if [p] ≈ [q].

4.6. Remark. The complexity of this algorithm de-
pends on the costs for computing the generator of
k(p, q), for which we have got an O(log nM(n))-
algorithm in Section 2, and for testing whether a poly-
nomial is associated to a (generalized) power or to a
Dickson polynomial. Comparing coefficients this can
be done within at most O(M(n)) operations. In partic-
ular, this algorithm is considerably faster than solving
a linear system of equations.

5 Further Remarks

Let us outline some applications.
The rational function ϕ computed in our extended

compositional Euclidean algorithm can be used to do ra-
tional computations in k(p, q, . . .) more efficiently. Af-
ter computing the generator t of k(p, q, . . .), one can
transform the requested computation into one expressed
in k(t), which is isomorphic to k(x), and transform the
result back using ϕ, in order to get the result in terms
of p, q, . . . again.

Corollary 3.5 can be used to compute the gcd of
polynomials of the form p(y)− p(x) efficiently.

A parameterization (p, q) of a plain curve is faithful
iff k(p, q) = x. For polynomial parameterizations we
can use our algorithm to test this quickly. Here it is

quite useful that our algorithm is particularly fast in
the affirmative case.

All these algorithms have already been implemented.
Improved publicly available packages are planned at
least for Mathematica, and will be posted for anony-
mous ftp on bruckner.stoch.uni-linz.ac.at, in the
directory /pub/decomposition

References

[1] Alonso, C. Desarrollo, Análisis e Implemen-
tación de Algoritmos para la Manipulación de Var-
iedades Paramétricas. PhD thesis, Universidad de
Cantabria, Santander, 1994.

[2] Alonso, C., Gutierrez, J., and Recio, T. A
rational function decomposition algorithm by near-
separated polynomials. Journal of Symbolic Com-
putation (1996).

[3] Binder, F. Polynomial decomposition. Master’s
thesis, University of Linz, June 1995.

[4] Engström, H. T. Polynomial substitutions.
American Journal of Mathematics 63 (1941), 249–
255.

[5] Fried, M., and MacRae, R. On curves with
separated variables. Math. Ann. 10 (1969), 220–
226.

[6] Lausch, H., and Nöbauer, W. Algebra of Poly-
nomials, vol. 5 of North-Holland Mathematical Li-
brary. North Holland, Amsterdam, 1973.

[7] Lidl, R., Mullen, G. L., and Turnwald, G.

Dickson Polynomials, vol. 65 of Pitman Mono-
graphs and Surveys in Pure and Applied Mathe-
matics. Longman Scientific & Technical, London,
1993.

[8] Schinzel, A. Seclected Topics on Polynomials.
Ann Arbor, University of Michigan press, 1982.

[9] van der Waerden, B. L. Algebra, 5 ed.,
vol. II. Springer-Verlag, Berlin Heidelberg New
York, 1967.

[10] von zur Gathen, J. Functional decomposition of
polynomials: the tame case. Journal of Symbolic
Computation 9 (1990), 281–299.

[11] von zur Gathen, J. Functional decomposition
of polynomials: the wild case. Journal of Symbolic
Computation 10 (1990), 439–452.

	Intermediate Fields and Composition
	A Compositional Euclidean Algorithm
	An Extended Compositional Euclidean Algorithm
	Faster Computation of Intersection Fields
	Further Remarks

