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A SIMPLIFIED PROOF

FRANZ BINDER

Abstract. Bidecompositions, i.e., solutions to r ◦ p = s ◦ q, play
a central rôle in the study of uniqueness properties of complete
decompositions with respect to functional composition. In [Rit22]
all bidecompositions using polynomials over the complex number
field have been characterized. Later the result was generalized to
more general fields. All proofs tend to be rather long and involved.
The object of this paper is to develop a version that is simpler
than the existing ones, while keeping completely elementary, thus
making it accessible to a wider community.

1. Bidecompositions

In the whole paper we will deal with polynomials over a field, which
is usually denoted by k. The indeterminant, or identity polynomial,
will be denoted by x. Thus, whenever we just say polynomial, elements
of k[x] are intended, if not specified differently. Their functional com-
position will be denoted by ◦. Thus for polynomials r and p we use the
notations

r ◦ p = r ◦ p(x) = r(p(x)) = r(p)

interchangably. The degree of a polynomial p is denoted by [p]. As
usual when dealing with composition, we use the convention [0] = 0.
Thus the degree function is a homomorphism of the monoid (k[x], ◦)
onto the monoid (N0, ·). The units of (k[x], ◦) are the polynomials of
degree 1.

We have to clarify some basic notions.

1.1. Definition.

1. Two polynomials p and q are called associated, in symbols p ∼ q,
whenever there exist units a and b such that

p = a ◦ q ◦ b.

2. A polynomial f is said to be decomposable iff it has a decomposi-
tion f = r ◦ p into two non-units r and p. Otherwise it is called
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indecomposable. f = fn ◦ . . . ◦ f1 is called a prime decomposition
of f iff all its componets fi are indecomposable.

3. A bidecomposition consists of two decompositions f = r ◦p = s◦q
that are not associated. A prime bidecomposition consists of prime
decompositions.

4. If r ◦ p = s ◦ q is a bidecomposition and a, b, c, and d are units,
then

(a ◦ r ◦ b) ◦ (b−1 ◦ p ◦ c) = (a ◦ s ◦ d) ◦ (d−1 ◦ q ◦ c)
is a bidecomposition that is associated to the original one.

1.2. Remark. Two polynomials over k that are not associated may be
associated when viewed as polynomials over an extension field. So we
must be careful with this notion.

Suppose that f has a prime decomposition of the form

f = . . . ◦ r ◦ p ◦ . . . ,
and that r ◦ p = s ◦ q is a prime bidecomposition. Then we can replace
r and p by s and q to get another prime decomposition

f = . . . ◦ s ◦ q ◦ . . . .
If two prime decompositions can be joined by a sequence of such re-
placements, then they are called related. The importance of bidecom-
position comes from the following theorem, that goes back essentially
to [Ritt 22]. First a definition.

1.3. Definition. A polynomial over k is called tame iff its degree is
not a multiple of the characteristic of k.

1.4. Remark. If char k = 0, then tame just means non-constant.

1.5. Theorem (Ritt). All prime decompositions of a tame polynomial
f are related. In particular, the number of its indecomposable compo-
nents and their degrees, but not nescessarily their order, are uniquely
determined by f .

Other proofs and generalizations of this theorem as well as related
results are e.g. in [Eng41], [LN73], [DW74], [Sch82], and [Bin95].

Some other facts from the above references that usually are proved
in this context should be mentioned.

1.6. Corollary. In a tame nontrivial bidecomposition r ◦ p = s ◦ q the
outer resp. the inner polynomials have the same degrees, i.e.,

[r] = [q] , [p] = [s] .

Additionally, [p] and [q] are relatively prime.



CHARACTERIZATION OF PRIME BIDECOMPOSITIONS 3

1.7. Theorem (Lüroth). All intermediate fields of the extension
k(x) : k are simple. In particular, if polynomials p and q have no
common right component, then there is a rational function f in two
variables such that

x = f(p, q).

Decompositions of tame polynomials do not depend on the ground
field:

1.8. Proposition. A tame polynomial is indecomposable over k iff it
is indecomposable over some extension fields.

This allows us to pass over to the algebraic closure of k without losing
indecomposablility. But bidecompositions associated over an extension
field need not be associated over k. For these reason we do the proof
for arbitrary fields. algebraicall

1.9. Example. An easy example of bidecompositions is given by the
powers, because they trivially satisfy

xm ◦ xn = xn ◦ xm.
This can be generalized a bit to

(xm · t(x)n) ◦ xn = xn ◦ (xm · t(xn)), (1)

for an arbitrary polynomial t, as can be verfied immediately. A second
important class comes from the Dickson polynomials, as defined in the
next section. They satisfy, similarly,

Dm(x, an) ◦Dn(x, a) = Dn(x, am) ◦Dm(x, a). (2)

1.10. Definition. A bidecomposition associated to (1) is called expo-
nential, one associated to (2) is called trigonometric.

1.11. Definition. A tame polynomial f is called completely tame iff
for each multiplicity µ of a zero of f ′, m+ 1 is not a multiple of char k.

1.12. Remark. Again, in the case of characteristic 0, completely tame
just means non-constant. Otherwise a sufficient condition is [f ] <
char k.

Now we can express the theorem that we want to proof in the next
five sections.

1.13. Theorem (Ritt). All prime completely tame bidecompositions
over a field not of characterisic 2 are either exponential or trigonomet-
ric.
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1.14. Corollary.

1. Over a field of characteritic 0 all bidecompositions are either ex-
ponential or trigonometric.

2. If char k 6= 0 then all bidecompositions using polynomials of de-
grees < char k are either exponential or trigonometric.

This theorem goes back essentially to [Rit22], with generalizations
in [Lev42], [LN73], [DW74], [Sch82].

The proof given in this paper is completely elementary, in the sense
that the basic facts about field extensions are the most advanced re-
sults used. Nevertheless it is not longer, quite on the contrary, some
simplifications, just in the most involved passages, were possible. Our
schedule will be as follows.

After discussing some not so widely known properties of Dickson (or
Chebyshev) polynomials and of the Tschirnhaus transform (similar to
the norm of a linear transformation), we will take a closer look at the
ramification structure of the components in a bidecomposition. Then,
in §5, we can give a condition for a bidecomposition to be exponential.
The same is done in §6 for trigonometric solutions. As one of these two
conditions must be satisfied the proof is complete then.

2. Dickson Polynomials

As the (prime-degree) Dickson polynomials constitute bidecomposi-
tions, a closer look at their properties will be useful.

2.1. Definition. Let a ∈ k. We define the Dickson polynomials
Dn(x, a) recursively as

Dn+2(x, a) = x ·Dn+1(x, a)− aDn(x, a); D0(x, a) = 2, D1(x, a) = x.

Instead of Dn(x, 1) we sometimes simply write Dn.

Note. The classical Chebyshev polynomials tn, usually defined by
cosnx = tn(cos x), are conjugate to our Dickson polynomials by
tn(x) = 1

2
Dn(2x, 1). Using Dickson polynomials instead of Chebyshev

ones has the advantage that they are normed, whenever n is odd. And
there is an additional parameter.

Almost directly from the definition we get

2.2. Proposition. The Dickson polynomials satisfy

1. Dn(λx, λ2) = λnDn(x, 1).
2. Dn(x, a) ◦ (x+ ax−1) = (x+ anx−1) ◦ xn.
3. Dm(x, a) ◦Dn(x, a) == Dnm(x, a) = Dn(x, a) ◦Dm(x, a) for arbi-

trary constants a, λ.
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This result among many other ones can be found e.g. in [LMT93].

2.3. Remark. Part 1 of his proposition suggests that the second pa-
rameter is superfluous because all Dickson polynomials of degree n are
associated to Dn. Suppose, however, that λ 6∈ k, but a := λ2 ∈ k.
Then

Dn(x, a) = λnx ◦Dn(x, 1) ◦ 1

λ
x.

Thus Dn(x, a) is associated to Dn(x, 1) as polynomial over k(λ), but
not necessarily over k. Using this extra parameter we can avoid the
usage of extension fields in such cases.

Note. Using proposition 2.2 it is easy to prove the well known differ-
ential equation for Dickson polynomials

(D2
n − 4) · n2 = (x2 − 4) ·D′n

2
.

Conversely, the Dickson polynomials Dn and their negatives constitute
all polynomial solutions to this differential equation. This is proved e.g.
in [LN73] or [Sch82]. The essential idea in the later reference is used
in the proof of the next lemma, which will be enough for our purposes.

2.4. Lemma. Let K be a field. Suppose that charK 6= 2; If a poly-
nomial f over K of degree n satisfies

f − 2λn = (x− 2λ) · g2
−

f + 2λn = (x+ 2λ) · g2
+

for some polynomials g−, g+ and λ ∈ K, then

f = Dn(x, λ2).

Proof. Let a = λ2. We substitute x+ ax−1 and multiply by xn; thus
obtain

(f(x+ ax−1)− 2λn) · xn = (x+ ax−1 − 2λn) · g2
−(x+ x−1) · x · xn−1

= (x− λ)2 · g2
−(x+ x−1) · xn−1

= h2
−

for some polynomial h−, because [g−] = n−1
2

. Similarly

(f(x+ ax−1) + 2λn) · xn = h2
+.
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Substracting these two equations we get

4λnxn = h2
+ − h2

− = (h+ + h−) · (h+ − h−)

But both h+ and h− have degree n. As charK 6= 2, we can choose
the signs such that [h+ + h−] = n. But then [h+ − h−] = 0, thus
h+ − h− = c for some constant c. We substitute λ for x into equation
(∗) to obtain

4an = (2h−(λ) + c) · c.
Using h−(λ) = 0 we see c2 = 4an, thus can assume c = 2λn. Now
equation (∗) turns into

4λnxn = (2h+ − 2λn) · 2λn,
from which it follows that h+ = xn+λn and consequently h− = xn−λn.
Therefore

f(x+ ax−1) + 2λn = x−n · (xn + λn)2

= xn + 2λn + anx−n,

thus

f(x+ ax−1) = xn + ax−n,

which is the characteristic equation for a Dickson polynomial (2).

The assumption in 2.4 was rather special. Using linear transforma-
tions we can make it more general.

2.5. Corollary. Let K ≥ k be an extension field of k. If a polynomial
f over k satisfies

f − e1 = (x− ξ1) · g2
1

f − e2 = (x− ξ2) · g2
2,

for some constants ξ1, ξ2 ∈ K, polynomials g1, g2 over K, and e1, e2 ∈
K that are two different solutions of some quadratic equation over k,
then f ∼ D(x, a) (as a polynomials over k) for some a ∈ k.

Proof. Being the solution of a quadratic equation, the ei have the form

e1,2 = e± λ
for some e ∈ k and λ ∈ K such that λ2 ∈ k.

In particular, f has its coefficients in k[λ], and so has x− ξi, as this
is a factor of the square-free factorization. Thus the ξi have the form

ξ1,2 = ξ ± cλ
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for some ξ, c ∈ k. Let n = [f ]; it is odd, directly from the assumption.
After multipliying with 2λn−1 (∈ k, as n is odd) the equations look like

2λn−1(f − e)± 2λn = (x− ξ + cλ)2λn−1g2
1,2.

Now f̃ = (2λn−1 − e) ◦ f ◦ ( c
2
x+ ξ) ∼ f satisfies

f̃ ± 2λn = (x− 2λ) · cλn−1g2
1,2,

which is the form required to use the lemma.

3. The Tschirnhaus Transform

3.1. Definition. Let p, q ∈ k[x], q monic with canonical factorization∏
i(x− ξi)νi over its splitting field. Then the Tschirnhaus transform of

q by p, denoted by pq is defined by

pq :=
∏
i

(x− p(ξi))νi .

In other words, we obtain the Tschirnhaus by transforming the zeros
of q by p. As it is a symmetric function of the zeros of q, it is clear
that its value is always in k. In fact, the Tschirnhaus can easily be
expressed without any reference to an extension field as a resultant:

3.2. Proposition. For any polynomials p, q, we have up to the sign
pq(y) = resx(p(x)− y, q(x)).

Proof. Let q =
∏

i(x− ξi)νi as above. Then by an elementary property
of the resultant

resx(p(x)− y, q(x)) =
∏
i

(p(ξi)− y) = 6= pqj

For bidecompositions the following property turns out to be very
useful.

3.3. Proposition. Let f = r ◦ p = s ◦ q be a prime bidecomposition
using monic polynomials; then

p(q − b) = r − s(b).

Proof. Let q − b =
∏

i(x− βi). Thus p(q − b) =
∏

i(x− p(βi)). But βi
is also a zero of r − s(b), because r(p(β)) = s(q(β)) = s(b).

Assume that b is transcentental. Then all the βi are distinct, as q
is tame. Suppose p(β1) = p(β2). As p and q have no common right
component, Lüroth’s theorem, provides a rational function f such that
f(p, q) = x. Now

β1 = f(p, q)(β1) = f(p(β1), q(β1)) = f(p(β2), q(β2)) = β2,
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which means, that p maps the zeros of q − b injectively to the zeros of
r− s(b). As [p] = [q], this is even a bijection, and the proof is complete
for transcendental b.

For arbitrary b we choose some new transcendental element, say y.
Then p(q − y) = r − s(y). Proposition 3.2 allows us to subsitute b for
y here, thus providing the full assertion.

4. Ramification

4.1. Definition. We say that e is a ramification point of some poly-
nomial r iff r−e and r′ have a common zero. The degree of gcd(r−e, r′)
is called the (ramification) index of r at e and is denoted by inde r.

4.2. Remark. As r− e and r′ have a common zero iff res(r− e, r′) = 0,
the ramification points of r are just the zeros of rr′.

4.3. Proposition. Let r be a tame polynomial. Then∑
e

inde r = [r]− 1

Proof. As r is tame, [r′] = [r]− 1, and if ξ is a zero of r′ of multiplicity
κ, then (x − ξ)κ divides r − e for exactly one e. Thus the sum of the
gcd’s is [r′].

The next very important proposition needs a stronger hypothesis
(remember definition 1.11).

4.4. Proposition. Suppose that r is completely tame. If we have the
canonical factorization r − e = c

∏
(x− ai)αi, then

inde r =
∑
i

(αi − 1).

Proof. As r was assumed to be completely tame, all αi 6= 0
(mod char k). Thus the multiplicity of ai in r′ is αi − 1, which proves
the result.

4.5. Remark. If a polynomial p has only one ramification point e, then
inde p = [p′], thus p is associated to x[p]. Such polynomials are also
called exponential.

4.6. Remark. For the rest of this section and the following two ones we
fix a non-trivial completely tame prime bidecomposition

f = r ◦ p = s ◦ q
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with n = [p] = [s] and m = [q] = [r]. Whenever we want, we can
assume all polynomials to be monic. For every point e we use the
canonical factorizations over the algebraic closure of k

r − e =
∏
i

(x− ai)αi

s− e =
∏
j

(x− bj)βj .

Then

f − e =
∏
i

(p− ai)αi

=
∏
j

(q − bj)βj

=
∏
i,j

γij∏
κ=1

(x− ξijκ)εijκ ,

where the ξijκ should be the zeros of f − e classified according to
p(ξijκ) = ai and q(ξijκ) = bj; the εijκ denote their multiplicities and the
γij the number of such zeros. Comparing the above factorizations we
see that for all i resp. j

(p− ai)αi =
∏
j

γij∏
κ=1

(x− ξijκ)εijκ

(q − bj)βj =
∏
i

γij∏
κ=1

(x− ξijκ)εijκ .

All these notions depend on the point e. If it is nescessary to indicate

this dependence, we use upper indices: a
(e)
i , ξ

(e)
ijκ and so on.

4.7. Lemma. For i, j we have

αiβj =

γij∑
κ=1

εijκ

In particular εijκ ≤ αiβj for all i, j, κ.
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Proof. Taking the Tschirnhaus transform we get

p(q − bj)βj =
∏
i

γij∏
κ=1

p(x− ξijκ)εijκ

=
∏
i

γij∏
κ=1

(x− p(ξijκ))εijκ .

=
∏
i

γij∏
κ=1

(x− ai)εijκ =
∏
i

(x− ai)
∑
κ εijκ .

But on the other hand, using proposition 3.3,

p(q − bj)βj = (r − s(bj))βj = (r − e)βj =
∏
i

(x− ai)αiβj ,

and this factorization must coincide with that obtained before.

4.8. Notation. We will write n ⊆ m or m ⊇ n iff the integer n divides
m. Note that (N0,⊇) is a lattice. Thus it makes sense to use the
symbols ∩ and ∪ to denote the greatest common divisor resp. the least
common multiple of integers. This intuitive notation will simplify many
of our formulas considerably.

4.9. Lemma. For all i, j, κ we have

εijκ ⊇ αi ∪ βj (3)

γij ⊆ αi ∩ βj. (4)

Proof. Note that εijκ, the multiplicity of ξijκ in f − e equals αi times
its multiplicity in p− ai. Thus εijκ ⊇ αi. Similarly εijκ ⊇ βj. Thus the
first inequality is clear. From this, together with the previous lemma

αiβj =

γij∑
κ=1

εijκ ⊇ γij(αi ∪ βj).

Then the second equation follows from dividing by αi ∪ βj.

4.10. Lemma. For all i we have

indai p =
∑
j

(βj − γij) ≥
∑
j

(βj − αi ∩ βj).

Proof. Using proposition 4.4 we get

indai p =
∑
j

γij∑
κ=1

(
εijκ
αi
− 1

)
=
∑
j

(
γij∑
κ=1

εijκ
αi
−

γij∑
κ=1

1

)
=
∑
j

(βj−γij).

The inequality then follows from the previous lemma.
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5. Exponential Solutions

The next proposition is very important for our simplifications. First
we need a technical lemma.

5.1. Lemma. Suppose that the positive integers αi have no common
divisor, i.e.,

⋂
i

αi = 1. Then for all positive integers β∑
i

(β − αi ∩ β) ≥ β − 1.

Proof. For β = 1 this is trivial. So we assume β > 1. Suppose that
αi is not a multiple of β. Then αi ∩ β ⊂ β, thus ≤ β

2
, and the i-th

summand is ≥ β
2
. If there are two such summands, then they sum up

to β and the lemma is proved. Thus consider the case that αi ⊇ β for
all but at most one i. Take i = 1 for the possible exception. Then

1 =
⋂

αi = α1 ∩
⋂
i6=1

αi ⊇ α1 ∩ β,

thus α1 ∩ β = 1, and we just have to look at the first summand β −
α1 ∩ β = β − 1 to prove the lemma also in this case.

The following result now has got a direct and considerably shorter
proof. It continues in the style of the previous proofs.

5.2. Proposition. If s has only one ramification point, then our bide-
composition is exponential.

Proof. Let e be the unique ramification point. Then e ∈ k, and in our
factorizations

ν = 1, β1 = n,

where n must be prime by indecomposability. Hence some αi is rel-
atively prime to n, again by indecomposability. Thus let us assume
n ∩ α1 = 1. Now from lemma 4.10

n− 1 ≥ inda1 p ≥
ν∑
i=1

(βj − α1 ∩ βj) = n− α1 ∩ n = n− 1.

Thus a1 is the unique ramification point of p, and as such is in k. For
i 6= 1 we have

0 = indai p ≥ n− αi ∩ n,
hence αi ⊇ n. So r has the form

r − e = (x− a1)
α1 · tn

for some polynomial t. a1 and the coefficients of t are elements of k
because they can be computed from the squarefree factorization. The
form of q is determined by the other three polynomials.
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Because the results in this section are symmetric in the sense that
we can interchange the rôles of the two decompositions r ◦ p and s ◦ q,
we can summarize

5.3. Proposition. If at least one of the two polynomials r and s has
only one ramification point, then our bidecomposition is exponential.

6. Trigonometric Solutions

6.1. Proposition. If r has at least two ramification points, then∑
i

indai p = indes.

Proof. Because r−e is not exponential, but indecomposable,
⋂
αi = 1.

Thus we can apply the lemma for each βj and, after summation, we
get ∑

j

∑
i

(βj − αi ∩ βj) ≥
∑
j

βj − 1.

Now we use lemma 4.10 to estimate∑
i

indai p ≥
∑
i

∑
j

(βj − αi ∩ βj) ≥
∑
j

βj − 1 = indes,

thus proving the ≥-part.
To see equality we consider the factorizations of remark 4.6 for vari-

ous e’s. Note that for r− e1 and r− e2 have no common zero whenever
e1 6= e2, thus all the elements α

(e)
i are distinct, so from summing up

over all e ∈ k we get

m− 1 =
∑
e

inde p =
∑
e

∑
i

ind aip ≥
∑
e

inde s = m− 1,

hence the ≥ here is an equality, and by the part just proved all sum-
mands are equal, too.

6.2. Lemma. If r has two ramification points and r − e contains a
simple zero, say a1 (i.e. α1 = 1), then

αi ⊇
⋃
j

βj, for all i 6= 1.

Proof. By proposition 6.1 together with lemma 4.10∑
j

(βj − 1) = inde s =
∑
i

indai p ≥
∑
i

∑
j

(βj − αi ∩ βj),

and using α1 ∩ βj = 1,
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=
∑
j

(βj − 1) +
∑
i6=1

∑
j

(βj − αi ∩ βj) (5)

Thus for i 6= 1 and all j we have βj ≤ αi ∩ βj, i.e. αi ⊇ βj.

6.3. Remark. If r−e has no simple zero, then all its zeroes are at least
double, hence their number is at most m

2
, so inde r ≥ m

2
. This cannot

happen twice.

6.4. Proposition. If both r and s have at least two ramification
points, then they have exactly two (common) ones. Let e be one of
them. Then both r − e and s − e have exactly one simple zero, the
remaining ones being double.

Proof. Suppose e is a ramification point of s such that r − e has a
simple zero, say a1, thus α1 = 1. By the lemma, all the remaining αi
are multiples of all the βj. But some bj > 1, thus, in particular, ai ≥ 2
for all i 6= 1. Hence e is also a ramification point of r and inde r ≥ m−1

2

because µ ≤ m−1
2

. If e′ is another ramification point of r, then its

index is bounded by m−1
2

, so r − e′ has also a simple zero, and the
whole story is equally true for this second ramification point. Thus r
has exactly the two ramification points e and e′, both with index m−1

2
,

hence µ = m+1
2

. r − e has a simple zero, the remaining m−1
2

ones sum
up to m−1, thus are double. The same is true for e′ and, by symmetry,
for the ramification points of s.

6.5. Remark. This means that for α1 = β1 = 1 and αi = βi = 2 for
all i 6= 1 for both ramification points e. Thus γ11 = 1, ε111 = 1, and
εijκ ⊇ 2, if not i = j = 1. Thus, if e1, e2 are the two ramification points,
then

f − e1 = (x− ξ1) · g2
1,

f − e2 = (x− ξ2) · g2
2

for some polynomials g1, g2. Because f has exactly two ramification
points, e1 and e2 satisfy a quadratic equation over k (4.2). So we can
apply proposition 2.4, and obtain:

6.6. Corollary. If both r and s contain two ramification points, then
our bidecomposition is trigonometric.
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7. Final Remarks

Now the proof of Ritt’s bidecomposition theorem is complete. Let
us outline where simplifications have been made, and which further
improvements seem to be possible.

Previous proofs assume that the ground field k is algebraically closed.
In [Sch82] the theorem for general fields is obtained as a corollary to
that for algebraically closed ones. Our version proves the general form
directly. There are only few points where we must take care of this,
e.g. in 2.5 whose nontrivial part says that we the linear transformations
can be chosen in the ground field.

That we use the Tschirnhaus transform instead of the norm as
previous elementary proofs is mainly a matter of taste. Note that
pq ·p = ±Nk(x):k(p)(q). The usage of the resultant is new in this context
and may supply further improvements, when used more extensively.
Our proof of proposition 3.3 serves as an alternative to the usage of
norms and minimal polynomials; it seems to be more direct.

The section on ramification contains results mixed from the previous
proofs. Lemma 4.9 has got an elementary proof.

Our major simplifications are contained in sections 5 and 6. There
is no discussion of extra points anymore. We just make the distinction
on the number of ramification points and quickly see by analyzing the
ramification structure that we have the exponential or trigonometric
case respectively.

These improvements essentially use that the components of prime
bidecompostions are indecomposable. Thus they do not generalize as
in [Sch82], partially characterizing bidecompositions that need not be
prime. This raises the question, whether the two theorems of Ritt (1.5
and 1.13) can be used to give a general exact description of all possible
decompositons. In particular, we may ask whether there is a canonical
decomposition.

The decompositions of exponential polynomials (associated to xn)
may be considered to be trivial as they simply correspond to the fac-
tors of n. The same is true with Dickson polynomials. This suggest
that a canonical decomposition could look like this: a composition of
polynomials that are either Dickson or occur in some bidecomposition
or have nothing to do with bidecompositions.

As another further improvement it might be possible to use the re-
sultant and square-free factorizations indstead of the involved anaysis
of the zeros and their multiplicities in sections 4 to 6.

The assumption about char 2 in the theorem was necessary because
proposition 2.4 uses it, which again is needed in 6.6. It is not clear
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whether we get any additional bidecompositions in case of characteris-
tic 2.

The restriction to completely tame polynomials was necessary in
proving 4.4, which is basic for all results about the index. It is not
known how far this can be weakened, e.g. to tame polynomials..

Another open problem is, how far the assumptions can be weakened,
or how the assertion should be changed for finite characteristic. One
form of counterexample can be obtained as follows. Let χ = char k;
then for all indecomposable polynomials f

xχ · f = f · xχ

is a bidecompositions. Can all bidecompositions be reduced to trigono-
metric or exponential form using this ambiguity somehow?

The characterization of bidecompositions of rational functions seems
to be more difficult. In this case, for example one gets the Redei func-
tions as another class of permuting functions.
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[LN73] Hans Lausch and Wilfried Nöbauer, Algebra of polynomials, North-
Holland Mathematical Library, vol. 5, North Holland, Amsterdam, 1973.

[Rit22] J. F. Ritt, Prime and composite polynomials, Transactions of the Ameri-
can Mathematical Society (1922), no. 23, 51–66.

[Sch82] A. Schinzel, Seclected topics on polynomials, Ann Arbor, University of
Michigan press, 1982.

Department of Mathematics, Johannes Kepler University Linz, Aus-

tria

E-mail address: xbx@bruckner.stoch.uni-linz.ac.at


	Bidecompositions

