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ZusammenfassungDe todos es onoido que los polinomiosonstituyen el n�uleo del �algebra.Jaime GutierrezPolynome und Polynomfunktionen erfreuensih von jeher gro�er Beliebtheit.Erhard AihingerDie Theorie der Zerlegung von Polynomen bez�uglih des Einsetzens fand ihrenersten H�ohepunkt durh die Arbeit von J. F. Ritt, welhem es 1922 gelang, durhkonsequente Anwendung der damals shon voll entwikelten Theorie der Riemann-shen Fl�ahen, alle Zerlegungen von Polynomen mit komplexen KoeÆzienten imPrinzip zu beshreiben. Sein Resultat teilt sih in zwei Teile. Der erste besagt, da�alle Primzerlegungen bis auf Bidekompositionen und lineare Transformationen ein-deutig sind, der zweite harakterisiert dann alle Bidekompositionen. Ritt's Resultatwurde in mehreren Shritten verallgemeinert.Motiviert durh die Fortshritte der Computeralgebra entstand in den letztenJahren eine Neubelebung dieser Thematik. Dabei stand die Entwiklung leistungs-f�ahiger Algorithmen zur Berehnung von Primzerlegungen im Vordergrund. Das�uberrashendste Ergebnis in diesem Bereih ist wohl, da� das AuÆnden von Prim-zerlegungen, zumindest f�ur Polynome �uber K�orpern der Charakteristik 0, bedeu-tend shneller ist als die Faktorisierung.In dieser Arbeit wird konsequent versuht, die beiden oben genannten Rihtun-gen durh eine gemeinsame Behandlung zu vereinen. Dabei stellte sih einerseitsheraus, da� die modernen Zerlegungsalgorithmen bereits implizit in den alten Ein-deutigkeitsbeweisen enthalten sind, und andererseits, da� aus eben diesen Algorith-men zahlreihe theoretishe Ergebnisse einfaher abgeleitet werden k�onnen. Darausergaben sih zahlreihe neue Aspekte, durhshaubarere Beweise der bekannten Re-sultate sowie verbesserte Algorithmen.Das erste Kapitel befa�t sih haupts�ahlih mit dem Beweis des Rittshen Ein-deutigkeitssatzes und den dabei auf nat�urlihe Weise auftretenden Algorithmen.Dabei wurden die wesentlihsten Shritte und Ideen etwas breiter ausgef�uhrt.Im ersten Abshnitt wird eine nihtkommutative Teilbarkeitstheorie versuht.Sie ist m�oglihst allgemein formuliert, die Anwendung auf Polynome bleibt dabeijedoh stets im Hinterkopf. Obwohl dieser Abshnitt eigentlih nur der klarenBegri�sbildung und Festlegung der Notation dient, so enth�alt er doh die, zu-mindest in dieser Form, bislang unbekannte Verallgemeinerung des Rittshen Ein-deutigkeitssatzes auf Monoide mit Rehtsk�urzungsregel und semimodularem Teil-barkeitsverband. Das weitere Ziel des ersten Kapitels ist es dann, eben diese Bedin-gung f�ur Polynome zu zeigen. iii



iv Zusammenfassung�Uberrashend wirkt hier die Tatsahe, da� es niht gelingt, die Semimodularit�atdirekt zu zeigen, sondern nur �uber ein wesentlih st�arkeres Resultat, n�amlih da� derTeilerverband eines (zahmen) Polynoms durh die Gradfunktion in den Teilerver-band seines Grades eingebettet ist. Dies ist das eigentlihe theoretishe Resultatdieses Kapitels.Im zweiten Abshnitt wird aus Engst�oms elementarem Beweis, da� die Teil-barkeitsstruktur eines Polynoms tats�ahlih einen Verband bildet, ein allgemeinerAlgorithmus zur Berehnung des gr�o�ten gemeinsamen Rehtsteilers abgleitet. Eswird gezeigt, da� durh geshikte Ausnutzung der vorhandenen Wahlm�oglihkeitenein sehr shneller Algorithmus entsteht.St�arkere Resultate k�onnen nur f�ur den sogenannten zahmen Fall bewiesen wer-den, z. B. wenn die Charakteristik des Grundk�orpers 0 ist. Dabei stellt sih derBegri� der n-ten (N�aherungs)wurzel eines Polynoms als �au�erst n�utzlih heraus.Ihm ist daher der dritte Abshnitt gewidmet. Durh dieses Hilfsmittel k�onnenunter anderem einerseits der shnellste bekannte Algorithmus zur Primzerlegungund ein Algorithmus zur Berehnung des kleinsten gemeinsamen Linksvielfahenhergeleitet werden, und andererseits, die Rationalit�at von Primzerlegungen sowieerste bedeutende Eindeutigkeitsaussagen bewiesen werden.Um das Resultat �uber die Einbettung in den Teilerverband des Grades endg�ultigzu zeigen, ist noh ein Ausug zu den Zerlegungen rationaler Funktionen notwendig,um etwas elementare K�orpertheorie, vor allem den Satz von L�uroth, einsetzen zuk�onnen. Dabei erhalten wir das sh�one Ergebnis, da� der Teilerverband der Poly-nome ein konvexer Unterverband des Teilerverbandes der rationalen Funktionenist. Das zweite Kapitel beinhaltet einen vereinfahten elementaren Beweis des Ritt-shen Satzes �uber die Charakterisiertung von Bidekompositionen. Die Vereifahun-gen sind vor allem in den beiden Abshnitten �uber exponentielle und trigono-metrishe L�osungen beinhaltet. Durh Vergleih vorhandener Beweise und Ent-wirrung logisher Verehtungen, aber auh durh konsequennte Ausnutzung derUnzerlegbarkeit konnte die �ublihe Behandlung der Extrapunke zur G�anze elim-iniert werden. Der Abshnitt �uber Verzweigungen mit seinen ausf�uhrlihen Beispie-len sollte ebenfalls zur Klarheit beitragen. Au�erdem beinhaltet er ein einfahesVerfahren um die Verzweigungsstruktur eines Polynoms zu bestimmen.Die beshriebenen Algorithmen wurden gr�o�tenteils implementiert und teil-weise getestet. Entsprehende Programmpakete f�ur Mathematia und Maple sindin Vorbereitung.Die Beweise f�ur die theoretishen Resultate sheinen noh weiter verbesserungs-f�ahig zu sei, vor allem die systematishe Verwendung des Verzweigungspolynomszusammen mit dem Resultantenkalk�ul anstatt des doh eher unduhsihtigen Studi-ums der Nullstellen ist sehr vielversprehend.Weitere Verbesserungen sind zu erwarten durh Einbeziehung weiterer ver-wandter Themen, wie Zerlegung rationaler Funktionen, algebraisher Funktionenund Potenzreihen, sowie die Entwiklung von Zusammenh�angen mit der Faktorisie-rung und der Gruppentheorie. Au�erdem w�are es sehr aufshlu�reih, mehr �uberdie auftretenden algebraishen Strukturen, des Fastringes (|[x℄;+; Æ), des Kompo-sitionsringes (|[x℄;+; �; Æ) sowie besonders des Fastringes (|(x)1; �; Æ) der rationalenFunktionen mit f(1) = 1 zu wissen.



AbstratDe todos es onoido que los polinomiosonstituyen el n�uleo del �algebra.Jaime GutierrezPolynome und Polynomfunktionen erfreuensih von jeher gro�er Beliebtheit.Erhard AihingerThe theory of polynomial deompositions, with respet to substitution, owesmost of its ideas to the work of J. F. Ritt in the years around 1922. Using Riemannsurfae theory, he ould haraterize virtually all deompositions of polynomialsover the omplex number �eld. His main result on this topi onsists of two parts.First, he proved that all prime deompositions are unique up to linear transforma-tions and bideompositions. Seond, he haraterized all bideompositions. Ritt'sresult was improved in several steps.Reently, motivated by the rapid development of omputational algebra, therewas a renaissane of these topis. Now the development of eÆient algorithmsfor the omputation of prime deompositions beame dominant. In this area itis mostly surprising that, at least in the tame ase, deomposing is muh moreeÆient than fatoring.This thesis is an approah to ombine these two disiplines. It presents manyresults in a di�erent light, e.g. the modern deomposition algorithms are alreadyontained impliitly in old uniqueness proofs, and onversely, just these algorithmsprovide an easier derivation of numerous theoretial results.The �rst hapter mainly ontains a proof of Ritt's uniqueness theorem, togetherwith some algorithms that appear naturally in this ontext. The most importantsteps are presented with some digression.The �rst setion is a �rst approah to a nonommutative divisibility theory.In spite of its abstrat formulation, the appliation to polynomials always remainsin the bakground. Its main purpose is to �x a onsistent set of notations andterminologies, but it also ontains a generalization of Ritt's uniqueness theorem toright anellation monoids with semimodular omponent lattie. The main goalof the remaining setions of Chapter I then is to establish just this ondition forpolynomials.It's somewhat surprising that semimodularity annot be shown diretly. We�rst have to prove the onsiderably stronger result that the degree funtion embedsthe omponent lattie of a polynomial into the divisor lattie of its degree. So thelast property should be onsidered as the main result of the �rst hapter.v



vi AbstratStarting from Engstr�om's diret proof that the omponent struture of a poly-nomial is in fat a lattie, the seond setion ontains a general method to omputegreatest ommon right omponents. Attahed with a good heuristis, this providesa very eÆient algorithm.For the tame ase (e.g., over a �eld of harateristi 0), a lot of even more inter-esting results an be proved. In this ontext, the notion of the n-th (approximate)root of a polynomial turns out to be most useful. In the third setion, this tool isused to derive the fastest known deomposition algorithm and an algorithm for theomputation of least ommon left multiples, as well as to prove the rationality ofprime deompositions and remarkable uniqueness properties.In order to omplete the proof for the embedding into the divisor lattie adisourse to rational funtion deomposition is neessary. This allows us to usesome elementary �eld theory, partiularly L�uroth's theorem is needed. We get thenie result, that the omponent lattie of polynomials is a onvex sublattie of thatof rational funtions.The seond hapter ontains a somewhat simpli�ed proof of Ritt's theorem onthe haraterization of prime bideompositions. The improvements are ontainedmainly in the two setions on exponential and trigonometri solutions, respetively.Comparing previous proofs and doing some logial simpli�ations, but also by on-sequent use of the primality of the omponents of a prime deomposition, the usualtreatment of extra points ould be ompletely eliminated. The extensive examplein the setion on rami�ation should make lear what is atually going on. Addi-tionally we have obtained an eÆient method to ompute the rami�ation strutureof any polynomial.Most of the algorithms disussed in this thesis have been implemented andpartially tested. Well designed program pakages for both Mathematia and Mapleare being developed.The proofs of some of the theoretial results seem to be open for further im-provements, in partiular, a more systemati use of rami�ation polynomials, to-gether with the resultant alulus, might improve the detailed analysis of zeros.A omparison with methods used for related topis suh as deomposition ofrational funtions, algebrai funtions, or power series, as well as the developmentof relations to fatorization and group theory might be quite enlightening. Ad-ditionally, a more detailed knowledge of the appearing algebrai strutures likethe near-ring (|[x℄;+; Æ), the omposition ring (|[x℄;+; �; Æ), and partiularly ofthe near-ring (|(x)1; �; Æ) of rational funtions satisfying f(1) = 1, is supposed toprovide some more insight.
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CHAPTER IUniqueness Resultsx 1. Divisibility in Nonommutative MonoidsBesides proving Theorem 1.10 in a very general setting, this setion ontains a �rstattempt to de�ne a onsistent set of notations and terminology for a nonommuta-tive divisibility theory.Let M be a monoid, written multipliatively, with neutral element 1. Theinvertible elements of M are alled its units.1.1. De�nition. Let f 2M .(i) A sequene of elements fi 2 M suh that f = fn : : : f1 is alled a deom-position of f of length n into the omponents fi, and we write fi � f , forall i.(ii) If f = rp then we all p a right omponent and r a left omponent off . Equivalently, we say that f is a left multiple of p and a right multipleof r. We use the notations p �! f and f  � p for right omponents andleft multiples, respetively, and, symmetrially, r � f and f !� r for leftomponents and right multiples.(iii) p and q are alled (left,right) assoiated i� they are (right, left) omponents(or (left, right) multiples) of eah other. We use the symbols "�= and #�= todenote left and right assoiation, respetively. Thus p "�= q i� p �! q andp  � q, and p #�= q i� p � q and p !� q. Moreover p �= q i� p � q and p � q,i.e., i� they are simply assoiated.(iv) A (right, left) omponent of f is a alled proper i� it is not (left, right)assoiated to f . Equivalently, f then is alled a proper (left, right) multiple.We use the symbols �!; �;� ;!�;�;� with the obvious meanings to denoteproper (right, left) omponents (multiples).(v) f is alled deomposable i� there is p 2M suh that 1 �! p �! f . Otherwiseit is indeomposable or prime.(vi) A prime deomposition is one that ontains only prime omponents.1.2. Remark. Note that all symbols derived from �! have the arrow running outof the symbol, whereas those derived from � have it running inside.The de�nition for deomposable is somewhat unsatisfatory as is not symmetriwith respet to left and right. For the appliations used in this thesis, however,this does not matter.From now on, we mainly onsider only the notions derived from �!, i.e., rightomponents, left multiples, and left assoiates. By symmetry, there are always sim-ilar de�nitions and results for left omponents, right multiples, and right assoiates.The theory of this setion was developed in order to abstrat some notions andproperties of the monoid of polynomials with omposition, as introdued in the1



2 Chapter I . Uniqueness Resultsnext setion, and whih is dealt with in almost all parts of this thesis. But it is alsoused for the monoid of rational funtions and might be of general interest.1.3. Proposition.(i)  � and "�= are right ompatible with multipliation, i.e.,f  � p =) fq  � pq and f "�= g =) fp "�= gp:(ii) The left assoiates of the identity are just its right omponents, thus theelements that have a left inverse.(iii) "�= is an equivalene relation, and  � is a reexive and transitive relationon M , but antisymmetri only if "�= is equality.(iv) (M="�=; �) is an ordered set. Its global minimum is the equivalene lass ofthe neutral element 1. Its atoms are just the (equivalene lasses of the)prime elements.Proof. If f = rp then fq = rpq, hene pq �! fq, showing right ompatibility.Beause 1 �! a is always true, a "�= 1 is the same as a �! 1, whih means thatthere is b 2M suh that ba = 1, i.e., a left inverse. The rest is trivial.As usual in ontexts like this, we now stop the pedanti distintion betweenelements of M and their equivalene lasses, whenever no onfusion an arise.1.4. De�nition.(i) To every deomposition f = pn : : : p1 there is a orresponding right ompo-sition seriesf = pn : : : p1  � pn�1 : : : p1  � � � �  � p2p1  � p1  � 1;i.e., a hain in (M="�=; �). It is proper i� all  �'s in this hain are in fat �'s.(ii) Two deompositions are alled right assoiated i� they lead to the sameright omposition series.(iii) A deomposition is alled right proper i� its right omposition series isproper.(iv) If elements p; q 2M="�= have a least upper bound f , then it is alled the leastommon left multiple of p and q, and we write f = p "[q. Similarly a greatestommon lower bound is alled the greatest ommon right omponent , and isdenoted by p \# q.(v) The set [1; f ℄ = f p : 1 �! p �! f g together with  � is alled the (right)omponent struture of f . If it is a lattie it is also alled the omponentlattie of f .(vi) (M="�=; �) is alled the omponent struture of the monoidM . If is a lattie,it is also alled the omponent lattie of the monoid M .Note that the arrows in the symbols \# and "[ run outside, as they are derivedfrom �!.1.5. De�nition.(i) An element p 2M is right anellable i�fp = gp =) f = g;for all f; g 2M .(ii) A right anellation monoid is one in whih all elements are right anellable.



x 1. Divisibility in Nonommutative Monoids 3Note that the right anellable elements always onstitute a right anellationmonoid.1.6. Proposition. Let M be a right anellation monoid.(i) The left invertible elements of M are just the units.(ii) p; q 2M are left assoiates i� there is a unit a 2M suh that p = aq.(iii) The deompositions left assoiated to f = pn : : : p1 are exatly those of theform anf = (anpna�1n�1)(an�1pn�1a�1n�2) : : : (a2p2a�11 )(a1p1)for some units ai.(iv) The maximal hains in (M="�=; �) are in one-to-one orrespondene to ex-atly one lass of left assoiated prime deompositions.Proof.(i) Suppose ba = 1. Then aba = a, and hene ab = 1, by right anellation.(ii) Suppose p = aq and q = bp. Then p = abp and q = baq. Now, by rightanellation, this implies ab = 1 and ba = 1, thus a and b are inverses. Theonverse is trivial.(iii) Obviously, suh a deomposition is a left assoiate. For the onverse, letpn : : : p1 and qn : : : q1 be two left assoiated deompositions. By de�nition,p1 "�= q1, thus q1 = a1p1 for some unit a1. By right anellation, the deom-positions qn : : : q3q2 and pn : : : p3(p2a�11 )are left assoiated, thus, by indutionqi = aipia�1i�1;for all 1 < i � n.(iv) We have to show that a deomposition is prime i� the orresponding om-position series is maximal. By right anellation, this means to show that fis prime i� 1 �! f is maximal. But this is true by de�nition.1.7. De�nition.(i) A bideomposition rp = sq is a set of two deompositions that are not leftassoiated. Prime bideompositions onsist of two prime deompositions.(ii) If rp = sq is a prime bideomposition, and f 2M has a prime deompositionof the form � � � rp � � � , then we get another prime deomposition � � � sq � � �from replaing r and p by s and q, respetively. All (prime) deompositionsthat an be obtained in a �nite number of steps by using bideompositionsthis way, are alled related to the original one.(iii) Suppose that a lattie (L;�) ontains two inomparable elements p and q,suh that both p \ q � p � p [ q and p \ q � q � p [ q are maximal hains.Then the four-element sublattie p \ q � p; q � p [ q is alled a unit rhombof L.(iv) If p \ q � p; q � p [ q is a unit rhomb of the lattie (L;�), and a maximalhain ontains the maximal subhain p \ q � p � p [ q, then we an replaeit by p \ q � q � p [ q to get another maximal hain. All (maximal) hainsthat an be obtained in a �nite number of steps by using unit rhombs thisway are alled related to the original one.



4 Chapter I . Uniqueness Results1.8. Proposition. Let M be a right anellation monoid with omponent lattie(M="�=; "[;\# ), then two prime deompositions are related i� their right ompositionseries are.Proof. Immediately from the de�nitions.1.9. De�nition.(i) An element f of a lattie is said to over p i� f � p and no elements arebetween p and f .(ii) A lattie is semimodular i� whenever both p and q over p \ q, then p [ qovers both p and q.(iii) A monoid M is semimodular i� (M="�=; �) is a semimodular lattie. Anelement f 2 M is semimodular i� its omponent struture, ([1; f ℄; �), is asemimodular lattie.1.10. Theorem.(i) If a semimodular lattie ontains a �nite maximal hain, then all maximalhains are related, in partiular, their length is invariant.(ii) If a semimodular element of a right anellation monoid has at least oneprime deomposition, then all its prime deompositions are related, in par-tiular, the number of omponents is invariant.(iii) All prime deompositions of an element in a semimodular monoid that hasno in�nite  �-hains are related.Proof. We need to proof only the �rst part. Let A and B be maximal hains. Wemay assume that A is �nite. If one of A and B has length 0, i.e., ontains only oneelement, then by maximality, the lattie ontains only one element, too, so A = B,and we are through in this ase. We proeed by indution on the length of A. Thusassume that A = (1 � p � A0) and B = (1 � q � B0):for some (possibly) empty maximal hains A0 and B0.Case 1: If p = q, then p � A0 and p � B0 are maximal hains in the lattie[p;1℄ := f q : q � p g, thus related by indution, so A is related to B.Case 2: If p 6= q, let C be a maximal hain in the lattie [p [ q;1℄. Bysemimodularity both 1 � p � C and 1 � q � Care maximal hains; they are (diretly) related, and eah is related to A or Brespetively, using ase 1.x 2. Deompositions of PolynomialsFrom now on we deal with the monoid (|[x℄; Æ) of polynomials in x over a �eld ofonstants |, together with (funtional) omposition de�ned by(r Æ p)(x) := r(p(x))If in the sequel we just say polynomial, elements of this set are intended.When disussing algorithms, we generally assume that | has omputable �eldoperations and deidable equality.



x 2. Deompositions of Polynomials 52.1. Notation. Note that an expression like p(x � 1) is ambiguous beause iteither means that (x�1) is substituted into p, just as in p(x), or that p and (x�1)should be multiplied, as in (x + 1)(x � 1). Therefore we denote multipliation ofpolynomials by a dot, e.g., we write (x+ 1) � (x� 1), at least whenever the orretmeaning is not obvious. Additionally, the orret meaning of the notation pn is notlear now. Therefore we reserve it to powers arising from multipliation, whereaspÆn denotes an n-fold omposition.2.2. Example. The following examples of trivial formulas should eliminate anydoubt about the notation. (x+ 1) � (x� 1) = x2 � 1(x+ 1) Æ (x� 1) = x(x+ 1)2 = (x+ 1) � (x+ 1) = x2 + 2x+ 1(x+ 1)Æ2 = (x+ 1) Æ (x+ 1) = x+ 2(x+ 1)�1 = 1x+ 1(x+ 1)Æ�1 = x� 12p = 2 � pp(2) = p Æ 2p(t) = p Æ txp = x � pp(x) = p Æ x = pWe should mention for later referene the trivial2.3. Proposition. (|[x℄;+; �; Æ) is a omposition ring, i.e., we have the right dis-tributive laws (r + s) Æ p = r Æ p+ s Æ p;(r � s) Æ p = (r Æ p) � (s Æ p):for all polynomials p, r, s.Note, however, that the orresponding left distributive laws are not generallysatis�ed. [Pil83℄ ontains a desription of the struture of this omposition ringand of the near-ring (|[x℄;+; Æ).Degree of PolynomialsA very nie property of polynomials is that they have a degree, whih we denoteby square brakets ([p℄). When dealing with omposition, the onvention [0℄ = 0is useful. Our �rst result is trivial, but ruial for all the subsequent theory. Let(N0 ; �) denote the multipliative monoid of the positive integers inluding zero. Asthis monoid is ommutative we omit the arrows in symbols like �!, \# .



6 Chapter I . Uniqueness Results2.4. Proposition. The degree funtion maps(i) the monoid (|[x℄; Æ) homomorphially onto (N0 ; �), thus[r Æ p℄ = [r℄ [p℄(ii) the ordered set (|[x℄="�=; �) monotonially onto (N0 ;�), thusp �! q =) [p℄ � [q℄ ;p "�= q =) [p℄ = [q℄ :Proof. Let r = b0xn+ b1xn�1+ � � � and r = a0xm + a1xm�1+ � � � with a0 6= 0 andb0 6= 0. Then r Æ p = b0pn + b1pn�1 + � � �= b0(a0xm + a1xm�1 + � � � )n + � � �= b0a0xnm + � � � ;and b0a0 6= 0, thus [r Æ p℄ = nm. Of ourse [x℄ = 1. The seond part is a on-sequene of the �rst. As there are polynomials of arbitrary degree, surjetivity istrivial.The seond part is a trivial onsequene of the �rst.2.5. Proposition. Consider the monoid (|[x℄; Æ).(i) The deompositions of a onstant are exatly those that ontain at least oneonstant omponent.(ii) The units are exatly the polynomials of degree 1.(iii) Every polynomial of prime degree is prime.(iv) The non-onstant polynomials are exatly the right anellable ones.(v) A (right, left) omponent of a non-onstant polynomial is proper i� it has asmaller degree.(vi) The omponent struture of any non-onstant polynomial ontains no in�nite �-hains.(vii) Every non-onstant polynomial has a prime deomposition.Proof.(i) [fn℄ � � � [f1℄ = 0 i� at least one of the [fi℄ = 0, i.e., fi is onstant.(ii) The inverse of ax+ b with a 6= 0 is given by 1ax� ba . Polynomials of degree6= 1 annot be invertible beause their degree is not.(iii) If f = r Æ p has prime degree, then [f ℄ = [r℄ [p℄, thus either r or p must havedegree 1.(iv) Of ourse, onstants are not right anellable, as di�erent polynomials anhave a ommon zero. For the onverse assume that r Æ p = s Æ p for somenononstant polynomial p. Then, by right distributivity,0 = [0℄ = [r Æ p� s Æ p℄ = [(r � s) Æ p℄ = [r � s℄ [p℄ :Beause [p℄ 6= 0, r � s is onstant. Butr � s = (r � s) Æ p = r Æ p� s Æ p = 0;so r = s.(v) Suppose f = r Æ p. Then [f ℄ = [p℄ is equivalent to [r℄=1, i.e., that f "�= r.Similarly for � and �.



x 2. Deompositions of Polynomials 7(vi) If f1  � f2  � f3  � � � � is a hain, then [f1℄ � [f2℄ � [f3℄ � � � � is a hain ofpositive integers. But no positive integer has an in�nite number of divisors.So [f1℄ 6= 0 implies that the hain annot be in�nite.(vii) By the previous part, together with Proposition 1.6.Thus the disussion about existene of prime deompositions has been �nished.(If, however, | is not a �eld, or at least a unique fatorization domain, primedeompositions need not exist and the question beomes more interesting.) A morediÆult problem is to develop algorithms for omputing prime deompositions andto �nd interesting uniqueness properties. It turns out that very similar methodssolve these two problems, so we treat them at one.Polynomial Deomposition AlgorithmsLet us ask whether our existene proof ontains any method to �nd a primedeomposition of a polynomial f . In fat it does, though not expliitly. Themultipliativity of the degree funtion shows that there is only a �nite number ofpossible degrees for the omponents, one for eah divisor of [f ℄. So by an approahwith indetermined oeÆients, we an test for nontrivial deompositions.2.6. Algorithm. The following method determines whether a given polynomial fhas a proper deomposition over some algebrai extension �eld of | and omputesit in the aÆrmative ase.For eah non-trivial divisor n of [f ℄repeat take p = nPi=0 aixi, r = [f ℄=nPj=0 bjxjwith indetermined oeÆients ai and bj ;Compute r Æ p and ompare its oeÆientsto the orresponding ones of f ;Test whether the resulting system of algebrai equationshas a solution for the ai and bi;If one of the systems has a solution,then r Æ p with this solution is a deomposition,else f is indeomposable.2.7. Remark. Note that any system of algebrai equations an be solved, e.g.,by omputing the Gr�obner basis (f. e.g. [BL82℄). The algorithm presented thereeither determines that no solution exists or transforms it into a triangular system,i.e., an equation for the �rst variable, one for the seond, but using the �rst, one forthe third, using the �rst two, and so on. So it is easy to �nd out, whether there aresolutions in |, and whih �eld extension are neessary to obtain all solution. Thereis also an easy riterion to detet whether the system has a �nite or an in�nitenumber of solutions.This way, the polynomial deomposition problem is solved, in priniple. But,exept for polynomials of very small degree, the system that must be solved hastoo many variables ourring with too high degrees for being tratable. Hene thismethod has not been studied in detail. On the other hand, there are muh moreequations than variables, and the Gr�obner bases omputation has a lot of hoie,that an make it fast in partiular situations. It is an open problem, whether onean do so for the polynomial deomposition problem.



8 Chapter I . Uniqueness Results[Zip91℄ ontains another general algorithm, whih has a polynomial omputa-tion time. But it uses polynomial fatorization in two variables over an algebraiextension �eld, therefore is mainly of theoretial interest, as even exponential-timealgorithms are usually faster in pratie.In the next setion an algorithm that is very fast for the speial but veryimportant tame ase will be developed.But �rst we disuss some more properties and algorithms valid in the generalase.Taylor expansion2.8. Proposition. Let f; p be polynomials, p non-onstant. Then there are uniquepolynomials ri with [ri℄ < [p℄ suh thatf =Xi ri � pi:Proof. If [f ℄ < [p℄, the statement is lear, using r0 = f . We do indution on thedegree of f . If [f ℄ � [p℄, take any nononstant left multiple ~p = u Æ p of p suh that[~p℄ � [f ℄, e.g., p itself, or some of its powers pi, but not too big. We use Eulideandivision to get unique polynomials q and r suh thatf = q � ~p+ r:By indution, q = P qi � pi, r = P ri � pi, and by de�nition, ~p = P aipi, for someunique polynomials qi; ri of degrees < [p℄ and onstants ai. Thusf =X qi � pi �X aipi +X ri � pi;whih, after expansion, has the requested form.Of ourse, the step involving ~p is unneessary in order to prove the proposition.But it provides us with a more general onstrution, whih we are going to use toobtain a more eÆient algorithm.Note that for p = x � a, a 2 |, the proposition just says that f has a (�nite)Taylor expansion around the point a. Therefore we de�ne2.9. De�nition. The unique representation of Proposition 2.8 is alled the Taylorexpansion of f around p with oeÆients ri.2.10. Example. Let us ompute the Taylor expansion off = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xaround p = x2 + 2x. First we use the hoie ~p = p. Dividing f by p we get theremainder r0 = 4x, whose degree is < 2, and the quotientq1 = x10+10x9+46x8+131x7+260x6+380x5+419x4+350x3+218x2+97x+28:



x 2. Deompositions of Polynomials 9Continuing with this quotient as in the proof, we get the sequener1 = 13x+ 28q2 = x8 + 8x7 + 30x6 + 71x5 + 118x4 + 144x3 + 131x2 + 88x+ 42r2 = 18x+ 42q3 = x6 + 6x5 + 18x4 + 35x3 + 48x2 + 48x+ 35r3 = 12x+ 35q4 = x4 + 4x3 + 10x2 + 15x+ 18r4 = 3x+ 18q5 = x2 + 2x+ 6r5 = 6q6 = 1r6 = 1:Thus the Taylor expansion isf = p6+6p5+(3x+ 18) � p4+(12x+ 35) � p3+(18x+ 42) � p2+ (13x+ 28) � p+4x:Note that, by the hoie ~p = p, the remainder always had degree < [p℄; thereforewe just needed to ontinue with the quotient. This means that the problem of (Tay-lor) expanding f is redued to expanding a polynomial of degree [f ℄� [p℄. Thoughthis is quite pratial for polynomials of low degree, for high degree polynomialsa more balaned version seems to be better. If [~p℄ = [f ℄+12 , then the problemof (Taylor) expanding one n-th degree polynomials is redued to expanding twopolynomials of degree [f ℄�12 . This approah is explained in the following algorithm.2.11. Algorithm. Given polynomials f and non-onstant p, then the followingmethod omputes the Taylor expansion of f around p:if [f ℄ < [p℄ then return felse set i = power of 2 losest to [f ℄+12[p℄ ;thus �pi� � [f ℄+12use Eulidean division of f by pi;set q to the quotient, r to the remainder;return (expansion of q) � pi + expansion of r.2.12. Remark. Let M(n) be the number of �eld operations neessary for multi-plying two polynomials of degree n.Suppose [f ℄ = n. In every step, i � n. Thus omputing all neessary powers piby suessively omputing squares, takes at most O(M(n) � logn) �eld operations.In the �rst step, the Eulidean division uses at most O(M(n)) �eld operations, i.e.,has a bound  �M(n), for some onstant . Next, two problems of size � n2 must besolved. So we have to do two Eulidean divisions, but of polynomials with degreebound n2 , so it takes at most 2 �M(n2 ) �eld operations. Similarly, in the third step,we have the bound 4 �M(n4 ), in general 2i �M( n2i ). As 2i � n the total ost of



10 Chapter I . Uniqueness Resultsthe algorithm is bounded byO(M(n) � logn) + O( Xi<logn 2i �M( n2i )) � O(M(n) logn) +O( � Xi<log nM(2i n2i ))= O(M(n) logn) +O(M(n) logn):So the algorithm uses at most O(M(n) logn) �eld operations.2.13. Example. Let us illustrate the algorithm with the omputation of the Tay-lor expansion of f as in the last examplef = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xbut around p = x3 + 3x2 + 3x. Aording to the algorithm we must hoose i near12+12�3 = 136 , thus i = 2 and~p = p2 = x6 + 6x5 + 15x4 + 18x3 + 9x2:We divide f by ~p to obtain r1 = 20x3 + 60x2 + 60xas the remainder andq1 = x6 + 6x5 + 15x4 + 25x3 + 30x2 + 21x+ 18as the quotient. Now we ontinue reursively, omputing the Taylor expansion ofboth r1 and q1. As [r1℄ = 3 = [p℄, the hoie i = 1 is the only possible. We getr2 = 0q2 = 20:Thus r1 = 20p. [q1℄ = 6, hene i = 1 is appropriate, i.e., we divide q1 by p, withthe result r3 = 18q3 = x3 + 3x2 + 3x+ 7 = p+ 7:So q1 = (p+ 7) � p+ 18, and we getf = q1 � p2 + r1 = (p2 + 7p+ 18) � p2 + 20p = p4 + 7p3 + 18p2 + 20p:In this example, all Taylor oeÆients of f around p happen to be onstant.Of ourse, this is quite an inidene, and means that p �! f , in fatf = (x4 + 7x3 + 18x2 + 20x) Æ p:2.14. De�nition. Let p �! f . The unique polynomial r suh that f = r Æ p isdenoted by f � p, and we all this operation Taylor division.We have alled this Taylor division, beause it is a speial ase of Taylor ex-pansion.That f � p really is uniquely determined follows diretly from the right an-ellation law. This does not, however, equip us diretly with a method to omputethis operation. Additionally there ould be the possibility that there exists r suhthat f = r Æ p only if it is allowed to have oeÆients in some extension �eld of |.But we an use Taylor expansion.2.15. Proposition. Let f; p 2 |[x℄, p non-onstant.(i) p �! f i� all oeÆients of the Taylor expansion of f around p are onstant.(ii) The relation p �! f is independent of the ground �eld.



x 2. Deompositions of Polynomials 11(iii) If p �! f , then the oeÆients of f � p are rational funtions of those of pand f .Proof. The �rst part is immediate from the de�nition. But the algorithm for theomputation of the Taylor expansion uses only rational operations involving theoeÆients of f and p. Thus the remaining parts are also obvious.Remember that [p℄ � [f ℄ is a neessary ondition for p �! f .2.16. Algorithm. Given polynomials f and non-onstant p, then we an deidewhether p �! f and ompute f � p in the aÆrmative ase just by omputing theTaylor expansion as in algorithm 2.11, and aborting as soon as it omputes a poly-nomial whose degree is not a multiple of [p℄, beause in this ase p annot be a(right) omponent of f .Note that, if the algorithm is not aborted, then all Taylor oeÆients are on-stant.Component LattieThe following lemma is very surprising and seems to be rather unknown, thoughit appears impliitly in [Eng41℄.2.17. Lemma. Let f and q be polynomials, andf = q � p+ r; [r℄ < [p℄ :Then a polynomial t is a ommon right omponent of f and p i� it is one of p, qand r.Proof. The if-part is trivial. Therefore assume that t is a ommon omponent of fand p, thus there exist polynomials f̂ and p̂ suh thatf = f̂(t); p = p̂(t):Then, by Eulidean division, there exist polynomials q̂, r̂ suh thatf̂ = q̂ � p̂+ r̂; [r̂℄ < [p̂℄ ;and by substituting t into this equationf̂(t) = q̂(t) � p̂(t) + r̂(t); [r̂(t)℄ < [p̂(t)℄ ;i.e., f = q̂(t) � p+ r̂(t); [r̂(t)℄ < [p℄ :As the quotient and remainder are uniquely determined, it follows that q = q̂(t),r = r̂(t), thus t is a omponent of both q and r.2.18. Proposition. Any �nite set F of polynomials has a greatest ommon rightomponent.Proof. Beause every polynomial is a right omponent of any onstant, the on-stants an be removed from F without hanging the result. If F = ?, then anyonstant is a greatest ommon right omponent. If F = fpg, then p is the result. Soassume that F has at least two elements but no onstants. If the greatest ommondivisor of the degrees of all polynomials in F is 1, then x is the greatest ommonright omponent, beause its degree must divide 1. Otherwise hoose polynomials



12 Chapter I . Uniqueness Resultsf 2 F and p in |[F n ffg℄ with [f ℄ � [p℄ > 0. Thus p an be any element of Fdi�erent from f , but an as well be formed by adding and multiplying any suhelements. Using Eulidean division, we get a quotient q and remainder r. Then, bythe lemma, the sets F and (F n ffg)[ fq; rg have the same right omponents. Let~F be the later set with onstants omitted. Note that [q℄ + [r℄ � [f ℄� 1, so the sumof the degrees in ~F is smaller than that in F . We proeed indutively. Beause theonstants are omitted, we eventually must get a singleton set. Its element then hasthe same right omponents as the original set, i.e., it is the greatest ommon rightomponent.Now we an state our lemma in a simpler form.2.19. Proposition. Let f and q be polynomials, andf = q � p+ r; [r℄ < [p℄ :Then f \# p = p \# q \# r:The proof of the Proposition 2.18 ontains a new algorithm for the omputationof \# , whih is both simpler and more general than previous ones. It works like akind of ompositional Eulidean algorithm.2.20. Algorithm. The following program omputes the greatest ommon rightomponent of a �nite set F of polynomials:Remove all onstants from the set F ;if F = ? then return 0;while F ontains at least two elementsand the gd of their degrees is > 1repeat hoose polynomials f 2 F and p 2 |[F n ffg℄ with [f ℄ � [p℄ > 0;use Eulidean division of f by p, giving q and r;remove f from F ;add q and r instead, if nononstant;return the single element of Fresp. x, if we terminated beause the gd was = 1.2.21. Example. Let us ompute the greatest ommon right omponent off = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xandg = x27 + 27x26 + 351x25 + 2924x24 + 17526x23 + 80454x22 + 293985x21 + 877383x20+ 2177361x19 + 4550901x18 + 8084232x17 + 12282381x16 + 16023713x15 + 17986719x14+ 17374647x13 + 14417930x12 + 10238064x11 + 6178974x10 + 3134779x9 + 1313667x8+ 442593x7 + 115013x6 + 21450x5 + 2487x4 + 307x3 + 183x2 + 3x:At the �rst step we divide g by f and get the quotientq1 = x15 + 15x14 + 105x13 + 451x12 + 1317x11 + 2739x10 + 4133x9+ 4527x8 + 3555x7 + 1970x6 + 777x5 + 228x4 + 37x3 � 6x2 + 3xand the remainder r1 = x3 + 3x2 + 3x



x 2. Deompositions of Polynomials 13Now F = ff; q1; r1g, with degrees f12; 15; 3g. In the next step we have a lot ofhoie. Let us get rid of the biggest polynomial, q1, whih has degree 15. If wedivide it by f , we get a quotient of degree 3 and a remainder of degree < 12. If wedivide by r1, then the quotient has degree 12 and the remainder < 3. If, however,we divide by r31 = x9 + 9x8 + 36x7 + 81x6 + 108x5 + 81x4 + 27x3;then the quotient will have degree 6 and the remainder < 9, whih situation is morebalaned. In fat, q2 = x6 + 6x5 + 15x4 + 19x3 + 12x2 + 3x+ 2;r2 = �x6 � 6x5 � 15x4 � 17x3 � 6x2 + 3x:We observe that these two polynomials are left assoiated (r2 = (2�x)Æq2). Beausewe are omputing in (|[x℄="�=; �), i.e., modulo "�=, we an omit one of them. ThusF = ff; q2; r1g, with degrees f12; 6; 3g. The next hoie is rather straightforward:we get rid of f using division by q2, thusq3 = x6 + 6x5 + 15x4 + 24x3 + 27x2 + 18x+ 10;r3 = �2x3 � 6x2 � 6x� 20:Both polynomials happen to be left assoiated to some already in F , so f an beeliminated from F without ompensation. F = fq2; r1g now, and in the last stepwe have to divide these two elements, with the resultq4 = x3 + 3x2 + 3x+ 1;r4 = 2:Again, q4 is left assoiated to r1, and r4 an be omitted as it is onstant. So,�nally, F is a singleton and its element r1 (or any of its left assoiates) is thegreatest ommon right omponent.2.22. Remark. There is a lot of arbitrariness in this algorithm, involved by theword hoose, whih an a�et the eÆieny of the algorithm. In the example wehave used the strategy to replae the polynomial of highest degree by two ones thathave about the same degree. Choosing the seond polynomial p of the algorithmappropriately in |[F n ffg℄, not just in F , it an always be aomplished that[p℄ � [f ℄2 . Suppose that the biggest polynomial in F has degree n. If all polynomialshave degree � n, then we get rather small polynomials. Thus polynomials of anyorder of magnitude between the smallest and the biggest an be omputed withO(n logn) �eld operations. Dividing the n-th degree polynomial by one of degree� n2 replaes it by two ones of degree at most � n2 . Thus, with this strategy, weget the same omplexity bound as for our algorithm for Taylor expansion, whihwas O(n logn). In fat, these two algorithms are not very di�erent and e.g. bothan be used to deide whether p �! f .2.23. Theorem. (|[x℄="�=; �) is a bounded lattie with minimum x and maxi-mum 0.Proof. We have already shown that any two elements have an in�mum. 0 is alwaysa ommon left multiple, thus a least ommon left multiple must exist, beause thereare no in�nite  �-hains.



14 Chapter I . Uniqueness Results2.24. Remark. The degree funtion maps the lattie (|[x℄="�=; "[;\# ) monotoniallyonto the lattie (N ;[;\). But, in general, this is not a lattie homomorphism.We just get, as an immediate onsequene of monotoniity (Proposition 2.4), theonsiderably weaker fats[p \# q℄ � [p℄ \ [q℄ ; [p "[ q℄ � [p℄ [ [q℄ :There is, however, a very important loal replaement, stated in theorem 5.4. Wewill be onerned with its proof in the next setions.2.25. Example. Here is an easy ounterexample. Obviouslyx2 \# (x2 + x) = x:Later(Proposition 5.2) we will show that this implies thatx2 "[ (x2 + x) = 0;at least if har|= 0.Whereas we have got a general and very eÆient method for the omputationof the \# -operation, no general method for omputing the "[-operation is known.The reason is that the existene proof for least ommon left multiples was notonstrutive. But we an test whether there is a ommon left multiple of a spei�eddegree, beause this leads to a system of linear equations. ([Alo94℄)2.26. Algorithm. We an test whether two polynomials p, q have a ommon leftmultiple of degree n, and ompute it in the aÆrmative ase.if n 6� [p℄ [ [q℄ then return no ommon multiple;try polynomials r; s of degrees n[p℄ and n[q℄ , respetively,with indetermined oeÆients;Find a solution satisfying r Æ p = s Æ qthis is a linear system of [p℄ [q℄ equations with [p℄ + [q℄ variables;if it has a solutionthen return r Æ p = s Æ q (for that solution)else return no ommon multiple.2.27. Algorithm. The following semialgorithm omputes p "[ q, if it is not a on-stant, and never stops otherwise.n := [p℄ [ [q℄;for k 2 Nrepeat if there is a ommon left multiple f of degree knthen return felse ontinue.Thus the general ase is not very satisfatory. Beause we annot wait until theend of time to see that the algorithm did not stop, we hope to obtain a bound for[p "[ q℄. The general ase is unsolved, but for har|= 0, there is a very satisfatoryanswer, given in the next setion. But in this ase we an use the haraterizationof bideompositions in hapter II to obtain an even more eÆient algorithm.Normed PolynomialsThe omponent lattie ontains equivalene lasses of polynomials. This issometimes inonvenient, in partiular, if we try to ompose these equivalene lasses,beause "�= is not a ongruene with respet to omposition. This prohibits having



x 3. Roots of Tame Polynomials 15both lattie operations and omposition in one struture. But we an hoose agood system of anonial representatives to ahieve this.2.28. De�nition. Let p = anxn + an�1xn�1 + � � �+ a0 be a polynomial of degreen. (i) p is alled zerosymmetri i� a0 = 0.(ii) p is alled moni i� an = 1.(iii) p is alled normed i� it is moni and zerosymmetri.(iv) a deomposition is normed i� all its omponents are normed.2.29. Proposition.(i) The (normed, zerosymmetri, moni) polynomials form a submonoid of themonoid (|[x℄; Æ). They are also losed under multipliation.(ii) Eah non-onstant polynomial q has exatly one deompositionq = u Æ p;suh that u is linear and p normed.(iii) Eah polynomial has exatly one normed left assoiate.(iv) Eah deomposition of a normed non-onstant polynomial is left assoiatedto exatly one normed one.Proof.(i) Trivial.(ii) Let q = dnxn + � � �+ d0, u = ax+ b, and p = 1xn + n�1xn�1 + � � �+ 0. Weompare the oeÆients of q and u Æ p; thus obtaindn = adi = ai; for 0 < i < nd0 = b;whih, if q is given, has a unique solution for a, b, and all i.(iii) For non-onstant polynomials this is lear by the previous part. Note that 0is the only normed onstant, and for eah onstant  we have  = (x+ )Æ0.(iv) Let f = qn Æ � � � Æ q2 Æ q1 be a deomposition. Eah left assoiate of thisdeomposition looks likef = (un Æ qn Æ uÆ�1n�1) Æ � � � Æ (u2 Æ q2 Æ uÆ�11 ) Æ (u1 Æ q1):We have to hoose the ui appropriately to make all omponents normed. Forthe rightmost omponent, part (ii) shows that there is exatly one hoie.But then u2 must make q2 Æ uÆ�11 normed, and by the same argument, weget exatly one solution. This way we ontinue until un is determined.x 3. Roots of Tame Polynomials3.1. De�nition. Let f be a normed polynomial of degree nm. A normed poly-nomial p suh that [f � pn℄ � nm�mis alled an n-th (approximate) root of f . We will use the notation p = npf , if itexists uniquely.3.2. Proposition. Let r and p be nononstant normed polynomials of degrees nand m. Then p is an n�th root of r Æ p.



16 Chapter I . Uniqueness ResultsProof. Let r = xn + b � xn�1 + � � � . Thenr Æ p = pn + b � pn�1 + � � � :But �b � pn�1� = (n� 1)m = nm�m. All further terms are even smaller.3.3. Example. If | has harateristi 2, then the polynomial x4 + x3 has no 2ndroot, beause (x2+ ax)2 = x4+ a2x2, for eah a 2 |, whih has no term for x3. Onthe other hand, eah polynomial of this form is a 2nd root of x4. We want to avoidsuh wild behavior.3.4. De�nition. An integer is alled tame (relatively to |) i� it is has an inversein |, i.e., if it is not a multiple of the harateristi. A polynomial is tame i� itsdegree is tame.3.5. Remark. If har|= 0, a polynomial is tame i� it is non-onstant.3.6. Lemma. Suppose that the nononstant normed polynomials f and p with[f ℄ = nm, [p℄ = m and tame n satisfy[f � pn℄ � nm� kfor some 1 � k < m. Then(i) for eah polynomial q of degree at most m� k, we again have[f � (p+ q)n℄ � nm� k:(ii) with ~k := min(2k;m), there is exatly one zerosymmetri polynomial q ofdegree at most ~k � k suh thathf � (p+ q � xm�~k)ni � nm� ~k:Proof.(i) [f � (p+ q)n℄ = �f � pn � npn�1 � q � � � � � � nm�k, beause �npn�i � qi� �(n� i)m+ i(m� k) = nm� ik � nm� k for i � 1.(ii) The ondition on q ishf � (p+ q � xm�~k)ni = hf � pn � npn�1 � q � xm�~k � � � � i � nm� ~k:The omitted terms have degrees � (n�i)m+i(~k�k)+i(m�~k) = nm�ik �nm� ~k for i � 2. By the assumption,hf � pn � f̂ � xnm�~ki � nm� ~k;for (exatly) one zerosymmetri polynomial f̂ of degree at most ~k�k. Thusthe ondition turns intohf̂ � xnm�~k � npn�1 � xn�~k � qi � nm� ~k:Beause hpn�1 � xm�~ki = nm � ~k, and n is tame, we see, after dividing byx, that qx is the unique Eulidean quotient of f̂ � xnm�~k�1 by npn�1.3.7. Proposition. Let f be a normed polynomial with [f ℄ = nm. If n is tame,then there exists exatly one normed n-th root of f .



x 3. Roots of Tame Polynomials 17Proof. There is exatly one polynomial p with only one term suh that [f � pn℄ �nm � 1, namely xm. Thus we an apply the lemma with p = xm and k = 1, andsubsequently with k = 2,4,8; : : : ; 2i < m until we get an n-th root. Beause theadditional oeÆients that we get at eah step are unique, npf is also.3.8. Remark. Note that the proof of the lemma always deals only with the leadingk, or ~k oeÆients of the ourring polynomials. In the following algorithm thenotation (k)1 (f) denotes the polynomial of degree < k onstruted from the leadingk oeÆients, thus hf � (k)1 (f) � xn�k+1i � n � k. Similarly (k)2 (f) denotes thenext k oeÆients.3.9. Algorithm. The npf an be omputed aording to the proof of the lemma inthe following way:m := [f ℄n ;~f := (m)1 (f); we forget the remaining oeÆients!k := 1; p1 := xm;while k < nrepeat ~k := min(2k;m);f1 := k1( ~f);f2 := ~k�k2 ( ~f);p2 := k2(pm1 );q1 := EulideanQuotient(p1�(f2�p2)nf1 );p1 := p1x~k�k + q1;k := ~kreturn p � x.3.10. Example. Let us ompute the seond root of the example in the previoussetion f = x12 + 12x11 + 66x10 + 223x9 + 522x8 + 900x7 + � � � :Here, we do not even want to know what the remaining oeÆients are. In thenotation of the Algorithm we have n = 2, m = 6, and~f = x5 + 12x4 + 66x3 + 223x2 + 522x+ 900:frees us from the superuous oeÆients.We start with k := 1 and p1 := 1 (aording to the �rst approximation xm). Inthe �rst step we want to obtain the �rst ~k = 2k = 2 oeÆients. We see immediatelyf1 := 1f2 := 12p2 := (2nd oeÆient of p21) = 0:Now we obtain the 2nd oeÆient of the rootq1 = p1(f2 � p2) : nf1 = 1(12� 0) : 2 = 6;thus we enter with p1 := p1x+ q1 = x+ 6



18 Chapter I . Uniqueness Resultsand k := 2 into the seond step, to obtain the �rst ~k = 2k = 4 oeÆients We readthe next oeÆients from ~f : f1 := x+ 12f2 := 66x+ 223:and ompute p21: (x+ 6)2 = x2 + 12x+ 36;The �rst 2 oeÆients must oinide with that of f , andp2 := 36x:Now we get the next two oeÆients byq1 = p1(f2 � p2) : nf1 = (x+ 6)((66x+ 223)� (36x)) : 2(x+ 12) = 15x+ 432 ;thus we enter with p1 := p1x2 + q1 = x3 + 6x2 + 15x+ 432and k := 4 into the third step, to obtain the �rst ~k = min(2k;m) = min(8; 6) = 6oeÆients, i.e., the omplete root. We read the next oeÆients from ~f :f1 := x3 + 12x+ 66x+ 223f2 := 522x+ 900:This time f2 has smaller degree, beause there are no more oeÆients. We om-pute p21:(x3 + 6x2 + 15x+ 432 )2 = x6 + 12x5 + 66x4 + 223x3 + 483x2 + 645x+ � � � :The last oeÆient will not be needed. The �rst 4 oeÆients again must oinidewith that of f , and from the next ~k � k = 2 ones we getp2 := 483x+ 645:Now we get the remaining oeÆients byq1 = p1(f2 � p2) : nf1= (x3 + 6x2 + 15x+ 432 )((522x+ 900)� (483x+ 645)) : 2(x3 + 12x2 + 66x+ 223)= 392 x+ 212 :Thus p1 := p1x2 + q1 = x5 + 6x4 + 15x3 + 432 x2 + 392 x+ 212 ;gives all oeÆients of the root and 2pf = x � p1 is normed and of degree 6. In fat,squaring this polynomial gives( 2pf)2 = x12+12x11+66x10 = 223x9+522x8+900x7+ 46934 x6+ 23072 x5+ 33274 x4+ 8192 x3+ 4414 ;and we hek that its �rst 6 oeÆients oinide with that of f .3.11. Remark. Beause at eah step in the iteration the number of oeÆients ofnpf already omputed is doubled, our algorithm needs only O(logn) iterations. Themost expensive part in the i-th iteration is the omputation of the �rst 2i oeÆientsof the n-th power of a polynomial of degree 2i�1. This an be aomplished bythe usual method of suessive squaring with O(logn � M(2i)) �eld operations.AgainM(k) denotes the number of steps used for multiplying polynomials of degreek. Aording to [SS71℄ we an hoose M(k) = k log k. For pratial purposes,however, M(k) = k1:5 is more appropriate (Karatsuba method). In any ase, we



x 3. Roots of Tame Polynomials 19have M(2k) � 2M(k), thus the total ost of our algorithm is dominated by the ostof the last step, whih is O(M(m) logn). This is a very good bound, at least if k isa �nite �eld. For in�nite �elds, the growth of the size of the oeÆients beomesessential. A good polynomial bound is obtained in [vzG90℄.3.12. Theorem. Let f be a tame normed polynomial.(i) For eah divisor n of [f ℄ there is exatly one normed root npf ; its oeÆientsare rational funtions of the �rst [f ℄n oeÆients of f .(ii) For eah divisorm of [f ℄ there is at most one normed right omponent p �! fof degree m, and, in the aÆrmative ase, p = npf , with n = [f ℄m .(iii) For eah �nite sequene nk; : : : ; n1 2 N there is at most one normed deom-position f = pk Æ � � � Æ p1 suh that [pi℄ = ni.(iv) One gets no more normed deompositions of f when omponents are allowedto have oeÆients in some algebrai extension �eld of |. In partiular, apolynomial is prime over an extension �eld i� it is prime over |.Proof.(i) Proposition 3.7 proves uniqueness, and from the algorithm we see that onlyelementary �eld operations are used in its omputation.(ii) Eah right omponent of degree m must be an n-th root by proposition 3.2.Thus it is the unique one.(iii) The rightmost omponent is unique by the previous part. Then we useTaylor division to see that fk Æ � � �Æf2 is also uniquely determined. Applyingthe same argument reursively, we see that all omponents are determined.(iv) As both root omputation and Taylor division use only rational operations,this is lear from the onstrution in the previous part.This theorem and its proof also show that we have got a fast method to omputea prime deomposition of a tame polynomial f . We just ompute roots of f for eahdivisor n and get a good (the only possible) andidate for being a right omponentof the appropriate degree. We an test this using Taylor division and ontinue bydeomposing f � npf .3.13. Algorithm. Let f be a normed tame polynomial. Its prime deompositionan be omputed in the following way:For eah proper divisor m of [f ℄ (smallest �rst);ompute the andidate p of degree mas an appropriate root.test whether this is a right omponent using Taylor division;in the aÆrmative ase ontinue reursively with f � p,otherwise test the next divisor.If all divisors are exhausted, without �nding a right omponent,then f is prime.In fat, this algorithm �nds the the �rst prime deomposition, i.e., that withsmallest omponents on the right. If we try all proper divisors, (a variant of) thisalgorithm even �nds all prime deompositions.



20 Chapter I . Uniqueness Results3.14. Example. Let us now deompose our polynomialf = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60x:into prime omponents. Aording to the algorithm, we �rst look for the andidateof degree 2; it must be 6pf . Algorithm 3.9 �nds, with only one iteration,6pf = x2 + 2x;but using Taylor division we have already seen in Example 3.10 that this is not aright omponent. Note that, for this purpose, we need not do all the omputationsin that example, beause we obtain a linear Taylor oeÆient already at the �rststep. So let us ompute the andidate of degree 3; we getp := 4pf = x3 + 3x2 + 3x:We already know this polynomial from Example 2.10, where it was shown, usingTaylor division, that this is in fat a right omponent, andr := f � p = x4 + 7x3 + 18x2 + 20x:As r has degree 4 it ould be deomposable. But 2pr = x2 + x2 , and, using Taylordivision we see that this is not a right omponent. So r is prime and we have foundthe prime deomposition f = r Æ p.We ask whether there are any more prime deompositions. Thus ompute theandidate of degree 4: q := 3pf = x4 + 4x3 + 6x2 + 5x:Now Taylor division shows that q is in fat another right omponent withs := f � q = x3 + 6x2 + 12x:We know already that q is prime, beause f has no right omponent of degree 2.Thus f has the two essentially di�erent (i.e., not assoiated) prime deompositionsf = r Æp = sÆ q. In fat, we have got a prime bideomposition. To obtain all primedeompositions of f we an now test the andidate of degree 6, i.e., 2pf . But inRemark 5.6 we will see that this is in fat not neessary.3.15. Remark. Though the notion of root for polynomials (in this sense) as wellas its systemati use is new, a proof of proposition 3.7 is already ontained impli-itly in [Eng41℄. [LN73℄ ontains a similar proof. Additionally, the algorithms forpolynomial deomposition in [Gut88℄ and [KL89℄ use very similar onstrutions.Our proof is not more ompliated than the ones mentioned above, and has theadvantage that it almost diretly leads to the fastest known algorithms. Whereasthe above methods essentially ompare the �rst oeÆients, one by one, our proofand algorithm ompare the oeÆients in a seond order manner, thus doublingthe auray at eah step.The similarity with Newton's iteration method is not inidental: Every poly-nomial f = P aixn�i an be identi�ed with the Laurant series P ai � 1x�i�naround 1, whih has only negative terms. Thus, if we onsider only the leadingk oeÆients of the polynomials, we are doing essentially power series arithmetiup to order O(xn�k). It is well known that the lass of power series with leadingoeÆient 1 has unique roots. The paper [BK78℄ outlines how these roots an beomputed eÆiently using Newton's iteration method, and [vzG90℄ proposes thisfor polynomial deomposition. So our Algorithm 3.9 does essentially the same asthat in [vzG90℄.



x 3. Roots of Tame Polynomials 21The proofs in [Rit22℄ and [DW74℄ do not ontain any version of proposition 3.7,but use Riemann surfaes resp. valuation theory instead, whih essentially redueto the use of Laurant series. Using roots for polynomials diretly, we an avoid thedisourse to in�nite strutures ompletely.Roots have proved very useful in developing good algorithms for deompositionas well as some interesting uniqueness results. One an get even more.3.16. Remark. Yet another way to express part (ii) of theorem 3.12 is that thedegree funtion injetively maps the omponent lattie into the divisor lattie of [f ℄.Though it is trivially monotone, we do not yet know that it is a lattie homomor-phism. The next proposition proves one half of this, the rest must be postponed.3.17. Lemma. Let r be a normed polynomial and let n be a tame divisor of [r℄;then for all normed polynomials pnpr Æ p = npr Æ p:Proof. We have to prove that npr Æp satis�es the harateristi property of an n-throot of r Æ p. Thus we estimate�r Æ p� ( npr Æ p)n� = �r Æ p� xn Æ npr Æ p�= �r � xn Æ npr� [p℄(by de�nition of npr) � ([r℄� [r℄n ) [p℄= [r Æ p℄� [r Æ p℄n ;whih is what we wanted.3.18. Proposition. If p and q have any tame ommon left multiple, then[p "[ q℄ = [p℄ [ [q℄ :Proof. Let f = r Æ p = s Æ q be tame, then [f ℄ � [p℄ [ [q℄, and withn := [f ℄[p℄ [ [q℄ = [r℄ \ [s℄we have npf = npr Æ p = nps Æ qas another ommon left multiple, and this one has the appropriate degree [p℄ [ [q℄.The proof of the orresponding result for \# (5.2) is ompletely di�erent andsurprisingly needs a disourse to rational funtion deomposition.That the greatest ommon right omponents are independent of the ground�eld was not surprising, as this is so for greatest ommon divisors, too. But foromplete fatorizations the ground �eld is essential. Thus, prime deompositionshave a onsiderably simpler struture in this respet, at least in the tame ase. Onthe other hand, every polynomial an be fatored into linear ones over its splitting�eld. There is no (known) ompositional replaement for this. One ould expetthat every polynomial an be deomposed into ones of prime degree, whih aretrivially prime, just like the linear polynomials are trivially irreduible. But this,



22 Chapter I . Uniqueness Resultsby far, is not true, as most polynomials are prime. In fat, If f = r Æ p andg is some polynomial with [g℄ � [f ℄ � [p℄, then [(f + g)� pn℄ � [f ℄ � [p℄, thusp = npf = npf + g. Suppose f + g = r̂ Æ p; As f = r Æ p, g = (r � r̂) Æ p.Thus, for e.g. every polynomial g suh that its degree is not a multiple of [p℄,f + g is indeomposable. So for eah deomposable polynomial we get a wholebunh of prime polynomials of any degree. Another way to see this is looking atthe number of oeÆients: r Æ p is omputed from [r℄ + [p℄ oeÆients, whereas ageneral polynomial of the some degree has [r℄ � [p℄ oeÆients.In this ontext it would be partiularly interesting to know what happens whendeomposing into algebrai funtions.Another interesting question is whether there is a ompositional replaementfor squarefree fatorizations.x 4. Rational Funtion Deomposition4.1. Notation. The elements of the �eld |(x) will be alled rational funtions,as it onsists of all rational expression involving x. It is the quotient �eld of theintegral domain of polynomials |[x℄, thus the elements an be represented in theform pq , where p and q 6= 0 are polynomials. pq is said to be in prime form i� p andq are relatively prime. Of ourse, every rational funtion has a prime form whihis unique up to onstant fators.If f and g are rational funtions, then we an substitute g for the x in f to toget another rational funtion g(f). We get problems, however, if f is onstant andg has a pole at f . In this ase we assign a new onstant value 1 to g(f). Note,in partiular, that 1x Æ 0 = �1x Æ 0 = 1, thus 1 = �1. Consistently, we assigng( 1x )(0) to g(1), and we de�ne 1 Æ f = 1. So we an view rational funtionsas funtions from |(x)1 := |(x)[ f1g onto itself. Note that x then is viewed asthe identity funtion, and that g(x) = g, so di�erent rational funtions give rise todi�erent funtions. This justi�es the name rational funtion.As the rational funtions are really funtions, they an be omposed, and wehave f Æ g = f Æ g Æ x = (f Æ g)(x) = f(g(x)) = f(g);thus extending omposition of polynomials to rational funtions.We have done this rather pedanti introdution of omposition to be sure thatassoiativity is preserved even if onstants are involved. But now the following isimmediate.4.2. Proposition. (|(x)1; Æ) is a monoid with identity x. It ontains the sub-monoid of polynomials.4.3. Remark. A rational funtions f does not neessarily give rise to a funtionof | into itself, as it an have poles. But �f : a 7! f Æ a is a funtion of |1 intoitself. Note, however, that, if | is �nite, �f may vanish, without f being zero. Forexample, x2 + x orresponds to the zero funtion of Z2 into itself.4.4. Notation. Beause the rational funtions form a monoid, we an use the the-ory of x1. In partiular, we speak of right omponents of a rational funtion, itsomponent struture, deompositions, and so on, just like for polynomials. How-ever, we have to be areful here, beause a polynomial, indeomposable as an ele-ment of (|[x℄; Æ), ould have a non-trivial deomposition into rational funtions. We



x 4. Rational Funtion Deomposition 23will prove at the end of this setion that this annot happen and that no ambiguityis possible here. Until then, the rational funtion meaning is used exlusively.Rational Funtion FieldsThough rational funtions have a more ompliated struture than polynomials,there is one advantage: |(x) is a �eld, thus we an use the well developed theory of�eld extensions. We establish some important fats in this area, mainly along thelines of [vdW66, x73℄.4.5. Notation. Let k and K be arbitrary �elds. If k � K, i.e., if k is a sub�eldof K, then K is alled an extension of k, and we denote it by K : k. Its degree, i.e.,the dimension of K as a vetor spae over k, is denoted by [K : k℄. Fields betweenk and K are alled the intermediate �elds of K : k. Extensions of the form k(f) : k,are alled simple. If L is another extension of k, then a homomorphism from K : kto L : k is one from K to L that �xes k. It is also alled a k-homomorphism.4.6. Remark. In partiular, for eah f 2 |(x), |(x) is a (simple) extension of|(f). In general, the intermediate �elds of |(x) : | are alled the rational funtion�elds.4.7. Proposition. Let f be a non-onstant rational funtion. The mappingÆf : |(x)! |(f)g 7! g Æ fde�nes an isomorphism of the extension �elds |(x) : | and |(f) : |.Proof. We have to prove the distributive laws(g + h) Æ f = g Æ f + h Æ f(g � h) Æ f = g Æ f � h Æ fg�1 Æ f = (g Æ f)�1;but these are satis�ed by the de�nition as substitution. Also 1 Æ f = 1. Beinga homomorphism of �elds, the map is automatially injetive, it is onto by thede�nition of |(f). Obviously, the onstants are �xed.4.8. Remark. The distributive laws are also satis�ed if f is onstant, as long as1is not involved. More exatly, an indeterminate expression like1+1 or 00 must notour. For example, ( 1x+ 1x )Æ0 = 2x Æ0 = 20 =1, but 1x Æ0+ 1x Æ0 = 10+ 10 =1+1;or xx Æ 0 = 1 Æ 0 = 1, but xÆ0xÆ0 = 00 .4.9. Proposition. Let f; h 2 |(x) thenf �! h () |(f)� |(h)f "�= h () |(f) = |(h)Proof. f �! h just means that h 2 |(f). But |(h) is the smallest �eld ontaining| and h, so |(f) � |(h). Conversely, from h 2 |(f), we have h  � f . The seondassertion is a trivial onsequene of the �rst.



24 Chapter I . Uniqueness Results4.10. Remark. This means that the omponent struture of rational funtions,(|(x)="�=; �) an be embedded into the lattie of intermediate �elds of |(x) : |,ordered by �. Note the reversion of the symbol.4.11. De�nition. We extend the notion of degree to rational funtions by de�ning[f ℄ := max([p℄; [q℄);where f = pq is in prime form.Note that f = pq must be in prime form to make this well-de�ned.4.12. Notation. As |(x) is a �eld, it will be onvenient to onsider polynomialsover |(x). For this reason, we hoose a new variable y to denote the indeterminateof suh polynomials. Thus polynomials over a rational funtion �eld are understoodto be elements of |(x)[y℄.We ite one form of Gau�'s lemma ([Coh77℄ or [vdW66, x30℄). Note that apolynomial over a ring is alled primitive i� its oeÆients are oprime.4.13. Lemma (Gau�). A polynomial over |[x℄ is irreduible i� it is primitive andirreduible over |(x).4.14. Proposition. Let f = pq 2 |(x) be a non-onstant rational funtion inprime form. Then |(x) : |(f) is a �nite �eld extension. The minimal polynomialof x over |(f) is given by m(y) = p(y)� f � q(y);thus [|(x) : |(f)℄ = [f ℄.Proof. Obviouslym(y) 2 |(f)[y℄, and it satis�esm(x) = p(x)�f �q(x) = p�pq �q = 0.Thus x is algebrai over |(f). m(y) has degree max([p℄ ; [q℄) = [f ℄ (in y), So, if wean show that m(y) is irreduible over |(f), all the remaining assertions are alsolear.Note that the �eld |(f) is isomorphi to |(x), thus we an treat f as anindependent variable. Beause m(y) 2 |[f ℄[y℄, and |[f ℄[y℄ = |[y℄[f ℄, we an alsoview m(y) as a polynomial in f over |(y). As suh, it is linear, hene irreduible,and primitive beause p and q are oprime. Thus, by Gau�'s lemma, m(y) is alsoirreduible in |[y℄[f ℄ = |[f ℄[y℄. Hene, again by Gau�'s lemma, irreduible over|(f).4.15. Theorem (L�uroth). All rational funtion �elds are simple, i.e., of the form|(f) for some rational funtion f .Proof. E.g. [vdW67℄ or [Coh77℄ ontain elementary proofs. They make essentialuse of Proposition 4.14 and Lemma 4.13.4.16. Corollary. The omponent struture of rational funtions, (|(x)1="�=; �),is isomorphi to the lattie of intermediate �elds of |(x) : |, ordered by �.Proof. We have already remarked (4.10) that (|(x)1=="�=; �) an be embedded intothe lattie of intermediate �elds. But L�uroth's theorem ensures that this embeddingis surjetive.



x 4. Rational Funtion Deomposition 25Component Lattie4.17. Proposition.(i) The degree funtion is a homomorphism from (|(x)1; Æ) onto (N0 ; �), i.e.,[g Æ f ℄ = [g℄ [f ℄for all rational funtions f and g.(ii) The units of (|(x)1; Æ) are those of degree 1.(iii) f is a right anellable element of (|(x)1; Æ) i� it is not onstant.Proof.(i) If one of f and g is onstant so is g Æ f , and the result is immediate. Thusassume that both are non-onstant. Then both |(gÆf) : |(f) and |(f) : |(x)are �nite �eld extensions, thus[g Æ f ℄ = [|(x) : |(g Æ f)℄ = [|(f) : |(g Æ f)℄[|(x) : |(f)℄℄= [|(x) : |(g)℄[|(x) : |(f)℄ = [g℄ [f ℄ :(ii) One an use the degree funtion, just as for polynomials (Proposition 2.5).Here is another possibility: Let f be non-onstant. Using the injetivityof the isomorphism in proposition 4.7, g Æ f = 0 implies g = 0. So, bythe distributive law, f is right anellable. Conversely, onstants are notanellable: g() = h() just means that g and h have the same value on .(iii) By the �rst part, every unit must have degree 1. On the other hand[|(x) : |(u)℄ = 1 whenever [u℄ = 1. Thus u indues an automorphism of|(x) (f. 4.7), mapping some element v to x, i.e., v Æ u = x.The multipliativity of the degree is partiularly good news. For example,it allows us to ompute omplete deompositions of rational funtions, by an ap-proah with indetermined oeÆients, just like in the polynomial ase (2.6). Thepolynomial time algorithm in [Zip91℄ also works for rational funtions, in fat, wasdesigned for this ase. [AGR℄ ontains an algorithm that has exponential worstase omplexity, but is faster in pratie.4.18. Proposition. Let both g = rs and f = pq be rational funtions in primeform.(i) r Æ p and s Æ p are relatively prime.(ii) Let u := (r Æ f) � q[g℄;v := (s Æ f) � q[g℄;i.e., with r =Pni=0 rixi and s =Pmi=0 sixiu := rnpnq[g℄�n + rn�1pn�1 � q[g℄�n+1 + � � �+ r0q[g℄v := smpmq[g℄�m + sm�1pm�1 � q[g℄�m+1 + � � �+ s0q[g℄Then g Æ f = uv is in prime form.(iii) If g Æ f is a non-onstant polynomial and [p℄ > [q℄, then both f and g arepolynomials.Proof.



26 Chapter I . Uniqueness Results(i) As r and s are oprime, a � r+ b � s = 1, for some polynomials a; b (Bezout'srelation). We substitute p, and geta(p) � r(p) + b(p) � s(p) = 1;thus r(p) and s(p) are oprime again.(ii) As above, we substitute f into Bezout's relation: a(f) �r(f)+b(f) �s(f) = 1.This time, however, rational funtions are involved. To transform this intoa relation involving only polynomials, we multiply by an appropriate powerof q to get an equation of the form~a � u+~b � v = qk;suh that both ~a and ~b are polynomials. So gd(u; v) must divide qk. Butat least one of u and v has the form rnp[g℄ + q � (: : : ) or smp[g℄ + q � (: : : ),respetively, so is oprime to q, as p and q are oprime. Thus gd(u; v) = 1.(iii) If g Æ f is a polynomial, then [v℄ = 0. But [p℄ > [q℄ implies0 = [v℄ = m [p℄ + ([g℄�m) [q℄ :As [g℄ � m and [p℄ > [q℄ � 0, we onlude m = 0. But then [g℄ [q℄ = 0, so[q℄ = 0, as [g℄ 6= 0.Thus we have got the prime form of g Æ f quite expliitly in terms of that of fand g. No polynomial gd-omputation is neessary for its omputation.4.19. De�nition. A sublattie S of a lattie L is onvex i� for all a; b 2 S and 2 L, a �  � b implies  2 S.4.20. Theorem.(i) The omponent lattie of a polynomial is independent whether is onsideredin (|(x)1; Æ) or in (|[x℄; Æ).(ii) The omponent lattie of polynomials is a onvex sublattie of the omponentlattie of rational funtions.Proof. If p and q are left assoiated polynomials, then p = u Æ q for some somefrational linear funtion u. Thus, with 4.18.(iii), u is a linear polynomial. Henewe an identify (|[x℄="�=; "[;\# ) with a subset of (|(x)1="�=; "[;\# ).Suppose that gÆf is a polynomial and f = pq . If [p℄ > [q℄, we an apply 4.18(iii)diretly. If [p℄ < [q℄, we apply it to the assoiated deomposition (g Æ 1x ) Æ qp . In thease [p℄ = [q℄ the quotient of the Eulidean division of p by q is some onstant, say, thus p =  � q + r, where r is the remainder (so [r℄ < [q℄), thuspq = + rq = (+ x) Æ rq ;and again we get an assoiated deomposition to whih the proposition an beapplied. In any ase, the deomposition is left assoiated to one using only poly-nomials. This proves that the omponent latties are the same.For the seond part, it remains to show that, for arbitrary polynomials p and q,p "[q is (left assoiated to) a polynomial. If p "[q is onstant, this is trivial. Otherwisewrite it in the form p "[ q = rs Æ p = r̂̂s Æ q;



x 5. The Invariant Integers 27then, rÆpsÆp = r̂ÆqŝÆq , and, by the �rst part of proposition 4.18 both sides are in primeform. Thus, up to a onstant fator, rÆp = r̂Æq and sÆp = ŝÆq. The non-onstantone is a polynomial ommon left multiple whose degree is � [p "[ q℄.Expressed less formally, this theorem says that we never have to take arewhether notions like right omponent, omponent lattie of f , least ommon leftmultiple, prime deomposition are relative to the monoid of polynomials or that ofrational funtions. x 5. The Invariant IntegersWe ontinue onsidering tame polynomials over the �eld |.5.1. Lemma. Suppose the polynomials p and q have a tame ommon left multiple,but no nontrivial ommon right omponent, i.e., p \# q = x. Then their degrees areoprime, i.e., [p℄ \ [q℄ = 1.Proof. Let p "[ q = r Æ p = s Æ q. From proposition 3.18,[p "[ q℄ = [p℄ [ [q℄ = [r℄ [p℄ = [s℄ [q℄ :Thus [r℄ \ [s℄ = 1, and we will prove [p℄ = [s℄, [q℄ = [r℄. Obviously, [p℄ � [s℄ and[q℄ � [r℄, and [p℄ > 0. We show [p℄ � [s℄, then [q℄ � [r℄ follows by symmetry, provingthe proposition.De�ne the polynomial m(y) = s(y)� r Æ p, thus m(y) 2 |(p)[y℄, with degree [s℄in y. Then m(q) = s(q)� r Æ p = 0. This means (f. Proposition 4.14),[|(p)(q) : |(p)℄� [s℄ :But from orollary 4.16,|(p)(q) = |(p; q) = |(p\# q) = |(x):As [|(x) : |(p)℄ = [p℄, [p℄ � [s℄.5.2. Proposition. If polynomials p and q have a tame ommon left multiple, then[p \# q℄ = [p℄ \ [q℄ :Proof. One simply gets rid of the ommon omponent using Taylor division anduses the lemma. In detail: Let t = p \# q. We already have t � [p℄ \ [q℄ (f. Remark2.24). By Taylor division, there are unique polynomials ~p and ~q suh that p = ~p Æ tand q = ~q Æ t. By the lemma, [~p℄ \ [~q℄ = 1. But [~p℄ [t℄ = [p℄ and [~q℄ [t℄ = [q℄, so[t℄ � [p℄ \ [q℄.Somewhat strange, we need the existene of a nontrivial ommon multiple toprove this property of ommon omponents. Note that the orresponding equalityfor "[ has been proved ompletely di�erently, and was in fat used here.5.3. Corollary. Prime bideompositions permute the degrees, i.e., in the primebideomposition r Æ p = s Æ q, [p℄ = [s℄ and [r℄ = [q℄ :Now we are �ne out and have got the essential result of this hapter:5.4. Theorem. The omponent lattie of a tame polynomial f is isomorphi to asublattie of the divisor lattie of [f ℄. The degree funtion provides the embedding.



28 Chapter I . Uniqueness ResultsProof. By the orollaries 3.18 and 5.2, the degree is a lattie homomorphism, andby theorem 3.12 it is injetive.5.5. Example. Let f = x12. Its right omponents are x; x2; x3; x4; x6; x12. Thus,in this ase, the right omponent lattie of f is even isomorphi to the divisor lattieof 12. Of ourse, we have the same situation with all polynomials of the form xn.The Dikson polynomials (desribed in Chapter II) provide a lass of polynomialswith the same property.5.6. Remark. Of ourse, these polynomials are rather speial. It is not surprisingthat most polynomials miss omponents of ertain degrees. Conversely it is some-what remarkable that, if a polynomial has right omponents of degrees e.g. 6 and 4,then it has also one of degree 2, beause 2 = 6 \ 4, and the omponent lattie isa sublattie. This an save us a lot of omputations, if we want to know all primedeompositions of a given polynomial.5.7. Example. Let us reonsider the polynomial f from Example 3.14. It hasright omponents of degrees 3 and 4, but not of degrees 2. Hene it annot haveone of degree 6, whih frees us from testing the andidate of degree 6. Additionally,it was unneessary in that example to test whether r is prime, beause that wouldimply a right omponent of degree 6.Summarizing, the right omponent lattie of f is isomorphi to the lattie1 � 3; 4 � 12, whih is a proper sublattie of the divisor lattie of 12.5.8. Corollary. The omponent lattie of any tame polynomial is distributive.Proof. By the theorem, it is (homomorphi to) a sublattie of the distributive lattie(N;�).Note that every bounded sublattie of (|[x℄n; �), not ontaining 0, is a sub-lattie of the omponent lattie of some polynomial (namely the maximum).5.9. De�nition. A lattie is alled to have some property loally i� it is true forevery bounded sublattie that does not ontain a global maximum.With this notion we an express our loal result in a global form:5.10. Corollary. Let har|= 0. Then the lattie (|[x℄n; �) is embedded loallyinto (N ;�) by the degree funtion. Thus it is loally distributive.Proof. By the assumption about the harateristi, every bounded sublattie notontaining 0 is the omponent lattie of a tame polynomial. Thus the assertionfollows with the theorem and its orollary.Using our abstrat theory of x1 we get the lassial result on prime deompo-sitions as a orollary to our Theorem 5.45.11. Theorem (Ritt). Let f be a tame polynomial.(i) All prime deompositions of f are related.(ii) The number and the degrees of the omponents in a prime deomposition,but not neessarily their order, are invariant.



x 5. The Invariant Integers 29Proof. The right omponent struture is distributive, thus modular, thus semimod-ular. Thus theorem 1.10 an be used. By orollary 5.3, prime bideompositionsjust permute the degrees.Using theorem 4.7, there is another interesting onsequene.5.12. Corollary. For every tame polynomial f the lattie of intermediate �eldsof |(x) : |(f) is isomorphi to a sublattie of [f ℄, hene is distributive and all itsmaximal hains are related.5.13. Remark. To proof that all prime deompositions are related one just needsthat the omponent lattie is semimodular. No easier proof for semimodularitythan that via distributivity via the embedding into the integers is known, norhandy onditions on a non-tame polynomial for having a semimodular omponentlattie.The theorem leaves open the question, how many bideompositions there areand how they look like. This is the topi of the next hapter.





CHAPTER IICharaterization of Prime Bideompositionsx 1. BideompositionsThis hapter ontains a simpli�ed proof of Ritt's haraterization of all prime bide-ompositions of the monoid (|[x℄; Æ).1.1. Example. An easy example of bideompositions is given by the powers, be-ause they, trivially, satisfy xm Æ xn = xn Æ xm:This an be generalized a bit to(xm � t(x)n) Æ xn = xn Æ (xm � t(xn)); (1)for an arbitrary polynomial t, as an be veri�ed immediately. A seond importantlass omes from the Dikson polynomials, as de�ned in the next setion. Theysatisfy Dm(x; an) ÆDn(x; a) = Dn(x; am) ÆDm(x; a); (2)for all onstants a.1.2. De�nition. Let r Æ p = s Æ q be a bideomposition. For all units a; b; ; d thebideomposition(a Æ r Æ b) Æ (bÆ�1 Æ p Æ ) = (a Æ s Æ d) Æ (dÆ�1 Æ q Æ )is alled assoiated to the original one.1.3. De�nition. A bideomposition assoiated to one of type (1) is alled expo-nential , one assoiated to one of type (2), but not of type (1), is alled trigonometri.1.4. Notation. With |alg we denote the algebrai losure of |.We will need a stronger hypothesis than just tame:1.5. De�nition. A tame polynomial f is alled ompletely tame i� for all e 2|alg, f � e has no zero (in |alg) whose multipliity � is a multiple of har|. A(bi)deomposition is ompletely tame i� all its omponents are.1.6. Remark. Again, in the ase of harateristi 0, ompletely tame just meansnon-onstant. Otherwise a suÆient ondition is [f ℄ < har|.Now we an express the theorem that we want to proof in the next �ve setions.1.7. Theorem (Ritt). All ompletely tame prime bideompositions over a �eld notof harateristi 2 are either exponential or trigonometri.1.8. Corollary. 31



32 Chapter II . Charaterization of Prime Bideompositions(i) Over a �eld of harateristi 0 all prime bideompositions are either expo-nential or trigonometri.(ii) If har| 6= 0 then all prime bideompositions using polynomials of degrees< har| are either exponential or trigonometri.This theorem again goes bak to [Rit22℄, with generalizations in [Lev42℄, [LN73℄,[DW74℄, [Sh82℄.The proof given here is ompletely elementary, in the sense that, exept for theresults proved in hapter I, the basi theory of �eld extensions is the most advanedmathematis involved. Nevertheless it is not longer, quite on the ontrary, somesimpli�ations, just in the most involved passages, were possible. Our shedule willbe as follows.After disussing some not so widely known properties of Dikson (or Cheby-shev) polynomials and of the Tshirnhaus transform, we will take a loser look atthe rami�ation struture of the omponents in a bideomposition. Then, in x5,we an give a ondition for a bideomposition to be exponential. The same is donein x6 for the trigonometri ase. As exatly one of these two onditions is alwayssatis�ed the proof is omplete then.From Proposition I.3.12 we see that every bideomposition that is prime overan extension �eld of | is also prime over |. Nevertheless we annot simply restritus to algebraially losed �elds, beause the theorem says more: that every primebideomposition is assoiated to one of the spei�ed types, and polynomials over| that are assoiated over an extension �eld need not be assoiated over |. Onemay obtain this stronger result from that for algebraially losed �elds by a arefulanalysis of the linear polynomials involved as in [Sh82℄. As an alternative, we givethe proof in a version that diretly proves the haraterization for general �elds.On the other hand, every bideomposition is assoiated (even over the ground�eld |) to one ontaining only moni polynomials. Therefore we an restrit our-selves to moni polynomials whenever we want.x 2. Dikson PolynomialsAs the Dikson polynomials onstitute bideompositions, a loser look at theirproperties will be useful.2.1. De�nition. Let a 2 |. We de�ne the Dikson polynomials Dn(x; a) reur-sively asDn+2(x; a) = x �Dn+1(x; a)� aDn(x; a); D0(x; a) = 2; D1(x; a) = x:Instead of Dn(x; 1) we sometimes simply write Dn.Note. The lassial Chebyshev polynomials tn, de�ned by osnx = tn(osx), areonjugate to our Dikson polynomials by tn(x) = 12Dn(2x; 1). One advantage ofthe usage of Dikson polynomials instead of Chebyshev ones is that they are moni.Using the additional parameter we sometimes an avoid extensions of the onstant�eld. Confer the next remark and the disussion at the end of the �rst setion.[LMT93℄ ontains a detailed treatment of suh polynomials. For onvenienewe mention some well-known and easy to establish properties.2.2. Proposition. The Dikson polynomials satisfy(i) Dn(�x; �2) = �nDn(x; 1),



x 2. Dikson Polynomials 33(ii) Dn(x; a) Æ (x+ ax�1) = (x+ anx�1) Æ xn,(iii) Dm(x; an) ÆDn(x; a) = Dnm(x; a) = Dn(x; am) ÆDm(x; a),for arbitrary onstants a and �.2.3. Remark. Obviously Dn(x; 0) = xn, and part (i) of this proposition in par-tiular says that for � 6= 0 Dn(x; �2) �= Dn:Thus, if | is algebraially losed, or at least losed under the square root operation,the extra parameter is superuous for the haraterization of prime bideomposi-tions. But for the general ase it is needed.Note. Using Proposition 2.2 it is easy to prove a well known di�erential equationfor Dikson polynomials (D2n � 4) � n2 = (x2 � 4) �D0n2:Conversely, the Dikson polynomials Dn, together with their negatives �Dn, on-stitute all polynomial solutions to this di�erential equation. This is proved e.g. in[LN73℄ and, in an even stronger form, in [Sh82℄. The idea in the latter refereneis used in the proof of the next lemma, whih will be enough for our purposes.2.4. Lemma. Let K be any �eld not of harateristi 2. If a polynomial f ofdegree n over K satis�es f � 2�n = (x� 2�) � g2�f + 2�n = (x+ 2�) � g2+for some polynomials g�; g+ 2 K[x℄ and �(6= 0) 2 K, thenf = Dn(x; �2):Proof. Note that n must be odd. Let a = �2. We substitute x+ ax�1 into the �rstequation and multiply by xn; thus obtain(f(x+ ax�1)� 2�n) � xn = (x+ ax�1 � 2�) � x � g2�(x+ ax�1) � xn�1= (x� �)2 � g2�(x+ ax�1) � xn�1= h2�for some polynomial h�, beause [g�℄ = n�12 . Similarly(f(x+ ax�1) + 2�n) � xn = h2+:Substrating these two equations we get4�nxn = h2+ � h2� = (h+ + h�) � (h+ � h�) (�)But both h+ and h� have degree n. As harK 6= 2, we an hoose the signs suhthat [h+ + h�℄ = n. But then [h+ � h�℄ = 0, thus h+�h� =  for some onstant .We substitute � for x into equation (�) to obtain4an = (2h�(�) + ) � :Using h�(�) = 0 we see 2 = 4an, thus an assume  = 2�n. Now equation (�)turns into 4�nxn = (2h+ � 2�n) � 2�n;



34 Chapter II . Charaterization of Prime Bideompositionsfrom whih it follows that h+ = xn+�n and onsequently h� = xn��n. Thereforef(x+ ax�1) + 2�n = x�n � (xn + �n)2= xn + 2�n + anx�n;thus f(x+ ax�1) = xn + ax�n;whih is the harateristi equation for a Dikson polynomial (2.2).The assumption in 2.4 was rather speial. Using linear transformations we anmake it more general.2.5. Corollary. Let K � | be an extension �eld of k. If a polynomial f over |satis�es f � e1 = (x� �1) � g21f � e2 = (x� �2) � g22;for some onstants �1; �2 2 K, polynomials g1; g2 over K, and e1, e2 2 K that aretwo di�erent solutions of some quadrati equation over |, then f �= D(x; a) (evenas polynomials over |) for some a 2 |.Proof. If | is algebraially losed this is rather trivial. The point is to show thatno �eld extensions are neessary.Being the solution of a quadrati equation, the ei have the forme1;2 = e0 � �for some e0 2 | and � 2 K suh that �2 2 |.In partiular, the f � ei are polynomials over |[�℄, and so are x � �i, as theyare fators of a square-free fatorization over |[�℄. Thus the �i an be written as�0 � i�, with �0; 1; 2 2 |. But �1 + �2 2 |, so 1 = �2, and we have morepreisely �1;2 = �0 � �for some �0;  2 |. Let n = [f ℄; after multiplying with 2�n�1 (2 |, as n is odd) theequations look like2�n�1(f � e0)� 2�n = (x� �0 � �)2�n�1g21;2:Thus ~f := 2�n�1(x� e0) Æ f Æ ( 2x+ �0) �= f satis�es~f � 2�n = (x� 2�) � �n�1�g1;2( 2x+ �0)�2;whih is in the form required to use the lemma, thus ~f = Dn(x; �2) and f �=Dn(x; �2), even over |.x 3. The Tshirnhaus Transform3.1. De�nition. Let p; q 2 |[x℄, q 6= 0 moni with anonial fatorizationQi(x� �i)�i over its splitting �eld. Then the Tshirnhaus transform of q by p,denoted by pq is de�ned by pq :=Yi (x� p(�i))�i :



x 4. Rami�ation 35In other words, we obtain the Tshirnhaus by transforming the zeros of q byp. As a symmetri funtion of the zeros of q, it is lear that it is a polynomialover |. In fat, the Tshirnhaus an easily be expressed without any referene toan extension �eld as a resultant:3.2. Proposition. For any polynomials p, q, we have, up to the sign,pq(y) = resx(p(x)� y; q(x)):Proof. Let q = Qi(x � �i)�i as above. Then by an elementary property of theresultant resx(p(x)� y; q(x)) =Yi (p(�i)� y)�i = �pq(y):For bideompositions the following property turns out to be most useful.3.3. Proposition. Let f = r Æ p = s Æ q be a prime bideomposition using monipolynomials; then p(q � b) = r � s(b):Proof. Let q � b = Qi(x � �i). Thus p(q � b) = Qi(x � p(�i)) and p(�i) is also azero of r(x)� s(b), beause r(p(�i)) = s(q(�i)) = s(b).Assume that b is transendental. Then all the �i are distint and transen-dental, as q is tame. Suppose p(�1) = p(�2). As p and q have no ommon rightomponent, L�uroth's Theorem (4.15), provides a rational funtion f suh thatf(p; q) = x. Now�1 = f(p; q)(�1) = f(p(�1); q(�1)) = f(p(�2); q(�2)) = �2;where the transendeny of the �i guarantees the validity of substitution here. Butthis means, that p maps the zeros of q � b injetively to the zeros of r � s(b). As[p℄ = [q℄, this is even a bijetion, and the proof is omplete for transendental b.For arbitrary b we hoose some new transendental element, say y. Thenp(q � y) = r � s(y). Proposition 3.2 allows us to substitute b for y here, thus pro-viding the full assertion. x 4. Rami�ation4.1. De�nition. Let f be a polynomial. We say that e is a rami�ation pointof f i� f � e and f 0 have a ommon zero. The degree of gd(f � e; f 0) is alledthe (rami�ation) index of f at e and is denoted by inde f . If f 0 6= 0 has leadingoeÆient , we all the Tshirnhaus transform f(1f 0) the rami�ation polynomialof f (this name is justi�ed by the next proposition).4.2. Proposition. Suppose that the rami�ation polynomial of f has the anonialfatorization over |alg ff 0 =Yi (x� ei)"i ;then the ei are just the rami�ation points of f andindei f = "i:



36 Chapter II . Charaterization of Prime BideompositionsProof. inde f ounts the number of zeros � of f 0, with multipliities, that ful�llf(�) = e. But the Tshirnhaus transforms exatly these zeros, together with theirmultipliity, into the zero e of the rami�ation polynomial.4.3. Corollary. Let f be a tame polynomial. ThenXe2|alg inde f = [f ℄� 1:Proof. Tameness guarantees that [f 0℄ = [f ℄� 1. So this is a trivial onsequene ofthe proposition.4.4. Example. Let us onsider our standard example from hapter I:f = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60x;
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6
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-8.05

-7.95

Its rami�ation polynomial (omputed from resx(f � e; f 0))rr0(e) = (e+ 8)8 � (e+ 2075256 )3tells us that �8 and � 2075256 � �8:10547 are its rami�ation points (obvious alsofrom the piture) with indies 8 and 3, respetively (not obvious from the piture).Observe that we an read o� the number of rami�ation points and their indiesalready from the squarefree fatorization of the rami�ation polynomial.The next proposition, whih will be used frequently, unfortunately needs om-pletely tame as hypothesis (De�nition 1.5).4.5. Proposition. Suppose that f is ompletely tame and e 2 |alg. If f � e =Q(x� ai)�i is the anonial fatorization, theninde f =Xi (�i � 1):Proof. As f was assumed to be ompletely tame, all �i 6= 0 (mod har|). Thusthe multipliity of ai in f 0 is �i � 1, whih proves the result.4.6. Example. We ontinue with our f . We havef + 8 = (x+ 1)3 � (x+ 2)3 � (x2 + x+ 1)3:The �rst two zeros are lear from the graph, the remaining two are omplex. Allfour zeros have multipliity 3, thus ind�8 f = (3�1)+(3�1)+(3�1)+(3�1) = 8, as



x 4. Rami�ation 37we have already seen from the rami�ation polynomial. For the seond rami�ationpoint we get the fatorizationf + 2075256 = (x3 + 3x2 + 3x+ 54 )2 � (x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316);thus it has three double zeros, the remaining being simple. Again we verify thatthe index at this point is (2� 1) + (2� 1) + (2� 1) = 3.4.7. Remark. The polynomials with only one rami�ation point are exatly thosewhih are assoiated to some power xn.4.8. Convention. For the rest of this setion and the following two ones we �x aompletely tame prime bideompositionf = r Æ p = s Æ qwith n = [p℄ = [s℄ and m = [q℄ = [r℄. We assume all these polynomials to be moni.For every point e 2 |alg we use the following anonial fatorizations over |algr � e = �Yi=1(x� ai)�is� e = �Yj=1(x� bj)�j :Then f � e = �Yi=1(p� ai)�i= �Yj=1(q � bj)�j=Yi;j ijY�=1(x� �ij�)"ij� ;where the �ij� should be the zeros of f � e lassi�ed aording to p(�ij�) = ai andq(�ij�) = bj ; the "ij� denote their multipliities and the ij the number of suhzeros. Comparing the above fatorizations we see that for all i resp. j(p� ai)�i =Yj ijY�=1(x� �ij�)"ij� (3)(q � bj)�j =Yi ijY�=1(x� �ij�)"ij� : (4)All these notions depend on the point e. If it is neessary to indiate thisdependene, we use upper indies: a(e)i , �(e)ij� and so on.4.9. Example. As deteted in hapter I, Example 3.14, our polynomial f has thebideompositionf = r Æ p = s Æ q= (x4 + 7x3 + 18x2 + 20x) Æ (x3 + 3x2 + 3x) = (x3 + 6x2 + 12x) Æ (x4 + 4x3 + 6x2 + 5x):



38 Chapter II . Charaterization of Prime BideompositionsLet us ompute the fatorizations for this example. For the �rst rami�ation point,�8, we get r + 8 = (x+ 1) � (x+ 2)3;s+ 8 = (x+ 2)3:Thus a1 = �1, �1 = 1; a2 = �2, �2 = 3; b1 = �2, �1 = 3. With these zeros weontinue fatoring p+ 1 = (x+ 1)3;p+ 2 = (x+ 2) � (x2 + x+ 1);q + 2 = (x+ 1) � (x+ 2) � (x2 + x+ 1):Of ourse, we have got the zeros of f again, now lassi�ed aording to their valuesby r and s, respetively:11 = 1; "111 = 3; �111 = �1;21 = 3; "211 = "212 = "213 = 3; �211 = �2;and �212 and �213 satisfy x2 + x+ 1.We do the same for the seond rami�ation pointr + 2075256 = (x+ 54 ) � (x2 + 98x+ 83256);s+ 2075256 = x3 + 6x2 + 12x+ 2075256 :Thus a1 = � 54 , with �1 = 2, and a2 and a3 are zeros of (x2 + 98x + 83256), with�2 = �3 = 1, whereas b1, b2, and b3 all satisfy an irreduible polynomial of degree 3,with �1 = �2 = �3 = 1. Beausep+ 54 = x3 + 3x2 + 3x+ 54 ;we have got bak one of the fators of f � 2075256 . We ontinue omputing fatoriza-tions p2 + 98p+ 83256 = x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316 ;q3 + 6q2 + 12q + 2075256 = (x3 + 3x2 + 3x+ 54 )2 � (x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316 );and obtain the remaining fators of f � 2075256 .4.10. Lemma. For all i; j we have�i�j = ijX�=1 "ij�:In partiular "ij� � �i�j for all i; j; �.Proof. Using the Tshirnhaus transform we get for eah jp(q � bj)�j =Yi ijY�=1 p(x� �ij�)"ij�=Yi ijY�=1(x� p(�ij�))"ij� :=Yi ijY�=1(x� ai)"ij� =Yi (x� ai)P� "ij� :



x 5. Exponential Solutions 39But on the other hand, using Proposition 3.3,p(q � bj)�j = (r � s(bj))�j = (r � e)�j =Yi (x� ai)�i�j ;and this anonial fatorization must oinide with that obtained before.4.11. Remark. Remember the symbolism for the lattie (N ;[;\). We will fre-quently use the following simple properties:n � m =) n � m;n � m =) n � m2 ;valid for all n;m 2 N .4.12. Lemma. For all i; j; � we have"ij� � �i [ �jij � �i \ �j :Proof. From the fatorization (3) we see that "ij� � �i. Similarly "ij� � �j . Thus"ij� � �i [ �j and the �rst inequality is lear. From this, together with Lemma4.10, �i�j = ijX�=1 "ij� � ij(�i [ �j):We divide by �i [ �j and obtain the seond inequality.4.13. Lemma. For all i we haveindai p =Xj (�j � ij) �Xj (�j � �i \ �j):Proof. Using Proposition 4.5 we getindai p =Xj ijX�=1�"ij��i � 1� =Xj  ijX�=1 "ij��i � ijX�=1 1! =Xj (�j � ij):The inequality then follows from the previous lemma.x 5. Exponential SolutionsThe following result now has got a diret and onsiderably shorter proof.5.1. Proposition. If s has only one rami�ation point, then our bideompositionis exponential.Proof. Let e be the unique rami�ation point. Then e 2 |, and in our fatorizations� = 1; �1 = n;where n must be prime by the primality of s. Hene some �i is relatively prime ton as p is prime. Thus let us assume n \ �1 = 1. Now from Lemma 4.13n� 1 � inda1 p � �Xj=1(�j � �1 \ �j) = n� �1 \ n = n� 1:



40 Chapter II . Charaterization of Prime BideompositionsThus a1 is the unique rami�ation point of p, and as suh is in |. For i 6= 1 wehave 0 = indai p � n� �i \ n;hene �i � n. So r has the formr � e = (x� a1)�1 � tnfor some polynomial t. a1 and the oeÆients of t are elements of | beause theyan be omputed from the squarefree fatorization. The form of q is determined bythe other three polynomials.5.2. Example. The bideomposition of the examples in the previous setion isexponential, beause s has the single rami�ation point �8, as s+ 2075256 is squarefree,i.e., it splits into linear fators over |alg. In fat, it is veri�ed immediately that allpolynomials have the spei�ed forms.Beause the results in this setion are symmetri in the sense that we aninterhange the rôles of the two deompositions r Æ p and s Æ q, we an summarize5.3. Proposition. If at least one of the two polynomials r and s has only onerami�ation point, then our bideomposition is exponential.x 6. Trigonometri SolutionsThe next proposition is very important for our simpli�ations. First we need atehnial lemma.6.1. Lemma. Suppose that the �i 2 N have no ommon divisor, i.e., Ti �i = 1.Then for all � 2 N Xi (� � �i \ �) � � � 1:Proof. Suppose that �i is not a multiple of �. Then �i \ � � �, thus � �2 , and thei-th summand is � �2 . If there are two suh summands, then they sum up to � andthe lemma is proved. Thus onsider the ase that �i � � for all but at most one i.Take i = 1 for the possible exeption. Then1 =\i �i = �1 \\i6=1�i � �1 \ �;thus �1 \ � = 1, and we just have to look at the �rst summand � � �1 \ � = � � 1to prove the lemma also in this ase.6.2. Proposition. If r has at least two rami�ation points, thenXi indai p = indes:Proof. Beause r � e is not assoiated to a power, but prime, T�i = 1. Thus wean apply the lemma for all �j :Xi (�j � �i \ �j) � �j � 1:



x 6. Trigonometri Solutions 41Now we take the sum over all j and, together with Lemma 4.13, obtain the estima-tion Xi indai p �Xi Xj (�j � �i \ �j) �Xj (�j � 1) = indes;thus proving the �-part.To see equality we onsider the fatorizations of Convention 4.8 for various e's.Note that r � e1 and r � e2 have no ommon zero whenever e1 6= e2, thus all theelements �(e)i are distint, so from summing up over all e 2 |we getm� 1 =Xe inde p =Xe Xi inda(e)i p �Xe inde s = m� 1;hene the � here is an equality, and, by the part just proved, all summands areeven equal.6.3. Example. Again we illustrate this with our bideomposition from the previ-ous setions. Let us hek it for the rami�ation point �8: From the fatorizationswe obtain ind�8 s = 2, inda1 p = 0, inda2 p = 2. As 2 = 0 + 2 this is in aordanewith the proposition. One an also hek this for the seond rami�ation pointe := � 2075256 , and gets the same observation, as must be the ase, beause r has tworami�ation points. But s has only one rami�ation point, as s � e is squarefree,so the symmetri property Xj indbj q = indermight be false in this ase. In fat, inde r = 1, but indai = 0 for all i, and1 6= 0 + 0 + 0.6.4. Lemma. If r has two rami�ation points and r � e ontains a simple zero,say a1 (i.e. �1 = 1), then �i �[j �j ; for all i 6= 1.Proof. By Proposition 6.2 together with Lemma 4.13Xj (�j � 1) = inde s =Xi indai p �Xi Xj (�j � �i \ �j);and using �1 \ �j = 1, =Xj (�j � 1) +Xi6=1Xj (�j � �i \ �j)Thus for i 6= 1 and all j we have �i � �j .6.5. Remark. If r � e has no simple zero, then all its zeros are at least double,hene their number is at most m2 , so inde r � m2 . By Proposition 4.3, this annothappen twie.6.6. Proposition. If both r and s have at least two rami�ation points, then theyhave exatly two (ommon) ones. Let e be one of them. Then both r � e and s� ehave exatly one simple zero, the remaining ones being double.



42 Chapter II . Charaterization of Prime BideompositionsProof. Suppose e is a rami�ation point of s suh that r� e has a simple zero, saya1, thus �1 = 1. By the lemma, all the remaining �i are multiples of all the �j . Butsome bj > 1, thus, in partiular, ai � 2 for all i 6= 1. Hene e is also a rami�ationpoint of r and inde r � m�12 beause � � m�12 . If e0 is another rami�ation pointof r, then its index is bounded by m�12 , so r � e0 has a simple zero, too, and thewhole story is equally true for this seond rami�ation point. Thus r has exatlythe two rami�ation points e and e0, both with index m�12 , hene � = m+12 . r � ehas one simple zero, the multipliities of the remaining m�12 ones sum up to m� 1,thus are double. The same is true for e0 and, by symmetry, for the rami�ationpoints of s.6.7. Remark. This means that �1 = �1 = 1 and �i = �i = 2 for all i 6= 1, forboth rami�ation points. Thus 11 = 1, "111 = 1, and "ij� � 2, if not i = j = 1. Inpartiular, if e1; e2 are the two rami�ation points, thenf � e1 = (x� �1) � g21;f � e2 = (x� �2) � g22for some polynomials g1; g2. Beause f has exatly two rami�ation points, e1 ande2 satisfy a quadrati equation over | (4.2). So we an apply Corollary 2.5, andobtain:6.8. Corollary. If both r and s ontain two rami�ation points, then our bideom-position is trigonometri. x 7. Final RemarksNow the proof of Ritt's bideomposition theorem is omplete. Let us outline wheresimpli�ations have been made, and whih further improvements seem to be possi-ble. Previous proofs assume that the ground �eld |is algebraially losed. In [Sh82℄the theorem for general �elds is obtained as a orollary to that for algebraiallylosed ones. Our version proves the general form diretly. There are only fewpoints where we must take are of this, mainly in Corollary 2.5, whose nontrivialpart says that the linear transformations an be hosen in the ground �eld.That we use the Tshirnhaus transform instead of the norm as the previousproofs that avoid valuation theoreti or analyti methods is mainly a matter oftaste. Note that pq Æ p = �N|(x):|(p)(q). The usage of resultants is new in thisontext and may supply further improvements, when used more extensively. Ourproof of Proposition 3.3 serves as an alternative to the usage of norms and minimalpolynomials; it seems to be more diret.The setion on rami�ation ontains results mixed from the previous proofs.Lemma 4.12 has got an elementary proof. [DW74℄ even prove equality for this state-ment, using valuation theoreti methods. This stronger form an also be obtainedas a orollary to the haraterization Theorem 1.7.Our major simpli�ations are ontained in setions 5 and 6. There is no dis-ussion of extra points any more. We just make the distintion on the number oframi�ation points and rather quikly see, by analyzing the rami�ation struture,that we have the exponential or trigonometri ase, respetively.These improvements essentially use that the omponents of prime bideompo-sitions are prime. Thus they do not generalize as in [Sh82℄, partially haraterizing



x 7. Final Remarks 43bideompositions that need not be prime. This raises the question, whether Ritt'sTheorems (5.11 in hapter I and 1.7) an be used to give an even more expliitdesription of all possible deompositions. In partiular, we may ask whether thereis a anonial deomposition.The deompositions of polynomials assoiated to xn may be onsidered to betrivial as they simply orrespond to the divisors of n. The same is true with Diksonpolynomials. This suggests that a anonial deomposition ould look like this: aomposition of polynomials that are either of exponential or of trigonometri type,or do not ontain any of these.As another further improvement it might be possible to extensively use theresultant alulus and square-free fatorizations instead of the involved analysis ofthe zeros and their multipliities in setions 4 to 6.The assumption about har 2 in the theorem was neessary beause Proposition2.4 uses it, whih in turn is needed in 6.8. It is not lear whether we get anyadditional bideompositions in ase of harateristi 2.The restrition to ompletely tame polynomials was neessary in proving 4.5,whih is basi for all results about the index. It is not known how far this an beweakened, e.g. to tame polynomials. No ounterexample for this is known. Theexample in the note of [Cor90℄ does not work for this purpose as it is of exponentialtype.A whole lass of ounterexamples using non-tame polynomials is given byx� Æ f = f Æ x�;where � := har|. Perhaps all prime bideompositions an be redued to a trigono-metri or exponential form using this ambiguity somehow.





LebenslaufSonntag, den 13. J�anner 1963, wurde ih als dritter und j�ungster Sohn des Berg-bauernehepaares Matth�aus und Katharina Binder in Bad Ishl geboren. Dort be-suhte ih die Volksshule und anshlie�end das Bundesrealgymnasium, an welhemih im Juni 1981 die Reifepr�ufung mit gutem Erfolg ablegte.Im Oktober 1981 begann ih an der Johannes Kepler Universit�at in Linz mitdem Studium der Informatik, im darau�olgenden Semester zus�atzlih der Teh-nishen Mathematik, welhes daraufhin allm�ahlih zu meiner Hauptstudienrihtungwurde. Den ersten Studienabshnitt f�ur den Studienzweig Informations- und Daten-verarbeitung shlo� ih im Dezember 1985 mit ausgezeihnetem Erfolg ab.Den Pr�asenzdienst leistete ih von Oktober 1990 bis Mai 1991. In den Som-mermonaten arbeitete ih zeitweise als Programmierer, wobei ih vor allem mitCompilerbau- und Datenbankproblemen befa�t war, aber auh mit zahlreihen ver-shiedenen Standard-Softwareprodukten.Weiters war ih zeitweise als Universit�atsinstruktor, Projektmitarbeiter, Studien-assistent sowie Leiter von Tutorien am Institut f�ur Mathematik besh�aftigt.Mein mathematishes Hauptinteresse gilt der Erforshung konstruktiver Meth-oden in der Algebra.
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