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Zusammenfassung

De todos es conocido que los polinomios
constituyen el nicleo del dlgebra.

Jaime Gutierrez

Polynome und Polynomfunktionen erfreuen
sich von jeher grofSer Beliebtheit.

Erhard Aichinger

Die Theorie der Zerlegung von Polynomen beziiglich des Einsetzens fand ihren
ersten Hohepunkt durch die Arbeit von J. F. Ritt, welchem es 1922 gelang, durch
konsequente Anwendung der damals schon voll entwickelten Theorie der Riemann-
schen Flachen, alle Zerlegungen von Polynomen mit komplexen Koeffizienten im
Prinzip zu beschreiben. Sein Resultat teilt sich in zwei Teile. Der erste besagt, dafl
alle Primzerlegungen bis auf Bidekompositionen und lineare Transformationen ein-
deutig sind, der zweite charakterisiert dann alle Bidekompositionen. Ritt’s Resultat
wurde in mehreren Schritten verallgemeinert.

Motiviert durch die Fortschritte der Computeralgebra entstand in den letzten
Jahren eine Neubelebung dieser Thematik. Dabei stand die Entwicklung leistungs-
fahiger Algorithmen zur Berechnung von Primzerlegungen im Vordergrund. Das
iiberraschendste Ergebnis in diesem Bereich ist wohl, dafl das Auffinden von Prim-
zerlegungen, zumindest fiir Polynome iiber Korpern der Charakteristik 0, bedeu-
tend schneller ist als die Faktorisierung.

In dieser Arbeit wird konsequent versucht, die beiden oben genannten Richtun-
gen durch eine gemeinsame Behandlung zu vereinen. Dabei stellte sich einerseits
heraus, dafl die modernen Zerlegungsalgorithmen bereits implizit in den alten Ein-
deutigkeitsbeweisen enthalten sind, und andererseits, dafl aus eben diesen Algorith-
men zahlreiche theoretische Ergebnisse einfacher abgeleitet werden konnen. Daraus
ergaben sich zahlreiche neue Aspekte, durchschaubarere Beweise der bekannten Re-
sultate sowie verbesserte Algorithmen.

Das erste Kapitel befafit sich hauptsachlich mit dem Beweis des Rittschen Ein-
deutigkeitssatzes und den dabei auf natiirliche Weise auftretenden Algorithmen.
Dabei wurden die wesentlichsten Schritte und Ideen etwas breiter ausgefiihrt.

Im ersten Abschnitt wird eine nichtkommutative Teilbarkeitstheorie versucht.
Sie ist moglichst allgemein formuliert, die Anwendung auf Polynome bleibt dabei
jedoch stets im Hinterkopf. Obwohl dieser Abschnitt eigentlich nur der klaren
Begriffsbildung und Festlegung der Notation dient, so enthalt er doch die, zu-
mindest in dieser Form, bislang unbekannte Verallgemeinerung des Rittschen Ein-
deutigkeitssatzes auf Monoide mit Rechtskiirzungsregel und semimodularem Teil-
barkeitsverband. Das weitere Ziel des ersten Kapitels ist es dann, eben diese Bedin-
gung fiir Polynome zu zeigen.
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iv Zusammenfassung

Uberraschend wirkt hier die Tatsache, da$ es nicht gelingt, die Semimodularitat
direkt zu zeigen, sondern nur iiber ein wesentlich starkeres Resultat, namlich dafi der
Teilerverband eines (zahmen) Polynoms durch die Gradfunktion in den Teilerver-
band seines Grades eingebettet ist. Dies ist das eigentliche theoretische Resultat
dieses Kapitels.

Im zweiten Abschnitt wird aus Engstoms elementarem Beweis, daf3 die Teil-
barkeitsstruktur eines Polynoms tatsachlich einen Verband bildet, ein allgemeiner
Algorithmus zur Berechnung des grofiten gemeinsamen Rechtsteilers abgleitet. Es
wird gezeigt, dafl durch geschickte Ausnutzung der vorhandenen Wahlmaglichkeiten
ein sehr schneller Algorithmus entsteht.

Starkere Resultate konnen nur fiir den sogenannten zahmen Fall bewiesen wer-
den, z. B. wenn die Charakteristik des Grundkorpers 0 ist. Dabei stellt sich der
Begriff der n-ten (Nadherungs)wurzel eines Polynoms als duBerst niitzlich heraus.
Ihm ist daher der dritte Abschnitt gewidmet. Durch dieses Hilfsmittel kénnen
unter anderem einerseits der schnellste bekannte Algorithmus zur Primzerlegung
und ein Algorithmus zur Berechnung des kleinsten gemeinsamen Linksvielfachen
hergeleitet werden, und andererseits, die Rationalitat von Primzerlegungen sowie
erste bedeutende Eindeutigkeitsaussagen bewiesen werden.

Um das Resultat iiber die Einbettung in den Teilerverband des Grades endgiiltig
zu zeigen, ist noch ein Ausflug zu den Zerlegungen rationaler Funktionen notwendig,
um etwas elementare Korpertheorie, vor allem den Satz von Liiroth, einsetzen zu
konnen. Dabei erhalten wir das schone Ergebnis, daf§ der Teilerverband der Poly-
nome ein konvexer Unterverband des Teilerverbandes der rationalen Funktionen
ist.

Das zweite Kapitel beinhaltet einen vereinfachten elementaren Beweis des Ritt-
schen Satzes tiber die Charakterisiertung von Bidekompositionen. Die Vereifachun-
gen sind vor allem in den beiden Abschnitten tiber exponentielle und trigono-
metrische Losungen beinhaltet. Durch Vergleich vorhandener Beweise und Ent-
wirrung logischer Verflechtungen, aber auch durch konsequennte Ausnutzung der
Unzerlegbarkeit konnte die iibliche Behandlung der Extrapunke zur Ganze elim-
iniert werden. Der Abschnitt tiber Verzweigungen mit seinen ausfiihrlichen Beispie-
len sollte ebenfalls zur Klarheit beitragen. Auflerdem beinhaltet er ein einfaches
Verfahren um die Verzweigungsstruktur eines Polynoms zu bestimmen.

Die beschriebenen Algorithmen wurden grofitenteils implementiert und teil-
weise getestet. Entsprechende Programmpakete fiir Mathematica und Maple sind
in Vorbereitung.

Die Beweise fiir die theoretischen Resultate scheinen noch weiter verbesserungs-
fahig zu sei, vor allem die systematische Verwendung des Verzweigungspolynoms
zusammen mit dem Resultantenkalkiil anstatt des doch eher unduchsichtigen Studi-
ums der Nullstellen ist sehr vielversprechend.

Weitere Verbesserungen sind zu erwarten durch Einbeziehung weiterer ver-
wandter Themen, wie Zerlegung rationaler Funktionen, algebraischer Funktionen
und Potenzreihen, sowie die Entwicklung von Zusammenhangen mit der Faktorisie-
rung und der Gruppentheorie. Auflerdem ware es sehr aufschlufireich, mehr tiiber
die auftretenden algebraischen Strukturen, des Fastringes (k[z],+,0), des Kompo-
sitionsringes (k[z], +, -, o) sowie besonders des Fastringes (k(z)1, -, o) der rationalen
Funktionen mit f(1) = 1 zu wissen.



Abstract

De todos es conocido que los polinomios
constituyen el nicleo del dlgebra.

Jaime Gutierrez

Polynome und Polynomfunktionen erfreuen
sich von jeher grofSer Beliebtheit.

Erhard Aichinger

The theory of polynomial decompositions, with respect to substitution, owes
most of its ideas to the work of J. F. Ritt in the years around 1922. Using Riemann
surface theory, he could characterize virtually all decompositions of polynomials
over the complex number field. His main result on this topic consists of two parts.
First, he proved that all prime decompositions are unique up to linear transforma-
tions and bidecompositions. Second, he characterized all bidecompositions. Ritt’s
result was improved in several steps.

Recently, motivated by the rapid development of computational algebra, there
was a renaissance of these topics. Now the development of efficient algorithms
for the computation of prime decompositions became dominant. In this area it
is mostly surprising that, at least in the tame case, decomposing is much more
efficient than factoring.

This thesis is an approach to combine these two disciplines. It presents many
results in a different light, e.g. the modern decomposition algorithms are already
contained implicitly in old uniqueness proofs, and conversely, just these algorithms
provide an easier derivation of numerous theoretical results.

The first chapter mainly contains a proof of Ritt’s uniqueness theorem, together
with some algorithms that appear naturally in this context. The most important
steps are presented with some digression.

The first section is a first approach to a noncommutative divisibility theory.
In spite of its abstract formulation, the application to polynomials always remains
in the background. Its main purpose is to fix a consistent set of notations and
terminologies, but it also contains a generalization of Ritt’s uniqueness theorem to
right cancellation monoids with semimodular component lattice. The main goal
of the remaining sections of Chapter I then is to establish just this condition for
polynomials.

It’s somewhat surprising that semimodularity cannot be shown directly. We
first have to prove the considerably stronger result that the degree function embeds
the component lattice of a polynomial into the divisor lattice of its degree. So the
last property should be considered as the main result of the first chapter.

v



vi Abstract

Starting from Engstrom’s direct proof that the component structure of a poly-
nomial is in fact a lattice, the second section contains a general method to compute
greatest common right components. Attached with a good heuristics, this provides
a very efficient algorithm.

For the tame case (e.g., over a field of characteristic 0), a lot of even more inter-
esting results can be proved. In this context, the notion of the n-th (approximate)
root of a polynomial turns out to be most useful. In the third section, this tool is
used to derive the fastest known decomposition algorithm and an algorithm for the
computation of least common left multiples, as well as to prove the rationality of
prime decompositions and remarkable uniqueness properties.

In order to complete the proof for the embedding into the divisor lattice a
discourse to rational function decomposition is necessary. This allows us to use
some elementary field theory, particularly Liiroth’s theorem is needed. We get the
nice result, that the component lattice of polynomials is a convex sublattice of that
of rational functions.

The second chapter contains a somewhat simplified proof of Ritt’s theorem on
the characterization of prime bidecompositions. The improvements are contained
mainly in the two sections on exponential and trigonometric solutions, respectively.
Comparing previous proofs and doing some logical simplifications, but also by con-
sequent use of the primality of the components of a prime decomposition, the usual
treatment of extra points could be completely eliminated. The extensive example
in the section on ramification should make clear what is actually going on. Addi-
tionally we have obtained an efficient method to compute the ramification structure
of any polynomial.

Most of the algorithms discussed in this thesis have been implemented and
partially tested. Well designed program packages for both Mathematica and Maple
are being developed.

The proofs of some of the theoretical results seem to be open for further im-
provements, in particular, a more systematic use of ramification polynomials, to-
gether with the resultant calculus, might improve the detailed analysis of zeros.

A comparison with methods used for related topics such as decomposition of
rational functions, algebraic functions, or power series, as well as the development
of relations to factorization and group theory might be quite enlightening. Ad-
ditionally, a more detailed knowledge of the appearing algebraic structures like
the near-ring (k[z],+,0), the composition ring (k[z],+,-,0), and particularly of
the near-ring (k(z),-,0) of rational functions satisfying f(1) = 1, is supposed to
provide some more insight.
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CHAPTER 1

Uniqueness Results

§ 1. Divisibility in Noncommutative Monoids

Besides proving Theorem 1.10 in a very general setting, this section contains a first
attempt to define a consistent set of notations and terminology for a noncommuta-
tive divisibility theory.

Let M be a monoid, written multiplicatively, with neutral element 1. The
invertible elements of M are called its units.

1.1. Definition. Let f € M.

(i) A sequence of elements f; € M such that f = f, ... f1 is called a decom-
position of f of length n into the components f;, and we write f; C f, for
all 4.

(ii) If f = rp then we call p a right component and r a left component of
f. Equivalently, we say that f is a left multiple of p and a right multiple
of ». We use the notations p & f and f <2 p for right components and
left multiples, respectively, and, symmetrically, » & f and f 2 r for left
components and right multiples.

(iii) p and g are called (left,right) associated iff they are (right, left) components
(or (left, right) multiples) of each other. We use the symbols & and & to
denote left and right association, respectively. Thus p £ ¢ iff p © ¢ and
pOq and pFqiff p & g and p D ¢q. Moreover p = q iff p C g and p D g,
i.e., iff they are simply associated.

(iv) A (right, left) component of f is a called proper iff it is not (left, right)
associated to f. Equivalently, f then is called a proper (left, right) multiple.
We use the symbols &, ©, &, », C, D with the obvious meanings to denote
proper (right, left) components (multiples).

(v) f is called decomposable iff there is p € M such that 1 @ p & f. Otherwise
it is indecomposable or prime.

(vi) A prime decomposition is one that contains only prime components.

1.2. Remark. Note that all symbols derived from & have the arrow running out
of the symbol, whereas those derived from & have it running inside.

The definition for decomposable is somewhat unsatisfactory as is not symmetric
with respect to left and right. For the applications used in this thesis, however,
this does not matter.

From now on, we mainly consider only the notions derived from &, i.e., right
components, left multiples, and left associates. By symmetry, there are always sim-
ilar definitions and results for left components, right multiples, and right associates.

The theory of this section was developed in order to abstract some notions and
properties of the monoid of polynomials with composition, as introduced in the
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2 Chapter I. Uniqueness Results

next section, and which is dealt with in almost all parts of this thesis. But it is also
used for the monoid of rational functions and might be of general interest.

1.3. Proposition.

(i) © and £ are right compatible with multiplication, i.e.,
fop = fq2pq and [fEg = fpEgp.

(ii) The left associates of the identity are just its right components, thus the
elements that have a left inverse.

(iii) 2 is an equivalence relation, and < is a reflevive and transitive relation
on M, but antisymmetric only if & is equality.

(iv) (M/&,<2) is an ordered set. Its global minimum is the equivalence class of
the neutral element 1. Its atoms are just the (equivalence classes of the)
prime elements.

Proof. If f = rp then fq = rpq, hence pqg & fq, showing right compatibility.
Because 1 & a is always true, a 2 1 is the same as a & 1, which means that
there is b € M such that ba = 1, i.e., a left inverse. The rest is trivial. O

As usual in contexts like this, we now stop the pedantic distinction between
elements of M and their equivalence classes, whenever no confusion can arise.

1.4. Definition.

(i) To every decomposition f = p, ...p; there is a corresponding right compo-

sition series

f=pn...p1 2DpPu_1...p1 2 Dpap1 2 p1 2 1,
i.e., a chain in (M/&, D). It is proper iff all <2’s in this chain are in fact
O’s.

(ii) Two decompositions are called right associated iff they lead to the same
right composition series.

(iii) A decomposition is called right proper iff its right composition series is
proper.

(iv) If elements p, g € M/& have a least upper bound f, then it is called the least
common left multiple of p and ¢, and we write f = p(q. Similarly a greatest
common lower bound is called the greatest common right component, and is
denoted by p ) q.

(v) The set [1,f] = {p:1 S p S f} together with <2 is called the (right)
component structure of f. If it is a lattice it is also called the component
lattice of f.

(vi) (M/4,<2) is called the component structure of the monoid M. If is a lattice,
it is also called the component lattice of the monoid M.

Note that the arrows in the symbols () and O run outside, as they are derived
from .
1.5. Definition.
(i) An element p € M is right cancellable iff
fp=9p = f=y,

for all f,g € M.
(ii) A right cancellation monoid is one in which all elements are right cancellable.



§ 1. Divisibility in Noncommutative Monoids 3

Note that the right cancellable elements always constitute a right cancellation
monoid.

1.6. Proposition. Let M be a right cancellation monoid.

(i) The left invertible elements of M are just the units.
(ii) p,q € M are left associates iff there is a unit a € M such that p = aq.
(iii) The decompositions left associated to f = p, ...p1 are exactly those of the
form

anf = (anpna;il)(an—lpn—lagig) ce (a2p2a1_1)(a1p1)

for some units a;.
(iv) The mazximal chains in (M/&,<D) are in one-to-one correspondence to ex-
actly one class of left associated prime decompositions.

Proof.

(i) Suppose ba = 1. Then aba = a, and hence ab = 1, by right cancellation.

(ii) Suppose p = aq and ¢ = bp. Then p = abp and g = baq. Now, by right
cancellation, this implies ab = 1 and ba = 1, thus a and b are inverses. The
converse is trivial.

(iii) Obviously, such a decomposition is a left associate. For the converse, let
Pr...p1 and g, ...q1 be two left associated decompositions. By definition,
p1 2 q1, thus g1 = a1py for some unit a1. By right cancellation, the decom-
positions

Gn---q3q2 and  pn...ps(paai’)
are left associated, thus, by induction
g = a;ipia;y,
foralll <2 <mn.

(iv) We have to show that a decomposition is prime iff the corresponding com-
position series is maximal. By right cancellation, this means to show that f
is prime iff 1 & f is maximal. But this is true by definition. O

1.7. Definition.

(i) A bidecomposition rp = sq is a set of two decompositions that are not left
associated. Prime bidecompositions consist of two prime decompositions.

(ii) If rp = sq is a prime bidecomposition, and f € M has a prime decomposition
of the form ---rp---, then we get another prime decomposition ---sq---
from replacing r and p by s and ¢, respectively. All (prime) decompositions
that can be obtained in a finite number of steps by using bidecompositions
this way, are called related to the original one.

(iii) Suppose that a lattice (L, D) contains two incomparable elements p and g,
such that both pNgCp CpUgqgand pNg C g C pUq are maximal chains.
Then the four-element sublattice pMNq C p,q C pUq is called a unit rhomb
of L.

(iv) If pNg C p,q C pUq is a unit thomb of the lattice (L, D), and a maximal
chain contains the maximal subchain pNq C p C pU¢q, then we can replace
it by pNg C ¢ C pUq to get another maximal chain. All (maximal) chains
that can be obtained in a finite number of steps by using unit rhombs this
way are called related to the original one.



4 Chapter I. Uniqueness Results

1.8. Proposition. Let M be a right cancellation monoid with component lattice
(M), 0, M), then two prime decompositions are related iff their right composition
series are.

Proof. Immediately from the definitions. O
1.9. Definition.

(i) An element f of a lattice is said to cover p iff f D p and no elements are
between p and f.
(ii) A lattice is semimodular iff whenever both p and ¢ cover p N ¢, then pU¢q
covers both p and q.
(iii)) A monoid M is semimodular iff (M/4&,<D) is a semimodular lattice. An
element f € M is semimodular iff its component structure, ([1, f], ©), is a
semimodular lattice.

1.10. Theorem.

(i) If a semimodular lattice contains a finite mazimal chain, then all maximal
chains are related, in particular, their length is invariant.

(ii) If a semimodular element of a right cancellation monoid has at least one
prime decomposition, then all its prime decompositions are related, in par-
ticular, the number of components is invariant.

(iii) All prime decompositions of an element in a semimodular monoid that has
no infinite ©-chains are related.

Proof. We need to proof only the first part. Let A and B be maximal chains. We
may assume that A is finite. If one of A and B has length 0, i.e., contains only one
element, then by maximality, the lattice contains only one element, too, so A = B,
and we are through in this case. We proceed by induction on the length of A. Thus
assume that

A=(1cpcA) and B=(1cqcB).

for some (possibly) empty maximal chains A" and B’.

Case 1: 1f p = ¢, then p C A’ and p C B’ are maximal chains in the lattice
[p,oc] :=={q:q D p}, thus related by induction, so A is related to B.

Case 2: If p # q, let C be a maximal chain in the lattice [p U ¢, ]. By
semimodularity both

1cpcC and 1CgqgcCC
are maximal chains; they are (directly) related, and each is related to A or B
respectively, using case 1. O
§ 2. Decompositions of Polynomials

From now on we deal with the monoid (k[xz], o) of polynomials in z over a field of
constants k, together with (functional) composition defined by

(rop)(x) :==r(p(x))

If in the sequel we just say polynomial, elements of this set are intended.
When discussing algorithms, we generally assume that k has computable field
operations and decidable equality.
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2.1. Notation. Note that an expression like p(z — 1) is ambiguous because it
either means that (z — 1) is substituted into p, just as in p(x), or that p and (z —1)
should be multiplied, as in (z 4+ 1)(x — 1). Therefore we denote multiplication of
polynomials by a dot, e.g., we write (z 4+ 1) - (z — 1), at least whenever the correct
meaning is not obvious. Additionally, the correct meaning of the notation p™ is not
clear now. Therefore we reserve it to powers arising from multiplication, whereas
p°™ denotes an n-fold composition.

2.2. Example. The following examples of trivial formulas should eliminate any
doubt about the notation.

(z+1) (z—1)=2>—1
(x+1)o(z—1)==x

(z+1)2=(x4+1)-(z+1)=2+2z+1
(z+1)%=(x+1)o(x+1)=x+2

1
= —
(z+1) 1

(z+1)°t=2-1

2p=2-p
p(2) =po2
p(t)=pot

p(r) =pox=rp
We should mention for later reference the trivial

2.3. Proposition. (k[x],+,-,0) is a composition ring, i.e., we have the right dis-
tributive laws

(r+s)op=rop+sonp,
(r-s)op=(rop)-(sop).
for all polynomaials p, r, s. L]
Note, however, that the corresponding left distributive laws are not generally

satisfied. [Pil83] contains a description of the structure of this composition ring
and of the near-ring (k[z], +, o).

Degree of Polynomials

A very nice property of polynomials is that they have a degree, which we denote
by square brackets ([p]). When dealing with composition, the convention [0] = 0
is useful. Our first result is trivial, but crucial for all the subsequent theory. Let
(Np, -) denote the multiplicative monoid of the positive integers including zero. As
this monoid is commutative we omit the arrows in symbols like &, 0.



6 Chapter I. Uniqueness Results

2.4. Proposition. The degree function maps
(i) the monoid (k[z], o) homomorphically onto (Ny,-), thus

[rop] = [r][p]
(ii) the ordered set (k|z]/&,<2) monotonically onto (Ny, D), thus
pSq = [p]Clq],
pEq = [p]=1q.

Proof. Let r = bgz™ +byz" '+ -+ and r = apz™ + a12™ ' + .-+ with ag # 0 and
bo 7é 0. Then

rop=bep" +bp" "+
— bo(aoxm+a1xm_1+-..)n+...
= bo(lol’nm-l-"' ,

and bpag # 0, thus [rop] = nm. Of course [x] = 1. The second part is a con-
sequence of the first. As there are polynomials of arbitrary degree, surjectivity is
trivial.

The second part is a trivial consequence of the first. O

2.5. Proposition. Consider the monoid (k[z], o).

(i) The decompositions of a constant are exactly those that contain at least one
constant component.
) The units are exactly the polynomials of degree 1.
) Every polynomial of prime degree is prime.
v) The non-constant polynomials are exactly the right cancellable ones.
) A (right, left) component of a non-constant polynomial is proper iff it has a
smaller degree.
(vi) The component structure of any non-constant polynomial contains no infinite
S-chains.
(vii) Ewvery non-constant polynomial has a prime decomposition.

(1) [ful---[f1] = 0 iff at least one of the [f;] =0, i.e., f; is constant.

(ii) The inverse of az 4+ b with a # 0 is given by 1z — 2. Polynomials of degree
# 1 cannot be invertible because their degree is not.

(iii) If f = r o p has prime degree, then [f] = [r][p], thus either r or p must have
degree 1.

(iv) Of course, constants are not right cancellable, as different polynomials can
have a common zero. For the converse assume that r o p = s o p for some
nonconstant polynomial p. Then, by right distributivity,

0=[0]=[rop—sop]=I[(r—s)op]=I[r—s|p.
Because [p] # 0, r — s is constant. But
r—s=(r—s)op=rop—sop=20,

SO T = 8.
(v) Suppose f = rop. Then [f] = [p] is equivalent to [r]=1, ie., that f & r
Similarly for & and C.
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(vi) If f1 © fo © f3 < -+ is a chain, then [f1] D [f2] D [f3] D -+ is a chain of
positive integers. But no positive integer has an infinite number of divisors.
So [f1] # 0 implies that the chain cannot be infinite.

(vii) By the previous part, together with Proposition 1.6. O

Thus the discussion about existence of prime decompositions has been finished.
(If, however, k is not a field, or at least a unique factorization domain, prime
decompositions need not exist and the question becomes more interesting.) A more
difficult problem is to develop algorithms for computing prime decompositions and
to find interesting uniqueness properties. It turns out that very similar methods
solve these two problems, so we treat them at once.

Polynomial Decomposition Algorithms

Let us ask whether our existence proof contains any method to find a prime
decomposition of a polynomial f. In fact it does, though not explicitly. The
multiplicativity of the degree function shows that there is only a finite number of
possible degrees for the components, one for each divisor of [f]. So by an approach
with indetermined coefficients, we can test for nontrivial decompositions.

2.6. Algorithm. The following method determines whether a given polynomial f
has a proper decomposition over some algebraic extension field of k and computes
it in the affirmative case.

For each non-trivial divisor n of [f]

n , [f]/n ,
repeat take p = > a;z’, r = ) bz’
i=0 j=0
with indetermined coefficients a; and b;;
Compute 7 o p and compare its coefficients
to the corresponding ones of f;
Test whether the resulting system of algebraic equations
has a solution for the a; and b;;
If one of the systems has a solution,
then r o p with this solution is a decomposition,
else f is indecomposable.

2.7. Remark. Note that any system of algebraic equations can be solved, e.g.,
by computing the Grébner basis (cf. e.g. [BL82]). The algorithm presented there
either determines that no solution exists or transforms it into a triangular system,
i.e., an equation for the first variable, one for the second, but using the first, one for
the third, using the first two, and so on. So it is easy to find out, whether there are
solutions in k, and which field extension are necessary to obtain all solution. There
is also an easy criterion to detect whether the system has a finite or an infinite
number of solutions.

This way, the polynomial decomposition problem is solved, in principle. But,
except for polynomials of very small degree, the system that must be solved has
too many variables occurring with too high degrees for being tractable. Hence this
method has not been studied in detail. On the other hand, there are much more
equations than variables, and the Grobner bases computation has a lot of choice,
that can make it fast in particular situations. It is an open problem, whether one
can do so for the polynomial decomposition problem.
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[Zip91] contains another general algorithm, which has a polynomial computa-
tion time. But it uses polynomial factorization in two variables over an algebraic
extension field, therefore is mainly of theoretical interest, as even exponential-time
algorithms are usually faster in practice.

In the next section an algorithm that is very fast for the special but very
important tame case will be developed.

But first we discuss some more properties and algorithms valid in the general
case.

Taylor expansion

2.8. Proposition. Let f,p be polynomials, p non-constant. Then there are unique
polynomials r; with [r;] < [p] such that

F=> rip.

Proof. If [f] < [p], the statement is clear, using 7o = f. We do induction on the
degree of f. If [f] > [p], take any nonconstant left multiple p = w o p of p such that
(5] < [f], e.g., p itself, or some of its powers p*, but not too big. We use Euclidean
division to get unique polynomials ¢ and r such that

f=ap+r

By induction, ¢ = 3" ¢; - p*, r = Y. r; - p', and by definition, p = 3" a;p?, for some
unique polynomials ¢;, r; of degrees < [p] and constants a;. Thus

F=> a9 ap'+> ri-p,
which, after expansion, has the requested form. O
Of course, the step involving p is unnecessary in order to prove the proposition.
But it provides us with a more general construction, which we are going to use to
obtain a more efficient algorithm.

Note that for p = z — a, a € k, the proposition just says that f has a (finite)
Taylor expansion around the point a. Therefore we define

2.9. Definition. The unique representation of Proposition 2.8 is called the Taylor
expansion of f around p with coefficients r;.

2.10. Example. Let us compute the Taylor expansion of
f=2"4+122" +662'°+2232°+5222° +9002"+11792° +11882° +9182" +5332> + 2222 + 60z

around p = z2? 4 2z. First we use the choice p = p. Dividing f by p we get the
remainder rq = 4z, whose degree is < 2, and the quotient

¢ = 20 +102° + 4628 + 13127 + 2602° + 3802° + 419z + 35023 + 21822 + 97z + 28.
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Continuing with this quotient as in the proof, we get the sequence

ry =132 + 28

g2 = 28 + 827 + 302 + 712° + 118z* + 14423 + 13122 + 88z + 42
ro = 18x + 42

g3 = 25 + 62° + 182" + 3523 4 4822 + 482 + 35
r3 = 12z + 35

qs = 2t + 42° + 1022 + 152 + 18

ry =3 + 18

G =22 +2c+6

rs =6

ge =1

re = 1.

Thus the Taylor expansion is
f=p%+6p° + 3z +18) - p* + (12 + 35) - p* + (18z + 42) - p® + (132 + 28) - p + 4u.

Note that, by the choice p = p, the remainder always had degree < [p]; therefore
we just needed to continue with the quotient. This means that the problem of (Tay-
lor) expanding f is reduced to expanding a polynomial of degree [f] — [p]. Though
this is quite practical for polynomials of low degree, for [hi]gh degree polynomials

fl+1

a more balanced version seems to be better. If [p] = “5—, then the problem

of (Taylor) expanding one n-th degree polynomials is reduced to expanding two

[fl-1

5—. This approach is explained in the following algorithm.

polynomials of degree

2.11. Algorithm. Given polynomials f and non-constant p, then the following
method computes the Taylor expansion of f around p:

if [f] < [p] then return f
else set © = power of 2 closest to [é][;']l;
thus [pi] ~ LLEL .
use Euclidean division of f by p’;
set ¢ to the quotient, r to the remainder;
return (expansion of ¢) - p* + expansion of r.

2.12. Remark. Let M(n) be the number of field operations necessary for multi-
plying two polynomials of degree n.

Suppose [f] = n. In every step, i < n. Thus computing all necessary powers p
by successively computing squares, takes at most O(M (n) - logn) field operations.
In the first step, the Euclidean division uses at most O(M (n)) field operations, i.e.,
has a bound c- M (n), for some constant c. Next, two problems of size =~ § must be
solved. So we have to do two Euclidean divisions, but of polynomials with degree
bound %, so it takes at most 2c- M (%) field operations. Similarly, in the third step,
we have the bound 4c- M (%), in general 2'c - M(3+). As 2* < n the total cost of
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the algorithm is bounded by
; n ;M
O(M(n)-logn) + O( Z 2 cM(E)) < O(M(n)logn)+ O(c- Z M(2 E))

i<logn i<logmn
= O(M(n)logn) + O(M(n)logn).
So the algorithm uses at most O(M (n)logn) field operations.

2.13. Example. Let us illustrate the algorithm with the computation of the Tay-
lor expansion of f as in the last example

f=224+122" +662'°4+2232° +52225 +9002" +11792° +11882° +9182* + 5332 + 22222+ 60z
but around p = 22 + 322 + 3z. According to the algorithm we must choose ¢ near
%z%,thusizQand
p=p? =25+ 62° + 152% + 1823 + 922
We divide f by p to obtain
r1 = 202° + 602 + 60z
as the remainder and
g1 = 2° + 62° + 152" + 252° + 302% + 212 + 18

as the quotient. Now we continue recursively, computing the Taylor expansion of
both 71 and g1. As [r1] = 3 = [p], the choice i = 1 is the only possible. We get
ro =0
q2 = 20.
Thus 1 = 20p. [¢1] = 6, hence i = 1 is appropriate, i.e., we divide ¢; by p, with
the result
rg = 18
g3=2+322+3x+T7T=p+T.
Soq1=((p+7)-p+18, and we get
f=q p*+ri =@+ Tp+18) p*> 4+ 20p = p* + 7p> + 18p> + 20p.

In this example, all Taylor coefficients of f around p happen to be constant.
Of course, this is quite an incidence, and means that p & f, in fact

f=(z* + 723 4+ 1822 + 20z) o p.

2.14. Definition. Let p & f. The unique polynomial » such that f = rop is
denoted by f + p, and we call this operation Taylor division.

We have called this Taylor division, because it is a special case of Taylor ex-
pansion.

That f + p really is uniquely determined follows directly from the right can-
cellation law. This does not, however, equip us directly with a method to compute
this operation. Additionally there could be the possibility that there exists r such
that f = r o p only if it is allowed to have coefficients in some extension field of k.
But we can use Taylor expansion.

2.15. Proposition. Let f,p € k[z], p non-constant.

(i) p © f iff all coefficients of the Taylor expansion of f around p are constant.
(ii) The relation p S f is independent of the ground field.
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(iii) If p © f, then the coefficients of f + p are rational functions of those of p
and f.

Proof. The first part is immediate from the definition. But the algorithm for the
computation of the Taylor expansion uses only rational operations involving the
coefficients of f and p. Thus the remaining parts are also obvious. O

Remember that [p] C [f] is a necessary condition for p & f.

2.16. Algorithm. Given polynomials f and non-constant p, then we can decide
whether p © f and compute f =+ p in the affirmative case just by computing the
Taylor expansion as in algorithm 2.11, and aborting as soon as it computes a poly-
nomial whose degree is not a multiple of [p], because in this case p cannot be a
(right) component of f.

Note that, if the algorithm is not aborted, then all Taylor coefficients are con-
stant.

Component Lattice

The following lemma is very surprising and seems to be rather unknown, though
it appears implicitly in [Eng41].

2.17. Lemma. Let f and q be polynomials, and
f=aq-p+r [r]<p].

Then a polynomial t is a common right component of f and p iff it is one of p, q
and r.

Proof. The if-part is trivial. Therefore assume that ¢ is a common component of f
and p, thus there exist polynomials f and p such that

f=1f), p=pt).

Then, by Euclidean division, there exist polynomials ¢, 7 such that

f=a-p+7 [F] <[],
and by substituting ¢ into this equation

F(t) = a(t) - p(t) + () [P(0)] < [B(t)].

ie.,

F=q@)-p+7@); [F()] <I[p].
As the quotient and remainder are uniquely determined, it follows that ¢ = §(t),
r = 7(t), thus ¢ is a component of both ¢ and r. O

2.18. Proposition. Any finite set F' of polynomials has a greatest common right
component.

Proof. Because every polynomial is a right component of any constant, the con-
stants can be removed from F' without changing the result. If F' = &, then any
constant is a greatest common right component. If F' = {p}, then p is the result. So
assume that F' has at least two elements but no constants. If the greatest common
divisor of the degrees of all polynomials in F' is 1, then z is the greatest common
right component, because its degree must divide 1. Otherwise choose polynomials
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f € F and pin k[F'\ {f}] with [f] > [p] > 0. Thus p can be any element of F
different from f, but can as well be formed by adding and multiplying any such
elements. Using Euclidean division, we get a quotient ¢ and remainder r. Then, by
the lemma, the sets F' and (F'\ {f}) U {q, 7} have the same right components. Let
F be the later set with constants omitted. Note that [¢] + [r] < [f] — 1, so the sum
of the degrees in F is smaller than that in F. We proceed inductively. Because the
constants are omitted, we eventually must get a singleton set. Its element then has
the same right components as the original set, i.e., it is the greatest common right
component. [

Now we can state our lemma in a simpler form.
2.19. Proposition. Let f and q be polynomials, and
f=ap+r; [r]<p].
Then
fap=ppaqnr.

The proof of the Proposition 2.18 contains a new algorithm for the computation
of (), which is both simpler and more general than previous ones. It works like a
kind of compositional Euclidean algorithm.

2.20. Algorithm. The following program computes the greatest common right
component of a finite set F' of polynomials:

Remove all constants from the set F';
if F' = @ then return 0;
while F' contains at least two elements
and the gcd of their degrees is > 1
repeat choose polynomials f € F and p € k[F'\ {f}] with [f] > [p] > 0;
use Euclidean division of f by p, giving ¢ and r;
remove f from F
add ¢ and r instead, if nonconstant;
return the single element of F
resp. z, if we terminated because the ged was = 1.

2.21. Example. Let us compute the greatest common right component of
f=22+122" +662'°+2232° +5222° +900z " +11792° +11882° +918z" + 5332 +2222° + 60z
and
g =" +272%° + 35127 + 29242 4 1752627 + 804542°% + 2939852>" + 8773832>°
+ 21773612"° + 45509012 + 808423227 + 122823812 + 160237132 + 179867192
+ 173746472" + 144179302 + 10238064z " + 61789742'° + 3134779z° + 1313667z°
+ 44259327 + 115013z° 4 214502° + 24872* + 3072® + 18327 + 3.

At the first step we divide g by f and get the quotient

¢ = 2 + 1521 + 105213 + 451212 + 13172 + 2739210 4 41332°
+ 452728 + 355527 + 197025 + 77725 + 2282* + 3723 — 622 + 3z

and the remainder
ri=a°+ 322 + 3z
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Now F = {f,q1,71}, with degrees {12,15,3}. In the next step we have a lot of
choice. Let us get rid of the biggest polynomial, ¢;, which has degree 15. If we
divide it by f, we get a quotient of degree 3 and a remainder of degree < 12. If we
divide by r{, then the quotient has degree 12 and the remainder < 3. If, however,
we divide by

r3 =29 4+ 928 + 3627 + 812° 4+ 10825 4 812* + 2723,

then the quotient will have degree 6 and the remainder < 9, which situation is more
balanced. In fact,

qo = 2% + 625 + 152% + 192° + 1222 + 3z + 2,
ry = —a% — 62° — 152* — 172 — 622 + 3z.

We observe that these two polynomials are left associated (ro = (2—x)ogs). Because
we are computing in (k[z]/&, ), i.e., modulo %, we can omit one of them. Thus
F = {f,q2,71}, with degrees {12,6,3}. The next choice is rather straightforward:
we get rid of f using division by g9, thus

g3 = 2% + 62° + 152 + 2423 + 2722 4+ 18z + 10,
rg = —22% — 62% — 62 — 20.

Both polynomials happen to be left associated to some already in F', so f can be
eliminated from F' without compensation. F' = {qa,71} now, and in the last step
we have to divide these two elements, with the result

s =22+ 322 + 3z + 1,
7“4:2.

Again, ¢4 is left associated to ry, and r4 can be omitted as it is constant. So,
finally, F' is a singleton and its element r; (or any of its left associates) is the
greatest common right component.

2.22. Remark. There is a lot of arbitrariness in this algorithm, involved by the
word choose, which can affect the efficiency of the algorithm. In the example we
have used the strategy to replace the polynomial of highest degree by two ones that
have about the same degree. Choosing the second polynomial p of the algorithm

appropriately in k[F'\ {f}], not just in F, it can always be accomplished that
[p] ~ % Suppose that the biggest polynomial in F' has degree n. If all polynomials
have degree ~ n, then we get rather small polynomials. Thus polynomials of any
order of magnitude between the smallest and the biggest can be computed with
O(nlogn) field operations. Dividing the n-th degree polynomial by one of degree
~ 4 replaces it by two ones of degree at most ~ 3. Thus, with this strategy, we
get the same complexity bound as for our algorithm for Taylor expansion, which
was O(nlogn). In fact, these two algorithms are not very different and e.g. both

can be used to decide whether p & f.

2.23. Theorem. (k[z]|/&,<D) is a bounded lattice with minimum x and maxi-
mum 0.

Proof. We have already shown that any two elements have an infimum. 0 is always
a common left multiple, thus a least common left multiple must exist, because there
are no infinite <-chains. O
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2.24. Remark. The degree function maps the lattice (k[z]/2, U, D)) monotonically
onto the lattice (N,U,N). But, in general, this is not a lattice homomorphism.
We just get, as an immediate consequence of monotonicity (Proposition 2.4), the
considerably weaker facts

ppa Cplnlg, [pUqg 2 Uld.
There is, however, a very important local replacement, stated in theorem 5.4. We
will be concerned with its proof in the next sections.

2.25. Example. Here is an easy counterexample. Obviously
22 (v° +7) = 2.

Later(Proposition 5.2) we will show that this implies that
22U (22 4+ 2) =0,

at least if chark = 0.

Whereas we have got a general and very efficient method for the computation
of the (-operation, no general method for computing the (-operation is known.
The reason is that the existence proof for least common left multiples was not
constructive. But we can test whether there is a common left multiple of a specified
degree, because this leads to a system of linear equations. ([Alo94])

2.26. Algorithm. We can test whether two polynomials p, q have a common left
multiple of degree n, and compute it in the affirmative case.

if n 2 [p] U [¢] then return no common multiple;
n n

try polynomials r, s of degrees wl and T’ respectively,
with indetermined coefficients;
Find a solution satisfying rop =sogq
this is a linear system of [p] [q] equations with [p] + [q] variables;
if it has a solution
then return r o p = s o ¢ (for that solution)

else return no common multiple.

2.27. Algorithm. The following semialgorithm computes p( q, if it is not a con-
stant, and never stops otherwise.
n = [p] U [ql;
for k € N
repeat if there is a common left multiple f of degree kn
then return f
else continue.

Thus the general case is not very satisfactory. Because we cannot wait until the
end of time to see that the algorithm did not stop, we hope to obtain a bound for
[p U q]. The general case is unsolved, but for chark = 0, there is a very satisfactory
answer, given in the next section. But in this case we can use the characterization
of bidecompositions in chapter II to obtain an even more efficient algorithm.

Normed Polynomials

The component lattice contains equivalence classes of polynomials. This is
sometimes inconvenient, in particular, if we try to compose these equivalence classes,
because 2 is not a congruence with respect to composition. This prohibits having
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both lattice operations and composition in one structure. But we can choose a
good system of canonical representatives to achieve this.

2.28. Definition. Let p = a,2" + a,,_12" "' 4+ -+ 4+ ag be a polynomial of degree
n.

(i) p is called zerosymmetric iff ag = 0.

(ii) p is called monic iff a,, = 1.

(iii) p is called normed iff it is monic and zerosymmetric.

(iv) a decomposition is normed iff all its components are normed.

2.29. Proposition.

(i) The (normed, zerosymmetric, monic) polynomials form a submonoid of the
monoid (k[z],0). They are also closed under multiplication.
(ii) Each non-constant polynomial q has exactly one decomposition

q=uop,
such that u is linear and p normed.
(iii) Each polynomial has exactly one normed left associate.

(iv) Fach decomposition of a normed non-constant polynomial is left associated
to exactly one normed one.

(i) Trivial.
(i) Let g =dpa™ + -+ +do, u =ax+b, and p = 12" + ¢, 12" L +---+0. We
compare the coefficients of ¢ and u o p; thus obtain

d, =a
d; =ac;, for0<i<mn
do = b,

which, if ¢ is given, has a unique solution for a, b, and all ¢;.
(iii) For non-constant polynomials this is clear by the previous part. Note that 0
is the only normed constant, and for each constant ¢ we have ¢ = (z+¢) o 0.
(iv) Let f = g, 0---0¢q2 0¢q be a decomposition. Each left associate of this
decomposition looks like

f=(unognousy)o---o(ugogaou™)o (usoq).

We have to choose the u; appropriately to make all components normed. For
the rightmost component, part (ii) shows that there is exactly one choice.
But then us must make ¢ o ucl’_1 normed, and by the same argument, we
get exactly one solution. This way we continue until u,, is determined. [

§ 3. Roots of Tame Polynomials

3.1. Definition. Let f be a normed polynomial of degree nm. A normed poly-
nomial p such that

[f=p"] <nm—m
is called an n-th (approximate) root of f. We will use the notation p = {/f, if it
exists uniquely.

3.2. Proposition. Let r and p be nonconstant normed polynomials of degrees n
and m. Then p is an n—th root of r o p.
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Proof. Let r = 2™ +b-2" ! +.... Then
rop=p"+b-p" 4.

But [b-p"~'] = (n — 1)m = nm — m. All further terms are even smaller. O

3.3. Example. If k has characteristic 2, then the polynomial z* + 23 has no 29
root, because (2% + ax)? = x* + a?2?, for each a € k, which has no term for z3. On
the other hand, each polynomial of this form is a 2nd root of z*. We want to avoid
such wild behavior.

3.4. Definition. An integer is called tame (relatively to k) iff it is has an inverse
in k, i.e., if it is not a multiple of the characteristic. A polynomial is tame iff its
degree is tame.

3.5. Remark. If chark = 0, a polynomial is tame iff it is non-constant.

3.6. Lemma. Suppose that the nonconstant normed polynomials f and p with
[f] = nm, [p] = m and tame n satisfy

[f=p"] <nm—k
for some 1 < k <m. Then

(i) for each polynomial q of degree at most m — k, we again have
[f =+ "] < nm— k.

(i) with k := min(2k, m), there is exactly one zerosymmetric polynomial q of
degree at most k — k such that

[f - (p+q-wm_’~“)"} < nm— k.

Q) [f=w+a)"=[f—p"—np"~'-q— -] <nm—k, because [np" " - ¢'] <
(n—i)m+i(m—k)=nm —ik <nm —k for i > 1.

(ii) The condition on q is

f—(p+Q'.I‘m_k)n] — [f_pn_npn—l_q_xm—k____] §nm—l§:

The omitted terms have degrees < (n—i)m+i(k—k)+i(m—k) = nm—ik <
nm — k for ¢+ > 2. By the assumption,

[ror = famT] < m

for (exactly) one zerosymmetric polynomial f of degree at most k — k. Thus
the condition turns into

|:]E xnm—fc _ npn—l . xn—fc . q:| <nm — k.

n-l, m_k} — nm — k, and n is tame, we see, after dividing by

Because [p

z, that % is the unique Euclidean quotient of f - gnm—k—1 by np™~ 1. 0]

3.7. Proposition. Let f be a normed polynomial with [f] = nm. If n is tame,
then there exists exactly one normed n-th root of f.



& 3. Roots of Tame Polynomials 17

Proof. There is exactly one polynomial p with only one term such that [f — p"] <
nm — 1, namely ™. Thus we can apply the lemma with p = 2™ and k£ = 1, and

subsequently with & = 2,4,8,...,2" < m until we get an n-th root. Because the
additional coefficients that we get at each step are unique, /f is also. O

3.8. Remark. Note that the proof of the lemma always deals only with the leading
k, or k coefficients of the occurring polynomials. In the following algorithm the
notation cgk) (f) denotes the polynomial of degree < k constructed from the leading

k coefficients, thus |f — cgk)(f) canhkHL < p — k. Similarly c;k)(f) denotes the

next k coeflicients.

3.9. Algorithm. The {/f can be computed according to the proof of the lemma in
the following way:

m::m;

fi= cfln)(f); we forget the remaining coefficients!
k:=1; p :=a™,

while £ < n

repeat k := min(~2k, m);
firi=cf(f);
fa =5 (f);

p2 = c5(pT);
g1 = Euc}ideanQuotient(%f:p?));
D1 2=~p1$k_k + q1;
k:=k
return p - x.

3.10. Example. Let us compute the second root of the example in the previous
section

=22 +122" +662'° + 2232° + 5222° + 90027 4 - - - .

Here, we do not even want to know what the remaining coefficients are. In the
notation of the Algorithm we have n = 2, m = 6, and

f =%+ 122* + 662° + 22322 + 5222 + 900.

frees us from the superfluous coefficients.
We start with k& := 1 and p; := 1 (according to the first approximation ™). In
the first step we want to obtain the first k£ = 2k = 2 coefficients. We see immediately

Ji:=1
f2 =12
pa := (2nd coefficient of p?) = 0.

Now we obtain the 2nd coefficient of the root
g1 =p1(fa —p2) :nfr =1(12-0):2 =6,

thus we enter with

pri=piz+q =x+6
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and k := 2 into the second step, to obtain the first k = 2k = 4 coefficients We read
the next coefficients from f:
fi=x+12
5 1= 66z + 223.

and compute p?:

(x +6)% = 2% + 122 + 36,
The first 2 coefficients must coincide with that of f, and

po 1= 36.
Now we get the next two coefficients by
@1 = p1(fo — p2) : nfi = (z + 6)((66x + 223) — (367)) : 2(z + 12) = 152 + £,
thus we enter with
p1i=pirl +q :x3+6x2+15x+%

and k := 4 into the third step, to obtain the first & = min(2k,m) = min(8, 6) = 6
coefficients, i.e., the complete root. We read the next coefficients from f:

f1:= 23+ 12z + 662 + 223

fo := 522z + 900.
This time fo has smaller degree, because there are no more coefficients. We com-
pute p?:

(2 + 62% + 15z + 23)? = 20 + 122° + 662 + 2232° + 4832 + 645z + - - - .

The last coefficient will not be needed. The first 4 coefficients again must coincide
with that of f, and from the next k — k = 2 ones we get

p2 = 483x + 645.
Now we get the remaining coefficients by
a1 =pi(fz —p2) :nfa

= (2° 4 62° + 152 + £)((5227 + 900) — (483z + 645)) : 2(z° + 122° + 66z + 223)

= %x + %
Thus

p1i=p1a® 4+ q1 = 2° + 62* + 1523 + %xz + 3—2937 + %,

gives all coefficients of the root and ¥/f = x - p; is normed and of degree 6. In fact,
squaring this polynomial gives
(Vf)? = 2" +122" 4662 = 2232°4+5222° 49002 + 28230 4 230755 4 33274 4 819,34 441
and we check that its first 6 coefficients coincide with that of f.

3.11. Remark. Because at each step in the iteration the number of coefficients of
Yf already computed is doubled, our algorithm needs only O(logn) iterations. The
most expensive part in the i-th iteration is the computation of the first 2¢ coefficients
of the n-th power of a polynomial of degree 2°=!. This can be accomplished by
the usual method of successive squaring with O(logn - M(2%)) field operations.
Again M (k) denotes the number of steps used for multiplying polynomials of degree
k. According to [SS71] we can choose M(k) = klogk. For practical purposes,
however, M (k) = k5 is more appropriate (Karatsuba method). In any case, we
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have M (2k) > 2M (k), thus the total cost of our algorithm is dominated by the cost
of the last step, which is O(M(m)logn). This is a very good bound, at least if k is
a finite field. For infinite fields, the growth of the size of the coefficients becomes
essential. A good polynomial bound is obtained in [vzG90].

3.12. Theorem. Let f be a tame normed polynomial.

(i) For each divisor n of [f] there is exactly one normed root {/f; its coefficients
are rational functions of the first L] coefficients of f.

(ii) For each divisor m of [f] there is at most one normed right component p & f
of degree m, and, in the affirmative case, p = V/f, with n = %

(iii) For each finite sequence ny, ... ,n; € N there is at most one normed decom-
position f = pg o---opy such that [p;] = n;.

(iv) One gets no more normed decompositions of f when components are allowed
to have coefficients in some algebraic extension field of k. In particular, a

polynomial is prime over an extension field iff it is prime over k.

Proof.

(i) Proposition 3.7 proves uniqueness, and from the algorithm we see that only
elementary field operations are used in its computation.

(ii) Each right component of degree m must be an n-th root by proposition 3.2.
Thus it is the unique one.

(iii) The rightmost component is unique by the previous part. Then we use
Taylor division to see that fio---o fy is also uniquely determined. Applying
the same argument recursively, we see that all components are determined.

(iv) As both root computation and Taylor division use only rational operations,
this is clear from the construction in the previous part. U

This theorem and its proof also show that we have got a fast method to compute
a prime decomposition of a tame polynomial f. We just compute roots of f for each
divisor n and get a good (the only possible) candidate for being a right component
of the appropriate degree. We can test this using Taylor division and continue by

decomposing f + /f.

3.13. Algorithm. Let f be a normed tame polynomial. Its prime decomposition
can be computed in the following way:

For each proper divisor m of [f] (smallest first);
compute the candidate p of degree m
as an appropriate root.
test whether this is a right component using Taylor division;
in the affirmative case continue recursively with f = p,
otherwise test the next divisor.
If all divisors are exhausted, without finding a right component,
then f is prime.

In fact, this algorithm finds the the first prime decomposition, i.e., that with
smallest components on the right. If we try all proper divisors, (a variant of) this
algorithm even finds all prime decompositions.
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3.14. Example. Let us now decompose our polynomial
f=2"+122"" +662'°+2232°+5222° +9002" +11792° +11882° +9182"* +5332° +2222° +60z.

into prime components. According to the algorithm, we first look for the candidate
of degree 2; it must be ¥/f. Algorithm 3.9 finds, with only one iteration,

Vf =a® + 2z,
but using Taylor division we have already seen in Example 3.10 that this is not a
right component. Note that, for this purpose, we need not do all the computations
in that example, because we obtain a linear Taylor coefficient already at the first
step. So let us compute the candidate of degree 3; we get

p = v/f = 2% + 32% 4 3z.

We already know this polynomial from Example 2.10, where it was shown, using
Taylor division, that this is in fact a right component, and

ri=f+p=ax*+ 72>+ 1822 + 20z.

As r has degree 4 it could be decomposable. But /7 = 22 + 5, and, using Taylor
division we see that this is not a right component. So r is prime and we have found
the prime decomposition f = r o p.

We ask whether there are any more prime decompositions. Thus compute the
candidate of degree 4:

q:= Vf =az* + 42° + 622 + 5.
Now Taylor division shows that ¢ is in fact another right component with
s:=f+q=2x3+ 62>+ 12z.

We know already that ¢ is prime, because f has no right component of degree 2.
Thus f has the two essentially different (i.e., not associated) prime decompositions
f=rop=soq. In fact, we have got a prime bidecomposition. To obtain all prime
decompositions of f we can now test the candidate of degree 6, i.e., ¢/f. But in
Remark 5.6 we will see that this is in fact not necessary.

3.15. Remark. Though the notion of root for polynomials (in this sense) as well
as its systematic use is new, a proof of proposition 3.7 is already contained implic-
itly in [Eng41]. [LN73] contains a similar proof. Additionally, the algorithms for
polynomial decomposition in [Gut88] and [KL89] use very similar constructions.

Our proof is not more complicated than the ones mentioned above, and has the
advantage that it almost directly leads to the fastest known algorithms. Whereas
the above methods essentially compare the first coefficients, one by one, our proof
and algorithm compare the coefficients in a second order manner, thus doubling
the accuracy at each step.

The similarity with Newton’s iteration method is not incidental: Every poly-
nomial f = Y a;z""" can be identified with the Laurant series Y a; (%)Z_n
around oo, which has only negative terms. Thus, if we consider only the leading
k coefficients of the polynomials, we are doing essentially power series arithmetic
up to order O(xz™~*). It is well known that the class of power series with leading
coefficient 1 has unique roots. The paper [BK78] outlines how these roots can be
computed efficiently using Newton’s iteration method, and [vzG90] proposes this
for polynomial decomposition. So our Algorithm 3.9 does essentially the same as
that in [vzG90].
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The proofs in [Rit22] and [DW74] do not contain any version of proposition 3.7,
but use Riemann surfaces resp. valuation theory instead, which essentially reduce
to the use of Laurant series. Using roots for polynomials directly, we can avoid the
discourse to infinite structures completely.

Roots have proved very useful in developing good algorithms for decomposition
as well as some interesting uniqueness results. One can get even more.

3.16. Remark. Yet another way to express part (ii) of theorem 3.12 is that the
degree function injectively maps the component lattice into the divisor lattice of [f].
Though it is trivially monotone, we do not yet know that it is a lattice homomor-
phism. The next proposition proves one half of this, the rest must be postponed.

3.17. Lemma. Let r be a normed polynomial and let n be a tame divisor of [r];
then for all normed polynomials p

Yrop= /rop.
Proof. We have to prove that {/r op satisfies the characteristic property of an n-th
root of r o p. Thus we estimate
[rop— ({’/Fop)n} =[rop—a"o /rop]

= [r—a" o 7] [

(by definition of /r) < ([r] = %) [p]
oyl [r o p]
n )
which is what we wanted. O

3.18. Proposition. If p and q have any tame common left multiple, then

[pUq]=[plUlq].

Proof. Let f =rop= soq be tame, then [f] D [p] U [¢], and with

we have
Vf=/rop=3/soq
as another common left multiple, and this one has the appropriate degree [p] U [q].
0]

The proof of the corresponding result for ) (5.2) is completely different and
surprisingly needs a discourse to rational function decomposition.

That the greatest common right components are independent of the ground
field was not surprising, as this is so for greatest common divisors, too. But for
complete factorizations the ground field is essential. Thus, prime decompositions
have a considerably simpler structure in this respect, at least in the tame case. On
the other hand, every polynomial can be factored into linear ones over its splitting
field. There is no (known) compositional replacement for this. One could expect
that every polynomial can be decomposed into ones of prime degree, which are
trivially prime, just like the linear polynomials are trivially irreducible. But this,
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by far, is not true, as most polynomials are prime. In fact, If f = r o p and
g is some polynomial with [g] < [f] — [p], then [(f+g) —p"] < [f] — [p]. thus
p=f = Yf+g. Suppose f+g =7iop; As f =rop g = (r—7)op.
Thus, for e.g. every polynomial g such that its degree is not a multiple of [p],
f + g is indecomposable. So for each decomposable polynomial we get a whole
bunch of prime polynomials of any degree. Another way to see this is looking at
the number of coefficients: r o p is computed from [r] + [p] coefficients, whereas a
general polynomial of the some degree has [r] - [p] coefficients.

In this context it would be particularly interesting to know what happens when
decomposing into algebraic functions.

Another interesting question is whether there is a compositional replacement
for squarefree factorizations.

§ 4. Rational Function Decomposition

4.1. Notation. The elements of the field k(z) will be called rational functions,
as it consists of all rational expression involving x. It is the quotient field of the
integral domain of polynomials k[z], thus the elements can be represented in the
form %, where p and ¢ # 0 are polynomials. % is said to be in prime form iff p and
q are relatively prime. Of course, every rational function has a prime form which
is unique up to constant factors.

If f and g are rational functions, then we can substitute g for the x in f to to
get another rational function g(f). We get problems, however, if f is constant and
g has a pole at f. In this case we assign a new constant value oo to g(f). Note,
in particular, that % o0 = _71 00 = oo, thus co = —o0. Consistently, we assign
9(2)(0) to g(oo), and we define 0o o f = oc. So we can view rational functions
as functions from k(z)s := k() U {oo} onto itself. Note that z then is viewed as
the identity function, and that g(z) = g, so different rational functions give rise to
different functions. This justifies the name rational function.

As the rational functions are really functions, they can be composed, and we
have

fog=fogox=(fog)(x)= f(g9(zx)) = f(g),

thus extending composition of polynomials to rational functions.

We have done this rather pedantic introduction of composition to be sure that
associativity is preserved even if constants are involved. But now the following is
immediate.

4.2. Proposition. (k(z)s,0) is a monoid with identity x. It contains the sub-
monoid of polynomials. ]

4.3. Remark. A rational functions f does not necessarily give rise to a function
of k into itself, as it can have poles. But f : a — foa is a function of ko, into
itself. Note, however, that, if k is finite, f may vanish, without f being zero. For
example, 22 + x corresponds to the zero function of Z, into itself.

4.4. Notation. Because the rational functions form a monoid, we can use the the-
ory of §1. In particular, we speak of right components of a rational function, its
component structure, decompositions, and so on, just like for polynomials. How-
ever, we have to be careful here, because a polynomial, indecomposable as an ele-
ment of (k[x], o), could have a non-trivial decomposition into rational functions. We
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will prove at the end of this section that this cannot happen and that no ambiguity
is possible here. Until then, the rational function meaning is used exclusively.

Rational Function Fields

Though rational functions have a more complicated structure than polynomials,
there is one advantage: k() is a field, thus we can use the well developed theory of
field extensions. We establish some important facts in this area, mainly along the
lines of [vdW66, §73].

4.5. Notation. Let k£ and K be arbitrary fields. If £ C K, i.e., if k is a subfield
of K, then K is called an extension of k, and we denote it by K : k. Its degree, i.e.,
the dimension of K as a vector space over k, is denoted by [K : k|. Fields between
k and K are called the intermediate fields of K : k. Extensions of the form k(f) : k,
are called simple. If L is another extension of k, then a homomorphism from K : k
to L : k is one from K to L that fixes k. It is also called a k-homomorphism.

4.6. Remark. In particular, for each f € k(z), k(z) is a (simple) extension of
k(f). In general, the intermediate fields of k(x) : k are called the rational function
fields.

4.7. Proposition. Let f be a non-constant rational function. The mapping
of + k(z) - k(f)
grrgof
defines an isomorphism of the extension fields k(x) : k and k(f) : k.

Proof. We have to prove the distributive laws

(g+h)of=gof+hof
(g-h)of=gof-hof
g lof=(g90f)7"
but these are satisfied by the definition as substitution. Also 1o f = 1. Being

a homomorphism of fields, the map is automatically injective, it is onto by the
definition of k(f). Obviously, the constants are fixed. O

4.8. Remark. The distributive laws are also satisfied if f is constant, as long as oc

is not involved. More exactly, an indeterminate expression like oo+ o0 or % must not

occur. For example, (24 1)00=200=2 =00, but 200+100 = {+§ = co+00;
or £o0=100=1, but £33 = 3.
4.9. Proposition. Let f,h € k(z) then

f S h < k(f) 2k(h)

fEh = k(f)=k(h)

Proof. f © h just means that h € k(f). But k(h) is the smallest field containing
k and h, so k(f) 2 k(h). Conversely, from h € k(f), we have h <2 f. The second
assertion is a trivial consequence of the first. O
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4.10. Remark. This means that the component structure of rational functions,
(k(z)/&,«2) can be embedded into the lattice of intermediate fields of k(z) : k,
ordered by C. Note the reversion of the symbol.

4.11. Definition. We extend the notion of degree to rational functions by defining

[f] := max([p], [q]),

where f = % is in prime form.

Note that f = % must be in prime form to make this well-defined.

4.12. Notation. As k(z) is a field, it will be convenient to consider polynomials
over k(x). For this reason, we choose a new variable y to denote the indeterminate
of such polynomials. Thus polynomials over a rational function field are understood
to be elements of k(z)[y].

We cite one form of Gaufi’s lemma ([Coh77] or [vdW66, §30]). Note that a

polynomial over a ring is called primitive iff its coefficients are coprime.

4.13. Lemma (GauBl). A polynomial over k[z] is irreducible iff it is primitive and
irreducible over k(z).

4.14. Proposition. Let [ = % € k(x) be a non-constant rational function in

prime form. Then k(z) : k(f) is a finite field extension. The minimal polynomial
of x over k(f) is given by

m(y) =p(y) — f-q(y),
thus [k(z) : k(f)] = [f].

Proof. Obviously m(y) € k(f)[y], and it satisfies m(z) = p(z)—f-q(z) = p—L-¢ = 0.
Thus z is algebraic over k(f). m(y) has degree max([p], [¢]) = [f] (in y), So, if we
can show that m(y) is irreducible over k(f), all the remaining assertions are also
clear.

Note that the field k(f) is isomorphic to k(z), thus we can treat f as an
independent variable. Because m(y) € k[f][y], and k[f][y] = k[y][f], we can also
view m(y) as a polynomial in f over k(y). As such, it is linear, hence irreducible,
and primitive because p and ¢ are coprime. Thus, by Gauf}’s lemma, m(y) is also
irreducible in k[y|[f] = k[f][y]. Hence, again by Gauf}’s lemma, irreducible over

k(f). O

4.15. Theorem (Liiroth). All rational function fields are simple, i.e., of the form
k(f) for some rational function f.

Proof. E.g. [vdW67] or [Coh77] contain elementary proofs. They make essential
use of Proposition 4.14 and Lemma 4.13. O

4.16. Corollary. The component structure of rational functions, (k(z)so/&, ),
is isomorphic to the lattice of intermediate fields of k(z) : k, ordered by C.

Proof. We have already remarked (4.10) that (k(z)so//2, <2) can be embedded into
the lattice of intermediate fields. But Liiroth’s theorem ensures that this embedding
is surjective. 0]
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Component Lattice

4.17. Proposition.
(i) The degree function is a homomorphism from (k(z)so,0) onto (Ny, ), i.e.,

lg o f]=g]l]]
for all rational functions f and g.
(ii) The units of (k(z)s0,0) are those of degree 1.
(iii) f is a right cancellable element of (k(x)o,0) iff it is not constant.

Proof.
(i) If one of f and g is constant so is g o f, and the result is immediate. Thus
assume that both are non-constant. Then bothk(gof): k(f)andk(f): k(z)
are finite field extensions, thus

lgo f]=[k(z):k(go f)] = [k(f) : k(go f)][k(z) : k(f)]]
= [k(z) : k(g)][k(z) : k(f)] = [g] [f]-

(ii) One can use the degree function, just as for polynomials (Proposition 2.5).
Here is another possibility: Let f be non-constant. Using the injectivity
of the isomorphism in proposition 4.7, g o f = 0 implies ¢ = 0. So, by
the distributive law, f is right cancellable. Conversely, constants are not
cancellable: g(c) = h(c) just means that g and h have the same value on c.

(iii) By the first part, every unit must have degree 1. On the other hand

[k(z):k(u)]=1 whenever [u] = 1. Thus u induces an automorphism of
k(z) (cf. 4.7), mapping some element v to z, i.e., vou = x. O

The multiplicativity of the degree is particularly good news. For example,
it allows us to compute complete decompositions of rational functions, by an ap-
proach with indetermined coefficients, just like in the polynomial case (2.6). The
polynomial time algorithm in [Zip91] also works for rational functions, in fact, was
designed for this case. [AGR] contains an algorithm that has exponential worst
case complexity, but is faster in practice.

4.18. Proposition. Let both g = % and f = % be rational functions in prime
form.

(i) rop and s o p are relatively prime.
(ii) Let
w:=(rof)-q,
vi=(sof)-q¥,
e, withr =Y 1" riz" and s =Y v siz’
u = '[‘npnq[g]_n + Tn—lpn_l . q[g]_n+1 _|_ P _|_ Toq[g]
V= Smpmq[g]_m + Sm—lpm_l . q[g]_m+1 + P + 30q[g]

Then go f = 2 is in prime form.
(iii) If g o f is a non-constant polynomial and [p] > [q], then both f and g are
polynomials.

Proof.
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(i) As r and s are coprime, a -7+ b-s =1, for some polynomials a, b (Bezout’s
relation). We substitute p, and get

a(p) - r(p) +b(p) - s(p) = 1,
thus r(p) and s(p) are coprime again.
(ii) As above, we substitute f into Bezout’s relation: a(f)-r(f)+b(f) s(f) = 1.
This time, however, rational functions are involved. To transform this into
a relation involving only polynomials, we multiply by an appropriate power
of ¢ to get an equation of the form

d-u+5-v:qk,

such that both @ and b are polynomials. So ged(u,v) must divide ¢*. But

at least one of u and v has the form r,pl9l + ¢ - (...) or s,pld +¢-(...),

respectively, so is coprime to ¢, as p and ¢ are coprime. Thus ged(u,v) = 1.
(iii) If g o f is a polynomial, then [v] = 0. But [p] > [¢] implies

0 = [v] = m[p] + ([g] —m)[q].

As [g] > m and [p] > [¢] > 0, we conclude m = 0. But then [g][¢] = 0, so
[q] = 0, as [g] # 0. 0

Thus we have got the prime form of g o f quite explicitly in terms of that of f
and g. No polynomial ged-computation is necessary for its computation.

4.19. Definition. A sublattice S of a lattice L is conver iff for all a,b € S and
c€L,a<c<bimplies c € S.

4.20. Theorem.

(i) The component lattice of a polynomial is independent whether is considered
in (k(%)oo,0) orin (k[z], o).

(ii) The component lattice of polynomials is a conver sublattice of the component
lattice of rational functions.

Proof. If p and ¢ are left associated polynomials, then p = w o ¢ for some some
fractional linear function w. Thus, with 4.18.(iii), u is a linear polynomial. Hence
we can identify (k[z]/2&, @, () with a subset of (k(z)oo/2, U, Q).

Suppose that go f is a polynomial and f = %. If [p] > [q], we can apply 4.18(iii)
directly. If [p] < [q], we apply it to the associated decomposition (go 1)o L. In the

case [p] = [gq] the quotient of the Euclidean division of p by ¢ is some constant, say
¢, thus p = ¢ g + r, where r is the remainder (so [r] < [¢]), thus
b

r r
—=c+-=(c+x)o -,
q q q

and again we get an associated decomposition to which the proposition can be
applied. In any case, the decomposition is left associated to one using only poly-
nomials. This proves that the component lattices are the same.

For the second part, it remains to show that, for arbitrary polynomials p and ¢,
pUq is (left associated to) a polynomial. If plq is constant, this is trivial. Otherwise
write it in the form

°q,

w> | =3

r
plg=-op=
S
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then, 22 = 29 and, by the first part of proposition 4.18 both sides are in prime

sop §oq?’
form. Thus, up to a constant factor, rop = foq and sop = §oq. The non-constant

one is a polynomial common left multiple whose degree is < [p U ¢]. O

&

Expressed less formally, this theorem says that we never have to take care
whether notions like right component, component lattice of f, least common left
multiple, prime decomposition are relative to the monoid of polynomials or that of
rational functions.

§ 5. The Invariant Integers
We continue considering tame polynomials over the field k.

5.1. Lemma. Suppose the polynomials p and q have a tame common left multiple,
but no nontrivial common right component, i.e., p(\q = x. Then their degrees are
coprime, i.e., [p] N[q] = 1.

Proof. Let pl g = r o p = s 0 ¢q. From proposition 3.18,

pUq] = [p]Ulg] = [r][p] = [s] [q]-
Thus [r] N [s] = 1, and we will prove [p] = [s], [¢] = [r]. Obviously, [p] D [s] and
[q] 2 [r], and [p] > 0. We show [p] < [s], then [g] < [r] follows by symmetry, proving
the proposition.
Define the polynomial m(y) = s(y) — r op, thus m(y) € k(p)[y], with degree [s]
in y. Then m(q) = s(q¢) —r op = 0. This means (cf. Proposition 4.14),
k(p)(q) : k(p)] < [s].

But from corollary 4.16,

k(p)(q) = k(p,q) =k(ppq) = k(z).
As [k(z) : k(p)] = [p], [p] < [s]. u
5.2. Proposition. If polynomials p and q have a tame common left multiple, then

[ppal=I[plNlgl.

Proof. One simply gets rid of the common component using Taylor division and
uses the lemma. In detail: Let ¢ = p () q. We already have ¢t C [p] N [g] (cf. Remark
2.24). By Taylor division, there are unique polynomials p and ¢ such that p = pot
and ¢ = got. By the lemma, [p|N[g] = 1. But [p][t] = [p] and [q] [t] = [g], so
[t] 2 [p] N [g]- 0

Somewhat strange, we need the existence of a nontrivial common multiple to
prove this property of common components. Note that the corresponding equality
for & has been proved completely differently, and was in fact used here.

5.3. Corollary. Prime bidecompositions permute the degrees, i.e., in the prime
bidecomposition r op = s o q,

[p] = [s] and [r] = [q]. 0
Now we are fine out and have got the essential result of this chapter:

5.4. Theorem. The component lattice of a tame polynomial f is isomorphic to a
sublattice of the divisor lattice of [f]. The degree function provides the embedding.
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Proof. By the corollaries 3.18 and 5.2, the degree is a lattice homomorphism, and
by theorem 3.12 it is injective. O

5.5. Example. Let f = z!'2. Its right components are z, 22, 23, z*, 2%, 2. Thus,
in this case, the right component lattice of f is even isomorphic to the divisor lattice
of 12. Of course, we have the same situation with all polynomials of the form z".
The Dickson polynomials (described in Chapter IT) provide a class of polynomials
with the same property.

5.6. Remark. Of course, these polynomials are rather special. It is not surprising
that most polynomials miss components of certain degrees. Conversely it is some-
what remarkable that, if a polynomial has right components of degrees e.g. 6 and 4,
then it has also one of degree 2, because 2 = 6 N4, and the component lattice is
a sublattice. This can save us a lot of computations, if we want to know all prime
decompositions of a given polynomial.

5.7. Example. Let us reconsider the polynomial f from Example 3.14. It has
right components of degrees 3 and 4, but not of degrees 2. Hence it cannot have
one of degree 6, which frees us from testing the candidate of degree 6. Additionally,
it was unnecessary in that example to test whether r is prime, because that would
imply a right component of degree 6.

Summarizing, the right component lattice of f is isomorphic to the lattice
1 C 3,4 C 12, which is a proper sublattice of the divisor lattice of 12.

5.8. Corollary. The component lattice of any tame polynomial is distributive.

Proof. By the theorem, it is (homomorphic to) a sublattice of the distributive lattice
(N,2). O

Note that every bounded sublattice of (k[z],, 2), not containing 0, is a sub-
lattice of the component lattice of some polynomial (namely the maximum).

5.9. Definition. A lattice is called to have some property locally iff it is true for
every bounded sublattice that does not contain a global maximum.

With this notion we can express our local result in a global form:

5.10. Corollary. Let chark = 0. Then the lattice (k[z],, D) is embedded locally
into (N, D) by the degree function. Thus it is locally distributive.

Proof. By the assumption about the characteristic, every bounded sublattice not
containing 0 is the component lattice of a tame polynomial. Thus the assertion
follows with the theorem and its corollary. O

Using our abstract theory of §1 we get the classical result on prime decompo-
sitions as a corollary to our Theorem 5.4

5.11. Theorem (Ritt). Let f be a tame polynomial.

(i) All prime decompositions of f are related.
(ii) The number and the degrees of the components in a prime decomposition,
but not necessarily their order, are invariant.
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Proof. The right component structure is distributive, thus modular, thus semimod-
ular. Thus theorem 1.10 can be used. By corollary 5.3, prime bidecompositions
just permute the degrees. O

Using theorem 4.7, there is another interesting consequence.

5.12. Corollary. For every tame polynomial f the lattice of intermediate fields
of k(z) : k(f) is isomorphic to a sublattice of [f], hence is distributive and all its
mazimal chains are related. L]

5.13. Remark. To proof that all prime decompositions are related one just needs
that the component lattice is semimodular. No easier proof for semimodularity
than that via distributivity via the embedding into the integers is known, nor
handy conditions on a non-tame polynomial for having a semimodular component
lattice.

The theorem leaves open the question, how many bidecompositions there are
and how they look like. This is the topic of the next chapter.






CHAPTER II

Characterization of Prime Bidecompositions

§ 1. Bidecompositions

This chapter contains a simplified proof of Ritt’s characterization of all prime bide-
compositions of the monoid (k[z], o).

1.1. Example. An easy example of bidecompositions is given by the powers, be-
cause they, trivially, satisfy

" ox" =z" ox™.
This can be generalized a bit to
(™ - t(x)")ox™ =z" o (2™ - t(z"™)), (1)

for an arbitrary polynomial £, as can be verified immediately. A second important
class comes from the Dickson polynomials, as defined in the next section. They
satisfy

Dy (z,a") o Dy(z,a) = Dy(z,a™) 0 Dy, (z,a), (2)
for all constants a.

1.2. Definition. Let r o p = s o g be a bidecomposition. For all units a, b, ¢, d the
bidecomposition

(aorob)o (b opoc)=(aosod)o(d°oqgoc)
is called associated to the original one.

1.3. Definition. A bidecomposition associated to one of type (1) is called expo-
nential, one associated to one of type (2), but not of type (1), is called trigonometric.

1.4. Notation. With k®® we denote the algebraic closure of k.
We will need a stronger hypothesis than just tame:

1.5. Definition. A tame polynomial f is called completely tame iff for all e €
k?8, f — e has no zero (in k®%®) whose multiplicity x is a multiple of chark. A
(bi)decomposition is completely tame iff all its components are.

1.6. Remark. Again, in the case of characteristic 0, completely tame just means
non-constant. Otherwise a sufficient condition is [f] < chark.

Now we can express the theorem that we want to proof in the next five sections.

1.7. Theorem (Ritt). All completely tame prime bidecompositions over a field not
of characteristic 2 are either exponential or trigonometric.

1.8. Corollary.

31
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(i) Over a field of characteristic 0 all prime bidecompositions are either expo-
nential or trigonometric.

(ii) If chark # 0 then all prime bidecompositions using polynomials of degrees
< chark are either exponential or trigonometric.

This theorem again goes back to [Rit22], with generalizations in [Lev42], [LN73],
[DW74], [Sch82].

The proof given here is completely elementary, in the sense that, except for the
results proved in chapter I, the basic theory of field extensions is the most advanced
mathematics involved. Nevertheless it is not longer, quite on the contrary, some
simplifications, just in the most involved passages, were possible. Our schedule will
be as follows.

After discussing some not so widely known properties of Dickson (or Cheby-
shev) polynomials and of the Tschirnhaus transform, we will take a closer look at
the ramification structure of the components in a bidecomposition. Then, in §5,
we can give a condition for a bidecomposition to be exponential. The same is done
in §6 for the trigonometric case. As exactly one of these two conditions is always
satisfied the proof is complete then.

From Proposition 1.3.12 we see that every bidecomposition that is prime over
an extension field of k is also prime over k. Nevertheless we cannot simply restrict
us to algebraically closed fields, because the theorem says more: that every prime
bidecomposition is associated to one of the specified types, and polynomials over
k that are associated over an extension field need not be associated over k. One
may obtain this stronger result from that for algebraically closed fields by a careful
analysis of the linear polynomials involved as in [Sch82]. As an alternative, we give
the proof in a version that directly proves the characterization for general fields.

On the other hand, every bidecomposition is associated (even over the ground
field k) to one containing only monic polynomials. Therefore we can restrict our-
selves to monic polynomials whenever we want.

§ 2. Dickson Polynomials

As the Dickson polynomials constitute bidecompositions, a closer look at their
properties will be useful.

2.1. Definition. Let a € k. We define the Dickson polynomials D, (z,a) recur-
sively as

Dyyo(x,a) =2 Dypyq(x,a) —aDy(x,a); Do(x,a) =2, Di(x,a) = x.
Instead of D,,(z,1) we sometimes simply write D,,.

Note. The classical Chebyshev polynomials ¢,,, defined by cos nz = t,(cos z), are
conjugate to our Dickson polynomials by t,(z) = 1D, (2z,1). One advantage of
the usage of Dickson polynomials instead of Chebyshev ones is that they are monic.
Using the additional parameter we sometimes can avoid extensions of the constant

field. Confer the next remark and the discussion at the end of the first section.

[LMT93] contains a detailed treatment of such polynomials. For convenience
we mention some well-known and easy to establish properties.

2.2. Proposition. The Dickson polynomials satisfy
(i) D,(Az,A\?) = A"D,(z,1),
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(ii) Dn(z,a)o (z+az™!) = (v +a"z™") 0",

(iii) Dp(z,a™) o Dyp(x,a) = Dypm(x,a) = Dy(z,a0™) 0 Dy, (2, a),

for arbitrary constants a and . L]

2.3. Remark. Obviously D, (x,0) = x™, and part (i) of this proposition in par-
ticular says that for A # 0

Dy (z,)\%) = D,,.
Thus, if k is algebraically closed, or at least closed under the square root operation,

the extra parameter is superfluous for the characterization of prime bidecomposi-
tions. But for the general case it is needed.

Note. Using Proposition 2.2 it is easy to prove a well known differential equation
for Dickson polynomials

(D2 —4)-n?=(z>-4)-D'°.

Conversely, the Dickson polynomials D,,, together with their negatives —D,,, con-
stitute all polynomial solutions to this differential equation. This is proved e.g. in
[LN73] and, in an even stronger form, in [Sch82]. The idea in the latter reference
is used in the proof of the next lemma, which will be enough for our purposes.

2.4. Lemma. Let K be any field not of characteristic 2. If a polynomial f of
degree n over K satisfies

F=2\" = (z—2))- ¢
f4+2\" = (z+2)) - g}
for some polynomials g_, g4 € Kz] and A(# 0) € K, then
f = Dp(z,\?).

Proof. Note that n must be odd. Let a = A2. We substitute  + az ™' into the first
equation and multiply by z™; thus obtain

(flx+ax™)—2X") 2" = (z+ax" ' —2)\) - 2-g* (v +az™t) 2" !
=(z-XN? g2 (z+azx™) 2!
— K2
for some polynomial h_, because [g_] = “51. Similarly
-1 n n 2
(f(x +ax™")+2\") - 2" = hi.
Substracting these two equations we get
AN = B2 — B2 = (hy +ho) - (hy — ho) (+)
But both A, and h_ have degree n. As char K # 2, we can choose the signs such
that [hy + h_] = n. But then [hy — h_] = 0, thus hy —h_ = ¢ for some constant c.
We substitute A for x into equation (*) to obtain
4a™ = (2h_(A) +¢) - c.
2

Using h_(A) = 0 we see ¢* = 4a”, thus can assume ¢ = 2A". Now equation (x)
turns into

AN g™ = (2hy — 2A") - 2™,
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from which it follows that hy = 2™ + A™ and consequently h_ = 2™ — A™. Therefore
flx+az™ ) 422" =27 (2™ 4 \")?
=" +2\" +a"z™",
thus
flx+az™t) =2" +azx™",
which is the characteristic equation for a Dickson polynomial (2.2). O

The assumption in 2.4 was rather special. Using linear transformations we can
make it more general.

2.5. Corollary. Let K > k be an extension field of k. If a polynomial f over k
satisfies

f—er=(z—¢&) g}

f—es=(z—&)- g3,
for some constants £1,&2 € K, polynomials g1, g2 over K, and ey, ea € K that are

two different solutions of some quadratic equation over k, then f = D(x,a) (even
as polynomials over k) for some a € k.

Proof. If k is algebraically closed this is rather trivial. The point is to show that
no field extensions are necessary.
Being the solution of a quadratic equation, the e; have the form
€1,2 = €p + A

for some ey € k and A € K such that A\? € k.

In particular, the f — e; are polynomials over k[\A], and so are x — &;, as they
are factors of a square-free factorization over k[A]. Thus the & can be written as
o £ i\, with &g,c1,c0 € k. But & + & € k, so ¢; = —cy, and we have more
precisely

§12 =& T cA
for some &g, ¢ € k. Let n = [f]; after multiplying with 2A"~! (€ k, as n is odd) the
equations look like
2A"TH(f —e) £ 2" = (z — Lo £ cA)2A" g .
Thus f :=2A""Y(z —eg) o f o (57 4 &o) = f satisfies
¢ n n— c 2
FH2A" = (2 4+20) - A" gra(S2 + &),

which is in the form required to use the lemma, thus f = D, (£, A%) and f
D, (x,\?), even over k.

O 1R

§ 3. The Tschirnhaus Transform

3.1. Definition. Let p,q € k[z], ¢ # 0 monic with canonical factorization
[L;(z —&)" over its splitting field. Then the Tschirnhaus transform of g by p,
denoted by g is defined by

g =[x - n(&)".

i
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In other words, we obtain the Tschirnhaus by transforming the zeros of ¢ by
p. As a symmetric function of the zeros of ¢, it is clear that it is a polynomial
over k. In fact, the Tschirnhaus can easily be expressed without any reference to
an extension field as a resultant:

3.2. Proposition. For any polynomials p, q, we have, up to the sign,

Pa(y) = resz(p(z) — v, q(x)).

Proof. Let ¢ = [[,(z — &)"* as above. Then by an elementary property of the
resultant

res; (p(x) =y, a(@)) = [ [(0(&) — 9)" = +Fa(y).

i
For bidecompositions the following property turns out to be most useful.

3.3. Proposition. Let f =rop = soq be a prime bidecomposition using monic
polynomials; then

Plqg—b) =r — s(b).

Proof. Let ¢ — b = [[,(x — B;). Thus ¢ —b) = [[,(x — p(B;)) and p(B;) is also a
zero of r(z) — s(b), because r(p(B;)) = s(q(Bi)) = s(b).

Assume that b is transcendental. Then all the (; are distinct and transcen-
dental, as ¢ is tame. Suppose p(f81) = p(B2). As p and ¢ have no common right
component, Liiroth’s Theorem (4.15), provides a rational function f such that

f(p,q) = x. Now
B = f(p,q)(B1) = f(p(B1),q(B1)) = f(p(B2),q(B2)) = B2,

where the transcendency of the 3; guarantees the validity of substitution here. But
this means, that p maps the zeros of ¢ — b injectively to the zeros of r — s(b). As
[p] = [q], this is even a bijection, and the proof is complete for transcendental b.
For arbitrary b we choose some new transcendental element, say y. Then
P(g —y) =r — s(y). Proposition 3.2 allows us to substitute b for y here, thus pro-
viding the full assertion. O

§ 4. Ramification

4.1. Definition. Let f be a polynomial. We say that e is a ramification point
of fiff f —e and f’ have a common zero. The degree of ged(f — e, f') is called
the (ramification) index of f at e and is denoted by ind. f. If f’ # 0 has leading
coefficient ¢, we call the Tschirnhaus transform f(%f’) the ramification polynomial
of f (this name is justified by the next proposition).

4.2. Proposition. Suppose that the ramification polynomial of f has the canonical
factorization over k8
Ty = 1_[(5C —e;),
i
then the e; are just the ramification points of f and

ind,, f = ¢;.
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Proof. ind, f counts the number of zeros ¢ of f’, with multiplicities, that fulfill
f(&) = e. But the Tschirnhaus transforms exactly these zeros, together with their
multiplicity, into the zero e of the ramification polynomial. O

4.3. Corollary. Let f be a tame polynomial. Then

> inde f=[f]-1.

ee]kalg

Proof. Tameness guarantees that [f'] = [f] — 1. So this is a trivial consequence of
the proposition. O

4.4. Example. Let us consider our standard example from chapter I:

f =22 +122" +662°+2232° +52225+9002" +11792° +11882° +918z* +5332° +22222 +601,

-7195¢

S1.8 -1.6 -1.4 -I "1 _-0.8 -0.6

-8.05¢

-8. 1t

Its ramification polynomial (computed from res;(f — e, f'))
(e) = (e 4+ 8 - e+ 22)?

tells us that —8 and —% ~ —8.10547 are its ramification points (obvious also

from the picture) with indices 8 and 3, respectively (not obvious from the picture).
Observe that we can read off the number of ramification points and their indices
already from the squarefree factorization of the ramification polynomial.

The next proposition, which will be used frequently, unfortunately needs com-
pletely tame as hypothesis (Definition 1.5).

4.5. Proposition. Suppose that f is completely tame and e € k¥, If f — e =
[[(z — a;)® is the canonical factorization, then

ind, f = Z(ai —1).

Proof. As f was assumed to be completely tame, all a; # 0 (mod chark). Thus
the multiplicity of a; in f’ is o; — 1, which proves the result. 0]

4.6. Example. We continue with our f. We have
fH8=(z+ 1) (z+2)7° (22 +2+1)%

The first two zeros are clear from the graph, the remaining two are complex. All
four zeros have multiplicity 3, thus ind_g f = (3—1)+(3—1)+(3—1)+(3—1) =8, as
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we have already seen from the ramification polynomial. For the second ramification
point we get the factorization

f+ 3= (2% +32% + 3+ 5)% - (¢° + 62° + 152 + 20 + P + Fa + ),

thus it has three double zeros, the remaining being simple. Again we verify that
the index at this point is (2 —-1)+(2—-1)+(2—-1) = 3.

4.7. Remark. The polynomials with only one ramification point are exactly those
which are associated to some power z".

4.8. Convention. For the rest of this section and the following two ones we fix a
completely tame prime bidecomposition

f=rop=soq

with n = [p] = [s] and m = [¢] = [r]. We assume all these polynomials to be monic.
For every point e € k*& we use the following canonical factorizations over k8

I

r—e=||(z—a;)"
1=1
v

s—e= H(;c—bj)ﬁﬂ
7j=1

Then

=TI ]~ &je)m,

2, k=1

where the &;;,, should be the zeros of f — e classified according to p(&;jx) = a; and
q(&jx) = bj; the g5, denote their multiplicities and the +;; the number of such
zeros. Comparing the above factorizations we see that for all ¢ resp.

Yij

- az al = H H fzgn EZJK (3)
7 k=1
Yij

q - b Fi = H H fzgn E”K- (4)

i k=1

All these notions depend on the point e. If it is necessary to indicate this
(e)

ik and so on.

dependence, we use upper indices: age), &

4.9. Example. As detected in chapter I, Example 3.14, our polynomial f has the
bidecomposition

f=rop=sogq
= (z* 4 72° + 182° + 20z) o (2° + 32° + 3z) = («° + 62° + 12z) o (z* + 42° + 62° + 5z).
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Let us compute the factorizations for this example. For the first ramification point,
—8, we get,
r+8=(zx+1)-(z+2)°
s+8=(z+2)>
Thus a1 = =1, ay = 1; a2 = =2, as = 3; by = =2, 1 = 3. With these zeros we
continue factoring
p+1=(z+1)>
p+2=(x+2) (¢®+z+1),
g+2=(x+1)-(z+2) (2 +2+1).
Of course, we have got the zeros of f again, now classified according to their values
by r and s, respectively:
Y11 =1, £111 = 3, §111 = —1,
Y21 = 3, €211 = €212 = €213 = 3, §a11 = —2,
and &312 and &213 satisfy 22 4+ 2 + 1.
We do the same for the second ramification point
r+220—5765:(x+§)-(x2+9x+28—5%),
3+220—5765 =2 + 62 + 122 + 2205765

Thus a; = —%, with a1 = 2, and as and agz are zeros of (z? + %x + %), with

as = ag = 1, whereas by, bo, and b3 all satisfy an irreducible polynomial of degree 3,
with 81 = By = 83 = 1. Because

p+§:x3+3x2+3x+%,

2075

we have got back one of the factors of f — 52

tions

We continue computing factoriza-

6 5 4 45 .3 45 .2 27 83
p+8p-|—256—x +6x” + 152" + 2" + Jo” + S+ 15,
¢’ + 64> —|—12q—|—2205765:(m3—|—3x2—|—3:1:—|—z) (2% + 62° + 152" + L% 4 2547 4 2y 4 83

: . 2075
and obtain the remaining factors of f — 2.
4.10. Lemma. For all i,5 we have
Yij

@i =) Eijn-
k=1
In particular €5, < a;3; for all i, j, K

Proof. Using the Tschirnhaus transform we get for each j
7”

q_b B] Hpr_EZ] EZM

i k=1
7”

= H H fzgm El]ﬁ

i k=1
Yij

~ T - a7 = [t - g™

i k=1 7
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But on the other hand, using Proposition 3.3,
P(q =) = (r—s(b;) = (r— &) = [[(& = ai)™®,

and this canonical factorization must coincide with that obtained before. O

4.11. Remark. Remember the symbolism for the lattice (N,U,N). We will fre-
quently use the following simple properties:
nCm =— n<m,
m

nCm:>n§E,

valid for all n,m € N.

4.12. Lemma. For all 1, j, Kk we have
Eijr > ; U B
Yij < o NG
Proof. From the factorization (3) we see that ¢;j,, O «;. Similarly €;;, O ;. Thus

€ijr 2 a; U B; and the first inequality is clear. From this, together with Lemma
4.10,

Yij
@i =Y €ijn > vij(ci U Bj).
k=1
We divide by a; U 3; and obtain the second inequality. O

4.13. Lemma. For all i we have

ind,, p = Z(ﬁj — Yij) > Z(ﬁj —a; N Bj).

J J

Proof. Using Proposition 4.5 we get

Yij - Yij Yij
o= 3 (1) -0 (% 30 ) < 3 - )

j k=1 7 k=1 J

The inequality then follows from the previous lemma. O
§ 5. Exponential Solutions
The following result now has got a direct and considerably shorter proof.

5.1. Proposition. If s has only one ramification point, then our bidecomposition
18 exponential.

Proof. Let e be the unique ramification point. Then e € k, and in our factorizations
v = 17 Bl =n,

where n must be prime by the primality of s. Hence some «; is relatively prime to
n as p is prime. Thus let us assume n N« = 1. Now from Lemma 4.13

14
n—lZindalpzZ(Bj—alﬁﬁj):n—alﬂn:n—l.
j=1
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Thus a; is the unique ramification point of p, and as such is in k. For ¢ # 1 we
have
0=ind,, p > n —a; Nn,
hence a; O n. So r has the form
r—e=(x—ap)* - t"

for some polynomial . a; and the coefficients of ¢t are elements of k because they
can be computed from the squarefree factorization. The form of ¢ is determined by

the other three polynomials. O
5.2. Example. The bidecomposition of the examples in the previous section is
exponential, because s has the single ramification point —8, as s+ 220—5765 is squarefree,

i.e., it splits into linear factors over k®8. In fact, it is verified immediately that all
polynomials have the specified forms.

Because the results in this section are symmetric in the sense that we can
interchange the roles of the two decompositions r o p and s o ¢, we can summarize

5.3. Proposition. If at least one of the two polynomials r and s has only one
ramification point, then our bidecomposition is exponential. ]

§ 6. Trigonometric Solutions

The next proposition is very important for our simplifications. First we need a
technical lemma.

6.1. Lemma. Suppose that the a; € N have no common divisor, i.e., (a; = 1.
i

Then for all B € N
Y (B-—ainB)>p—1.

7

Proof. Suppose that «; is not a multiple of 5. Then a; NG C S, thus < g, and the

t-th summand is > % If there are two such summands, then they sum up to g and
the lemma is proved. Thus consider the case that a; O ( for all but at most one 1.
Take 7 = 1 for the possible exception. Then

1:ﬂai=a1ﬂﬂai2a1ﬁﬁ,
i i#1
thus a; N B =1, and we just have to look at the first summand g —a;NB=F—1

to prove the lemma also in this case. O

6.2. Proposition. If r has at least two ramification points, then

Z ind,, p = ind.s.

i

Proof. Because r — e is not associated to a power, but prime, [Ja; = 1. Thus we
can apply the lemma for all 3;:

Z(ﬁj —a;Npj) > B — L.

i
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Now we take the sum over all j and, together with Lemma 4.13, obtain the estima-

tion
Y oinda,p> D Y (B — N B) =Y (B —1) = indes,
i i g J
thus proving the >-part.
To see equality we consider the factorizations of Convention 4.8 for various e’s.

Note that r — e; and r — e; have no common zero whenever e; # es, thus all the
(e)

elements o, ’ are distinct, so from summing up over all e € k we get

m—l:Zindep:ZZinda(e>pZZindes*:m—l,
e e 7 ' e

hence the > here is an equality, and, by the part just proved, all summands are
even equal. O

6.3. Example. Again we illustrate this with our bidecomposition from the previ-
ous sections. Let us check it for the ramification point —8: From the factorizations
we obtain ind_g s = 2, ind,, p = 0, ind,, p = 2. As 2 = 0 + 2 this is in accordance
with the proposition. One can also check this for the second ramification point
e = —220—5765, and gets the same observation, as must be the case, because r has two
ramification points. But s has only one ramification point, as s — e is squarefree,
so the symmetric property
Z indp; ¢ = inder
J

might be false in this case. In fact, ind.r = 1, but ind,, = 0 for all 7, and
1#0+0+0.

6.4. Lemma. If r has two ramification points and r — e contains a simple zero,
say ay (i.e. a3 =1), then

aiQUﬂj, for all i # 1.
J

Proof. By Proposition 6.2 together with Lemma 4.13

Z(ﬂj — 1) = indes = Zindaip > ZZ(ﬂJ — ;N ﬂj),
i

7 7

and using a1 N B; =1,

= Z(Bj - 1)+ ZZ(B;‘ —a; N fj)
J i#l g
Thus for ¢ # 1 and all j we have a; D ;. O

6.5. Remark. If » — e has no simple zero, then all its zeros are at least double,
hence their number is at most %, so ind. r > . By Proposition 4.3, this cannot
happen twice.

6.6. Proposition. If both r and s have at least two ramification points, then they
have exactly two (common) ones. Let e be one of them. Then bothr —e and s — e
have exactly one simple zero, the remaining ones being double.
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Proof. Suppose e is a ramification point of s such that » — e has a simple zero, say
ap, thus a; = 1. By the lemma, all the remaining «; are multiples of all the 3;. But
some b; > 1, thus, in particular, a; > 2 for all 7 # 1. Hence e is also a ramification
point of r and ind,r > mT_l because p < mT_l If ¢’ is another ramification point
of r, then its index is bounded by mT_l, so 7 — e’ has a simple zero, too, and the
whole story is equally true for this second ramification point. Thus r has exactly

the two ramification points e and e’, both with index mT_l, hence p = mT“ r—e
has one simple zero, the multiplicities of the remaining mT_l ones sum up tom —1,
thus are double. The same is true for ¢ and, by symmetry, for the ramification
points of s. O

6.7. Remark. This means that a; = ; = 1 and a; = ; = 2 for all ¢ # 1, for
both ramification points. Thus ;1 =1, €111 = 1, and €;5, 2 2, ifnot i = j = 1. In
particular, if e1, eo are the two ramification points, then

f—er=(z—¢&) 47,
f—er=(z—&) g3
for some polynomials g1, g2. Because f has exactly two ramification points, e; and

es satisfy a quadratic equation over k (4.2). So we can apply Corollary 2.5, and
obtain:

6.8. Corollary. If both r and s contain two ramification points, then our bidecom-
position s trigonometric. ]

§ 7. Final Remarks

Now the proof of Ritt’s bidecomposition theorem is complete. Let us outline where
simplifications have been made, and which further improvements seem to be possi-
ble.

Previous proofs assume that the ground field k is algebraically closed. In [Sch82]
the theorem for general fields is obtained as a corollary to that for algebraically
closed ones. Our version proves the general form directly. There are only few
points where we must take care of this, mainly in Corollary 2.5, whose nontrivial
part says that the linear transformations can be chosen in the ground field.

That we use the Tschirnhaus transform instead of the norm as the previous
proofs that avoid valuation theoretic or analytic methods is mainly a matter of
taste. Note that g op = £Ny(4):k(p)(q). The usage of resultants is new in this
context and may supply further improvements, when used more extensively. Our
proof of Proposition 3.3 serves as an alternative to the usage of norms and minimal
polynomials; it seems to be more direct.

The section on ramification contains results mixed from the previous proofs.
Lemma 4.12 has got an elementary proof. [DW74] even prove equality for this state-
ment, using valuation theoretic methods. This stronger form can also be obtained
as a corollary to the characterization Theorem 1.7.

Our major simplifications are contained in sections 5 and 6. There is no dis-
cussion of extra points any more. We just make the distinction on the number of
ramification points and rather quickly see, by analyzing the ramification structure,
that we have the exponential or trigonometric case, respectively.

These improvements essentially use that the components of prime bidecompo-
sitions are prime. Thus they do not generalize as in [Sch82], partially characterizing
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bidecompositions that need not be prime. This raises the question, whether Ritt’s
Theorems (5.11 in chapter I and 1.7) can be used to give an even more explicit
description of all possible decompositions. In particular, we may ask whether there
is a canonical decomposition.

The decompositions of polynomials associated to ™ may be considered to be
trivial as they simply correspond to the divisors of n. The same is true with Dickson
polynomials. This suggests that a canonical decomposition could look like this: a
composition of polynomials that are either of exponential or of trigonometric type,
or do not contain any of these.

As another further improvement it might be possible to extensively use the
resultant calculus and square-free factorizations instead of the involved analysis of
the zeros and their multiplicities in sections 4 to 6.

The assumption about char 2 in the theorem was necessary because Proposition
2.4 uses it, which in turn is needed in 6.8. It is not clear whether we get any
additional bidecompositions in case of characteristic 2.

The restriction to completely tame polynomials was necessary in proving 4.5,
which is basic for all results about the index. It is not known how far this can be
weakened, e.g. to tame polynomials. No counterexample for this is known. The
example in the note of [Cor90] does not work for this purpose as it is of exponential
type.

A whole class of counterexamples using non-tame polynomials is given by

o f=fouX,

where x := chark. Perhaps all prime bidecompositions can be reduced to a trigono-
metric or exponential form using this ambiguity somehow.






Lebenslauf

Sonntag, den 13. Janner 1963, wurde ich als dritter und jingster Sohn des Berg-
bauernehepaares Matthaus und Katharina Binder in Bad Ischl geboren. Dort be-
suchte ich die Volksschule und anschlieffend das Bundesrealgymnasium, an welchem
ich im Juni 1981 die Reifeprifung mit gutem FErfolg ablegte.

Im Oktober 1981 begann ich an der Johannes Kepler Universitat in Linz mit
dem Studium der Informatik, im darauffolgenden Semester zusatzlich der Tech-
nischen Mathematik, welches daraufhin allmahlich zu meiner Hauptstudienrichtung
wurde. Den ersten Studienabschnitt fir den Studienzweig Informations- und Daten-
verarbeitung schlofS ich im Dezember 1985 mit ausgezeichnetem Erfolg ab.

Den Prasenzdienst leistete ich von Oktober 1990 bis Mai 1991. In den Som-
mermonaten arbeitete ich zeitweise als Programmierer, wobei ich vor allem mit
Compilerbau- und Datenbankproblemen befafit war, aber auch mit zahlreichen ver-
schiedenen Standard-Softwareprodukten.

Weiters war ich zeitweise als Universitatsinstruktor, Projektmitarbeiter, Studien-
assistent sowie Leiter von Tutorien am Institut fur Mathematik beschaftigt.

Mein mathematisches Hauptinteresse gilt der Erforschung konstruktiver Meth-
oden in der Algebra.
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algebraic closure, 35

algebraic equations, 7

algebraic extension field, 19
algebraically closed field, 32, 33, 42
associated, 1, 2, 31, 32

Bezout’s relation, 26
bidecomposition, 3, 31

candidate, 19
canonical decomposition, 43
canonical representatives, 15
characteristic, 16, 43
Chebyshev polynomials, 32
common left multiple, 21
compatible, 2
completely tame, 31, 36, 43
component, 1
lattice, 2, 11, 26, 28
structure, 2, 6, 23, 24
composition, 4
composition ring, 5
composition series, 2
compositional Euclidean algorithm, 12
congruence, 15
constant, 6
constants, 4
convex, 26
cover, 4

decomposable, 1
decomposition, 1

length, 1

prime, 1, 6
degree, 5, 24, 25
Dickson polynomials, 31, 32
distributive, 28
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distributive laws, 5, 23
divisor lattice, 28

embedding, 28
Euclidean division, 9
exponential, 31, 40
extra points, 43

factorization, 7
factorizations, 37

Gauf}’s lemma, 24

Grébner basis, 7

greatest common right component, 2, 11, 12
ground field, 11

indecomposable, 1
indetermined coefficients, 7
index, 35

intermediate fields, 23, 29
inverse, 2

kals 31

Liiroth’s Theorem, 24, 35
Laurant series, 21

least common left multiple, 2
least common left multiples, 14
local, 28

maximal chain, 3, 4
minimal polynomial, 24
monic, 15

monoid, 1, 23
monotonous, 6, 14
multiple, 1

near-ring, 5
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Newton’s iteration, 21
normed, 15

polynomials, 4
over a rational function field, 24
power, 5
power series, 21
powers, 31
prime, 1, 6, 19
prime bidecomposition, 20, 28, 37
prime decomposition, 20
prime form, 26
primitive, 24
proper, 1, 2, 6

quadratic equation, 34

ramification, 35
index, 35
point, 35, 41, 43
polynomial, 35
rational function fields, 23
rational functions, 22
rational operations, 11
related, 3, 4, 28
resultant, 35, 42
right cancellable, 2, 6, 25
right cancellation monoid, 2
root, 16

semimodular, 4
simple, 23, 24

tame, 16, 27

Taylor division, 10

Taylor expansion, 8
trigonometric, 31, 42
Tschirnhaus transform, 35, 39, 42

unit,1, 3, 6, 25
unit thomb, 3

wild, 16

zerosymmetric, 15
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