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ZusammenfassungDe todos es 
ono
ido que los polinomios
onstituyen el n�u
leo del �algebra.Jaime GutierrezPolynome und Polynomfunktionen erfreuensi
h von jeher gro�er Beliebtheit.Erhard Ai
hingerDie Theorie der Zerlegung von Polynomen bez�ugli
h des Einsetzens fand ihrenersten H�ohepunkt dur
h die Arbeit von J. F. Ritt, wel
hem es 1922 gelang, dur
hkonsequente Anwendung der damals s
hon voll entwi
kelten Theorie der Riemann-s
hen Fl�a
hen, alle Zerlegungen von Polynomen mit komplexen KoeÆzienten imPrinzip zu bes
hreiben. Sein Resultat teilt si
h in zwei Teile. Der erste besagt, da�alle Primzerlegungen bis auf Bidekompositionen und lineare Transformationen ein-deutig sind, der zweite 
harakterisiert dann alle Bidekompositionen. Ritt's Resultatwurde in mehreren S
hritten verallgemeinert.Motiviert dur
h die Forts
hritte der Computeralgebra entstand in den letztenJahren eine Neubelebung dieser Thematik. Dabei stand die Entwi
klung leistungs-f�ahiger Algorithmen zur Bere
hnung von Primzerlegungen im Vordergrund. Das�uberras
hendste Ergebnis in diesem Berei
h ist wohl, da� das AuÆnden von Prim-zerlegungen, zumindest f�ur Polynome �uber K�orpern der Charakteristik 0, bedeu-tend s
hneller ist als die Faktorisierung.In dieser Arbeit wird konsequent versu
ht, die beiden oben genannten Ri
htun-gen dur
h eine gemeinsame Behandlung zu vereinen. Dabei stellte si
h einerseitsheraus, da� die modernen Zerlegungsalgorithmen bereits implizit in den alten Ein-deutigkeitsbeweisen enthalten sind, und andererseits, da� aus eben diesen Algorith-men zahlrei
he theoretis
he Ergebnisse einfa
her abgeleitet werden k�onnen. Darausergaben si
h zahlrei
he neue Aspekte, dur
hs
haubarere Beweise der bekannten Re-sultate sowie verbesserte Algorithmen.Das erste Kapitel befa�t si
h haupts�a
hli
h mit dem Beweis des Ritts
hen Ein-deutigkeitssatzes und den dabei auf nat�urli
he Weise auftretenden Algorithmen.Dabei wurden die wesentli
hsten S
hritte und Ideen etwas breiter ausgef�uhrt.Im ersten Abs
hnitt wird eine ni
htkommutative Teilbarkeitstheorie versu
ht.Sie ist m�ogli
hst allgemein formuliert, die Anwendung auf Polynome bleibt dabeijedo
h stets im Hinterkopf. Obwohl dieser Abs
hnitt eigentli
h nur der klarenBegri�sbildung und Festlegung der Notation dient, so enth�alt er do
h die, zu-mindest in dieser Form, bislang unbekannte Verallgemeinerung des Ritts
hen Ein-deutigkeitssatzes auf Monoide mit Re
htsk�urzungsregel und semimodularem Teil-barkeitsverband. Das weitere Ziel des ersten Kapitels ist es dann, eben diese Bedin-gung f�ur Polynome zu zeigen. iii



iv Zusammenfassung�Uberras
hend wirkt hier die Tatsa
he, da� es ni
ht gelingt, die Semimodularit�atdirekt zu zeigen, sondern nur �uber ein wesentli
h st�arkeres Resultat, n�amli
h da� derTeilerverband eines (zahmen) Polynoms dur
h die Gradfunktion in den Teilerver-band seines Grades eingebettet ist. Dies ist das eigentli
he theoretis
he Resultatdieses Kapitels.Im zweiten Abs
hnitt wird aus Engst�oms elementarem Beweis, da� die Teil-barkeitsstruktur eines Polynoms tats�a
hli
h einen Verband bildet, ein allgemeinerAlgorithmus zur Bere
hnung des gr�o�ten gemeinsamen Re
htsteilers abgleitet. Eswird gezeigt, da� dur
h ges
hi
kte Ausnutzung der vorhandenen Wahlm�ogli
hkeitenein sehr s
hneller Algorithmus entsteht.St�arkere Resultate k�onnen nur f�ur den sogenannten zahmen Fall bewiesen wer-den, z. B. wenn die Charakteristik des Grundk�orpers 0 ist. Dabei stellt si
h derBegri� der n-ten (N�aherungs)wurzel eines Polynoms als �au�erst n�utzli
h heraus.Ihm ist daher der dritte Abs
hnitt gewidmet. Dur
h dieses Hilfsmittel k�onnenunter anderem einerseits der s
hnellste bekannte Algorithmus zur Primzerlegungund ein Algorithmus zur Bere
hnung des kleinsten gemeinsamen Linksvielfa
henhergeleitet werden, und andererseits, die Rationalit�at von Primzerlegungen sowieerste bedeutende Eindeutigkeitsaussagen bewiesen werden.Um das Resultat �uber die Einbettung in den Teilerverband des Grades endg�ultigzu zeigen, ist no
h ein Aus
ug zu den Zerlegungen rationaler Funktionen notwendig,um etwas elementare K�orpertheorie, vor allem den Satz von L�uroth, einsetzen zuk�onnen. Dabei erhalten wir das s
h�one Ergebnis, da� der Teilerverband der Poly-nome ein konvexer Unterverband des Teilerverbandes der rationalen Funktionenist. Das zweite Kapitel beinhaltet einen vereinfa
hten elementaren Beweis des Ritt-s
hen Satzes �uber die Charakterisiertung von Bidekompositionen. Die Vereifa
hun-gen sind vor allem in den beiden Abs
hnitten �uber exponentielle und trigono-metris
he L�osungen beinhaltet. Dur
h Verglei
h vorhandener Beweise und Ent-wirrung logis
her Ver
e
htungen, aber au
h dur
h konsequennte Ausnutzung derUnzerlegbarkeit konnte die �ubli
he Behandlung der Extrapunke zur G�anze elim-iniert werden. Der Abs
hnitt �uber Verzweigungen mit seinen ausf�uhrli
hen Beispie-len sollte ebenfalls zur Klarheit beitragen. Au�erdem beinhaltet er ein einfa
hesVerfahren um die Verzweigungsstruktur eines Polynoms zu bestimmen.Die bes
hriebenen Algorithmen wurden gr�o�tenteils implementiert und teil-weise getestet. Entspre
hende Programmpakete f�ur Mathemati
a und Maple sindin Vorbereitung.Die Beweise f�ur die theoretis
hen Resultate s
heinen no
h weiter verbesserungs-f�ahig zu sei, vor allem die systematis
he Verwendung des Verzweigungspolynomszusammen mit dem Resultantenkalk�ul anstatt des do
h eher undu
hsi
htigen Studi-ums der Nullstellen ist sehr vielverspre
hend.Weitere Verbesserungen sind zu erwarten dur
h Einbeziehung weiterer ver-wandter Themen, wie Zerlegung rationaler Funktionen, algebrais
her Funktionenund Potenzreihen, sowie die Entwi
klung von Zusammenh�angen mit der Faktorisie-rung und der Gruppentheorie. Au�erdem w�are es sehr aufs
hlu�rei
h, mehr �uberdie auftretenden algebrais
hen Strukturen, des Fastringes (|[x℄;+; Æ), des Kompo-sitionsringes (|[x℄;+; �; Æ) sowie besonders des Fastringes (|(x)1; �; Æ) der rationalenFunktionen mit f(1) = 1 zu wissen.



Abstra
tDe todos es 
ono
ido que los polinomios
onstituyen el n�u
leo del �algebra.Jaime GutierrezPolynome und Polynomfunktionen erfreuensi
h von jeher gro�er Beliebtheit.Erhard Ai
hingerThe theory of polynomial de
ompositions, with respe
t to substitution, owesmost of its ideas to the work of J. F. Ritt in the years around 1922. Using Riemannsurfa
e theory, he 
ould 
hara
terize virtually all de
ompositions of polynomialsover the 
omplex number �eld. His main result on this topi
 
onsists of two parts.First, he proved that all prime de
ompositions are unique up to linear transforma-tions and bide
ompositions. Se
ond, he 
hara
terized all bide
ompositions. Ritt'sresult was improved in several steps.Re
ently, motivated by the rapid development of 
omputational algebra, therewas a renaissan
e of these topi
s. Now the development of eÆ
ient algorithmsfor the 
omputation of prime de
ompositions be
ame dominant. In this area itis mostly surprising that, at least in the tame 
ase, de
omposing is mu
h moreeÆ
ient than fa
toring.This thesis is an approa
h to 
ombine these two dis
iplines. It presents manyresults in a di�erent light, e.g. the modern de
omposition algorithms are already
ontained impli
itly in old uniqueness proofs, and 
onversely, just these algorithmsprovide an easier derivation of numerous theoreti
al results.The �rst 
hapter mainly 
ontains a proof of Ritt's uniqueness theorem, togetherwith some algorithms that appear naturally in this 
ontext. The most importantsteps are presented with some digression.The �rst se
tion is a �rst approa
h to a non
ommutative divisibility theory.In spite of its abstra
t formulation, the appli
ation to polynomials always remainsin the ba
kground. Its main purpose is to �x a 
onsistent set of notations andterminologies, but it also 
ontains a generalization of Ritt's uniqueness theorem toright 
an
ellation monoids with semimodular 
omponent latti
e. The main goalof the remaining se
tions of Chapter I then is to establish just this 
ondition forpolynomials.It's somewhat surprising that semimodularity 
annot be shown dire
tly. We�rst have to prove the 
onsiderably stronger result that the degree fun
tion embedsthe 
omponent latti
e of a polynomial into the divisor latti
e of its degree. So thelast property should be 
onsidered as the main result of the �rst 
hapter.v



vi Abstra
tStarting from Engstr�om's dire
t proof that the 
omponent stru
ture of a poly-nomial is in fa
t a latti
e, the se
ond se
tion 
ontains a general method to 
omputegreatest 
ommon right 
omponents. Atta
hed with a good heuristi
s, this providesa very eÆ
ient algorithm.For the tame 
ase (e.g., over a �eld of 
hara
teristi
 0), a lot of even more inter-esting results 
an be proved. In this 
ontext, the notion of the n-th (approximate)root of a polynomial turns out to be most useful. In the third se
tion, this tool isused to derive the fastest known de
omposition algorithm and an algorithm for the
omputation of least 
ommon left multiples, as well as to prove the rationality ofprime de
ompositions and remarkable uniqueness properties.In order to 
omplete the proof for the embedding into the divisor latti
e adis
ourse to rational fun
tion de
omposition is ne
essary. This allows us to usesome elementary �eld theory, parti
ularly L�uroth's theorem is needed. We get theni
e result, that the 
omponent latti
e of polynomials is a 
onvex sublatti
e of thatof rational fun
tions.The se
ond 
hapter 
ontains a somewhat simpli�ed proof of Ritt's theorem onthe 
hara
terization of prime bide
ompositions. The improvements are 
ontainedmainly in the two se
tions on exponential and trigonometri
 solutions, respe
tively.Comparing previous proofs and doing some logi
al simpli�
ations, but also by 
on-sequent use of the primality of the 
omponents of a prime de
omposition, the usualtreatment of extra points 
ould be 
ompletely eliminated. The extensive examplein the se
tion on rami�
ation should make 
lear what is a
tually going on. Addi-tionally we have obtained an eÆ
ient method to 
ompute the rami�
ation stru
tureof any polynomial.Most of the algorithms dis
ussed in this thesis have been implemented andpartially tested. Well designed program pa
kages for both Mathemati
a and Mapleare being developed.The proofs of some of the theoreti
al results seem to be open for further im-provements, in parti
ular, a more systemati
 use of rami�
ation polynomials, to-gether with the resultant 
al
ulus, might improve the detailed analysis of zeros.A 
omparison with methods used for related topi
s su
h as de
omposition ofrational fun
tions, algebrai
 fun
tions, or power series, as well as the developmentof relations to fa
torization and group theory might be quite enlightening. Ad-ditionally, a more detailed knowledge of the appearing algebrai
 stru
tures likethe near-ring (|[x℄;+; Æ), the 
omposition ring (|[x℄;+; �; Æ), and parti
ularly ofthe near-ring (|(x)1; �; Æ) of rational fun
tions satisfying f(1) = 1, is supposed toprovide some more insight.
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CHAPTER IUniqueness Resultsx 1. Divisibility in Non
ommutative MonoidsBesides proving Theorem 1.10 in a very general setting, this se
tion 
ontains a �rstattempt to de�ne a 
onsistent set of notations and terminology for a non
ommuta-tive divisibility theory.Let M be a monoid, written multipli
atively, with neutral element 1. Theinvertible elements of M are 
alled its units.1.1. De�nition. Let f 2M .(i) A sequen
e of elements fi 2 M su
h that f = fn : : : f1 is 
alled a de
om-position of f of length n into the 
omponents fi, and we write fi � f , forall i.(ii) If f = rp then we 
all p a right 
omponent and r a left 
omponent off . Equivalently, we say that f is a left multiple of p and a right multipleof r. We use the notations p �! f and f  � p for right 
omponents andleft multiples, respe
tively, and, symmetri
ally, r � f and f !� r for left
omponents and right multiples.(iii) p and q are 
alled (left,right) asso
iated i� they are (right, left) 
omponents(or (left, right) multiples) of ea
h other. We use the symbols "�= and #�= todenote left and right asso
iation, respe
tively. Thus p "�= q i� p �! q andp  � q, and p #�= q i� p � q and p !� q. Moreover p �= q i� p � q and p � q,i.e., i� they are simply asso
iated.(iv) A (right, left) 
omponent of f is a 
alled proper i� it is not (left, right)asso
iated to f . Equivalently, f then is 
alled a proper (left, right) multiple.We use the symbols �!; �;� ;!�;�;� with the obvious meanings to denoteproper (right, left) 
omponents (multiples).(v) f is 
alled de
omposable i� there is p 2M su
h that 1 �! p �! f . Otherwiseit is inde
omposable or prime.(vi) A prime de
omposition is one that 
ontains only prime 
omponents.1.2. Remark. Note that all symbols derived from �! have the arrow running outof the symbol, whereas those derived from � have it running inside.The de�nition for de
omposable is somewhat unsatisfa
tory as is not symmetri
with respe
t to left and right. For the appli
ations used in this thesis, however,this does not matter.From now on, we mainly 
onsider only the notions derived from �!, i.e., right
omponents, left multiples, and left asso
iates. By symmetry, there are always sim-ilar de�nitions and results for left 
omponents, right multiples, and right asso
iates.The theory of this se
tion was developed in order to abstra
t some notions andproperties of the monoid of polynomials with 
omposition, as introdu
ed in the1



2 Chapter I . Uniqueness Resultsnext se
tion, and whi
h is dealt with in almost all parts of this thesis. But it is alsoused for the monoid of rational fun
tions and might be of general interest.1.3. Proposition.(i)  � and "�= are right 
ompatible with multipli
ation, i.e.,f  � p =) fq  � pq and f "�= g =) fp "�= gp:(ii) The left asso
iates of the identity are just its right 
omponents, thus theelements that have a left inverse.(iii) "�= is an equivalen
e relation, and  � is a re
exive and transitive relationon M , but antisymmetri
 only if "�= is equality.(iv) (M="�=; �) is an ordered set. Its global minimum is the equivalen
e 
lass ofthe neutral element 1. Its atoms are just the (equivalen
e 
lasses of the)prime elements.Proof. If f = rp then fq = rpq, hen
e pq �! fq, showing right 
ompatibility.Be
ause 1 �! a is always true, a "�= 1 is the same as a �! 1, whi
h means thatthere is b 2M su
h that ba = 1, i.e., a left inverse. The rest is trivial.As usual in 
ontexts like this, we now stop the pedanti
 distin
tion betweenelements of M and their equivalen
e 
lasses, whenever no 
onfusion 
an arise.1.4. De�nition.(i) To every de
omposition f = pn : : : p1 there is a 
orresponding right 
ompo-sition seriesf = pn : : : p1  � pn�1 : : : p1  � � � �  � p2p1  � p1  � 1;i.e., a 
hain in (M="�=; �). It is proper i� all  �'s in this 
hain are in fa
t �'s.(ii) Two de
ompositions are 
alled right asso
iated i� they lead to the sameright 
omposition series.(iii) A de
omposition is 
alled right proper i� its right 
omposition series isproper.(iv) If elements p; q 2M="�= have a least upper bound f , then it is 
alled the least
ommon left multiple of p and q, and we write f = p "[q. Similarly a greatest
ommon lower bound is 
alled the greatest 
ommon right 
omponent , and isdenoted by p \# q.(v) The set [1; f ℄ = f p : 1 �! p �! f g together with  � is 
alled the (right)
omponent stru
ture of f . If it is a latti
e it is also 
alled the 
omponentlatti
e of f .(vi) (M="�=; �) is 
alled the 
omponent stru
ture of the monoidM . If is a latti
e,it is also 
alled the 
omponent latti
e of the monoid M .Note that the arrows in the symbols \# and "[ run outside, as they are derivedfrom �!.1.5. De�nition.(i) An element p 2M is right 
an
ellable i�fp = gp =) f = g;for all f; g 2M .(ii) A right 
an
ellation monoid is one in whi
h all elements are right 
an
ellable.



x 1. Divisibility in Non
ommutative Monoids 3Note that the right 
an
ellable elements always 
onstitute a right 
an
ellationmonoid.1.6. Proposition. Let M be a right 
an
ellation monoid.(i) The left invertible elements of M are just the units.(ii) p; q 2M are left asso
iates i� there is a unit a 2M su
h that p = aq.(iii) The de
ompositions left asso
iated to f = pn : : : p1 are exa
tly those of theform anf = (anpna�1n�1)(an�1pn�1a�1n�2) : : : (a2p2a�11 )(a1p1)for some units ai.(iv) The maximal 
hains in (M="�=; �) are in one-to-one 
orresponden
e to ex-a
tly one 
lass of left asso
iated prime de
ompositions.Proof.(i) Suppose ba = 1. Then aba = a, and hen
e ab = 1, by right 
an
ellation.(ii) Suppose p = aq and q = bp. Then p = abp and q = baq. Now, by right
an
ellation, this implies ab = 1 and ba = 1, thus a and b are inverses. The
onverse is trivial.(iii) Obviously, su
h a de
omposition is a left asso
iate. For the 
onverse, letpn : : : p1 and qn : : : q1 be two left asso
iated de
ompositions. By de�nition,p1 "�= q1, thus q1 = a1p1 for some unit a1. By right 
an
ellation, the de
om-positions qn : : : q3q2 and pn : : : p3(p2a�11 )are left asso
iated, thus, by indu
tionqi = aipia�1i�1;for all 1 < i � n.(iv) We have to show that a de
omposition is prime i� the 
orresponding 
om-position series is maximal. By right 
an
ellation, this means to show that fis prime i� 1 �! f is maximal. But this is true by de�nition.1.7. De�nition.(i) A bide
omposition rp = sq is a set of two de
ompositions that are not leftasso
iated. Prime bide
ompositions 
onsist of two prime de
ompositions.(ii) If rp = sq is a prime bide
omposition, and f 2M has a prime de
ompositionof the form � � � rp � � � , then we get another prime de
omposition � � � sq � � �from repla
ing r and p by s and q, respe
tively. All (prime) de
ompositionsthat 
an be obtained in a �nite number of steps by using bide
ompositionsthis way, are 
alled related to the original one.(iii) Suppose that a latti
e (L;�) 
ontains two in
omparable elements p and q,su
h that both p \ q � p � p [ q and p \ q � q � p [ q are maximal 
hains.Then the four-element sublatti
e p \ q � p; q � p [ q is 
alled a unit rhombof L.(iv) If p \ q � p; q � p [ q is a unit rhomb of the latti
e (L;�), and a maximal
hain 
ontains the maximal sub
hain p \ q � p � p [ q, then we 
an repla
eit by p \ q � q � p [ q to get another maximal 
hain. All (maximal) 
hainsthat 
an be obtained in a �nite number of steps by using unit rhombs thisway are 
alled related to the original one.



4 Chapter I . Uniqueness Results1.8. Proposition. Let M be a right 
an
ellation monoid with 
omponent latti
e(M="�=; "[;\# ), then two prime de
ompositions are related i� their right 
ompositionseries are.Proof. Immediately from the de�nitions.1.9. De�nition.(i) An element f of a latti
e is said to 
over p i� f � p and no elements arebetween p and f .(ii) A latti
e is semimodular i� whenever both p and q 
over p \ q, then p [ q
overs both p and q.(iii) A monoid M is semimodular i� (M="�=; �) is a semimodular latti
e. Anelement f 2 M is semimodular i� its 
omponent stru
ture, ([1; f ℄; �), is asemimodular latti
e.1.10. Theorem.(i) If a semimodular latti
e 
ontains a �nite maximal 
hain, then all maximal
hains are related, in parti
ular, their length is invariant.(ii) If a semimodular element of a right 
an
ellation monoid has at least oneprime de
omposition, then all its prime de
ompositions are related, in par-ti
ular, the number of 
omponents is invariant.(iii) All prime de
ompositions of an element in a semimodular monoid that hasno in�nite  �-
hains are related.Proof. We need to proof only the �rst part. Let A and B be maximal 
hains. Wemay assume that A is �nite. If one of A and B has length 0, i.e., 
ontains only oneelement, then by maximality, the latti
e 
ontains only one element, too, so A = B,and we are through in this 
ase. We pro
eed by indu
tion on the length of A. Thusassume that A = (1 � p � A0) and B = (1 � q � B0):for some (possibly) empty maximal 
hains A0 and B0.Case 1: If p = q, then p � A0 and p � B0 are maximal 
hains in the latti
e[p;1℄ := f q : q � p g, thus related by indu
tion, so A is related to B.Case 2: If p 6= q, let C be a maximal 
hain in the latti
e [p [ q;1℄. Bysemimodularity both 1 � p � C and 1 � q � Care maximal 
hains; they are (dire
tly) related, and ea
h is related to A or Brespe
tively, using 
ase 1.x 2. De
ompositions of PolynomialsFrom now on we deal with the monoid (|[x℄; Æ) of polynomials in x over a �eld of
onstants |, together with (fun
tional) 
omposition de�ned by(r Æ p)(x) := r(p(x))If in the sequel we just say polynomial, elements of this set are intended.When dis
ussing algorithms, we generally assume that | has 
omputable �eldoperations and de
idable equality.



x 2. De
ompositions of Polynomials 52.1. Notation. Note that an expression like p(x � 1) is ambiguous be
ause iteither means that (x�1) is substituted into p, just as in p(x), or that p and (x�1)should be multiplied, as in (x + 1)(x � 1). Therefore we denote multipli
ation ofpolynomials by a dot, e.g., we write (x+ 1) � (x� 1), at least whenever the 
orre
tmeaning is not obvious. Additionally, the 
orre
t meaning of the notation pn is not
lear now. Therefore we reserve it to powers arising from multipli
ation, whereaspÆn denotes an n-fold 
omposition.2.2. Example. The following examples of trivial formulas should eliminate anydoubt about the notation. (x+ 1) � (x� 1) = x2 � 1(x+ 1) Æ (x� 1) = x(x+ 1)2 = (x+ 1) � (x+ 1) = x2 + 2x+ 1(x+ 1)Æ2 = (x+ 1) Æ (x+ 1) = x+ 2(x+ 1)�1 = 1x+ 1(x+ 1)Æ�1 = x� 12p = 2 � pp(2) = p Æ 2p(t) = p Æ txp = x � pp(x) = p Æ x = pWe should mention for later referen
e the trivial2.3. Proposition. (|[x℄;+; �; Æ) is a 
omposition ring, i.e., we have the right dis-tributive laws (r + s) Æ p = r Æ p+ s Æ p;(r � s) Æ p = (r Æ p) � (s Æ p):for all polynomials p, r, s.Note, however, that the 
orresponding left distributive laws are not generallysatis�ed. [Pil83℄ 
ontains a des
ription of the stru
ture of this 
omposition ringand of the near-ring (|[x℄;+; Æ).Degree of PolynomialsA very ni
e property of polynomials is that they have a degree, whi
h we denoteby square bra
kets ([p℄). When dealing with 
omposition, the 
onvention [0℄ = 0is useful. Our �rst result is trivial, but 
ru
ial for all the subsequent theory. Let(N0 ; �) denote the multipli
ative monoid of the positive integers in
luding zero. Asthis monoid is 
ommutative we omit the arrows in symbols like �!, \# .



6 Chapter I . Uniqueness Results2.4. Proposition. The degree fun
tion maps(i) the monoid (|[x℄; Æ) homomorphi
ally onto (N0 ; �), thus[r Æ p℄ = [r℄ [p℄(ii) the ordered set (|[x℄="�=; �) monotoni
ally onto (N0 ;�), thusp �! q =) [p℄ � [q℄ ;p "�= q =) [p℄ = [q℄ :Proof. Let r = b0xn+ b1xn�1+ � � � and r = a0xm + a1xm�1+ � � � with a0 6= 0 andb0 6= 0. Then r Æ p = b0pn + b1pn�1 + � � �= b0(a0xm + a1xm�1 + � � � )n + � � �= b0a0xnm + � � � ;and b0a0 6= 0, thus [r Æ p℄ = nm. Of 
ourse [x℄ = 1. The se
ond part is a 
on-sequen
e of the �rst. As there are polynomials of arbitrary degree, surje
tivity istrivial.The se
ond part is a trivial 
onsequen
e of the �rst.2.5. Proposition. Consider the monoid (|[x℄; Æ).(i) The de
ompositions of a 
onstant are exa
tly those that 
ontain at least one
onstant 
omponent.(ii) The units are exa
tly the polynomials of degree 1.(iii) Every polynomial of prime degree is prime.(iv) The non-
onstant polynomials are exa
tly the right 
an
ellable ones.(v) A (right, left) 
omponent of a non-
onstant polynomial is proper i� it has asmaller degree.(vi) The 
omponent stru
ture of any non-
onstant polynomial 
ontains no in�nite �-
hains.(vii) Every non-
onstant polynomial has a prime de
omposition.Proof.(i) [fn℄ � � � [f1℄ = 0 i� at least one of the [fi℄ = 0, i.e., fi is 
onstant.(ii) The inverse of ax+ b with a 6= 0 is given by 1ax� ba . Polynomials of degree6= 1 
annot be invertible be
ause their degree is not.(iii) If f = r Æ p has prime degree, then [f ℄ = [r℄ [p℄, thus either r or p must havedegree 1.(iv) Of 
ourse, 
onstants are not right 
an
ellable, as di�erent polynomials 
anhave a 
ommon zero. For the 
onverse assume that r Æ p = s Æ p for somenon
onstant polynomial p. Then, by right distributivity,0 = [0℄ = [r Æ p� s Æ p℄ = [(r � s) Æ p℄ = [r � s℄ [p℄ :Be
ause [p℄ 6= 0, r � s is 
onstant. Butr � s = (r � s) Æ p = r Æ p� s Æ p = 0;so r = s.(v) Suppose f = r Æ p. Then [f ℄ = [p℄ is equivalent to [r℄=1, i.e., that f "�= r.Similarly for � and �.



x 2. De
ompositions of Polynomials 7(vi) If f1  � f2  � f3  � � � � is a 
hain, then [f1℄ � [f2℄ � [f3℄ � � � � is a 
hain ofpositive integers. But no positive integer has an in�nite number of divisors.So [f1℄ 6= 0 implies that the 
hain 
annot be in�nite.(vii) By the previous part, together with Proposition 1.6.Thus the dis
ussion about existen
e of prime de
ompositions has been �nished.(If, however, | is not a �eld, or at least a unique fa
torization domain, primede
ompositions need not exist and the question be
omes more interesting.) A morediÆ
ult problem is to develop algorithms for 
omputing prime de
ompositions andto �nd interesting uniqueness properties. It turns out that very similar methodssolve these two problems, so we treat them at on
e.Polynomial De
omposition AlgorithmsLet us ask whether our existen
e proof 
ontains any method to �nd a primede
omposition of a polynomial f . In fa
t it does, though not expli
itly. Themultipli
ativity of the degree fun
tion shows that there is only a �nite number ofpossible degrees for the 
omponents, one for ea
h divisor of [f ℄. So by an approa
hwith indetermined 
oeÆ
ients, we 
an test for nontrivial de
ompositions.2.6. Algorithm. The following method determines whether a given polynomial fhas a proper de
omposition over some algebrai
 extension �eld of | and 
omputesit in the aÆrmative 
ase.For ea
h non-trivial divisor n of [f ℄repeat take p = nPi=0 aixi, r = [f ℄=nPj=0 bjxjwith indetermined 
oeÆ
ients ai and bj ;Compute r Æ p and 
ompare its 
oeÆ
ientsto the 
orresponding ones of f ;Test whether the resulting system of algebrai
 equationshas a solution for the ai and bi;If one of the systems has a solution,then r Æ p with this solution is a de
omposition,else f is inde
omposable.2.7. Remark. Note that any system of algebrai
 equations 
an be solved, e.g.,by 
omputing the Gr�obner basis (
f. e.g. [BL82℄). The algorithm presented thereeither determines that no solution exists or transforms it into a triangular system,i.e., an equation for the �rst variable, one for the se
ond, but using the �rst, one forthe third, using the �rst two, and so on. So it is easy to �nd out, whether there aresolutions in |, and whi
h �eld extension are ne
essary to obtain all solution. Thereis also an easy 
riterion to dete
t whether the system has a �nite or an in�nitenumber of solutions.This way, the polynomial de
omposition problem is solved, in prin
iple. But,ex
ept for polynomials of very small degree, the system that must be solved hastoo many variables o

urring with too high degrees for being tra
table. Hen
e thismethod has not been studied in detail. On the other hand, there are mu
h moreequations than variables, and the Gr�obner bases 
omputation has a lot of 
hoi
e,that 
an make it fast in parti
ular situations. It is an open problem, whether one
an do so for the polynomial de
omposition problem.



8 Chapter I . Uniqueness Results[Zip91℄ 
ontains another general algorithm, whi
h has a polynomial 
omputa-tion time. But it uses polynomial fa
torization in two variables over an algebrai
extension �eld, therefore is mainly of theoreti
al interest, as even exponential-timealgorithms are usually faster in pra
ti
e.In the next se
tion an algorithm that is very fast for the spe
ial but veryimportant tame 
ase will be developed.But �rst we dis
uss some more properties and algorithms valid in the general
ase.Taylor expansion2.8. Proposition. Let f; p be polynomials, p non-
onstant. Then there are uniquepolynomials ri with [ri℄ < [p℄ su
h thatf =Xi ri � pi:Proof. If [f ℄ < [p℄, the statement is 
lear, using r0 = f . We do indu
tion on thedegree of f . If [f ℄ � [p℄, take any non
onstant left multiple ~p = u Æ p of p su
h that[~p℄ � [f ℄, e.g., p itself, or some of its powers pi, but not too big. We use Eu
lideandivision to get unique polynomials q and r su
h thatf = q � ~p+ r:By indu
tion, q = P qi � pi, r = P ri � pi, and by de�nition, ~p = P aipi, for someunique polynomials qi; ri of degrees < [p℄ and 
onstants ai. Thusf =X qi � pi �X aipi +X ri � pi;whi
h, after expansion, has the requested form.Of 
ourse, the step involving ~p is unne
essary in order to prove the proposition.But it provides us with a more general 
onstru
tion, whi
h we are going to use toobtain a more eÆ
ient algorithm.Note that for p = x � a, a 2 |, the proposition just says that f has a (�nite)Taylor expansion around the point a. Therefore we de�ne2.9. De�nition. The unique representation of Proposition 2.8 is 
alled the Taylorexpansion of f around p with 
oeÆ
ients ri.2.10. Example. Let us 
ompute the Taylor expansion off = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xaround p = x2 + 2x. First we use the 
hoi
e ~p = p. Dividing f by p we get theremainder r0 = 4x, whose degree is < 2, and the quotientq1 = x10+10x9+46x8+131x7+260x6+380x5+419x4+350x3+218x2+97x+28:



x 2. De
ompositions of Polynomials 9Continuing with this quotient as in the proof, we get the sequen
er1 = 13x+ 28q2 = x8 + 8x7 + 30x6 + 71x5 + 118x4 + 144x3 + 131x2 + 88x+ 42r2 = 18x+ 42q3 = x6 + 6x5 + 18x4 + 35x3 + 48x2 + 48x+ 35r3 = 12x+ 35q4 = x4 + 4x3 + 10x2 + 15x+ 18r4 = 3x+ 18q5 = x2 + 2x+ 6r5 = 6q6 = 1r6 = 1:Thus the Taylor expansion isf = p6+6p5+(3x+ 18) � p4+(12x+ 35) � p3+(18x+ 42) � p2+ (13x+ 28) � p+4x:Note that, by the 
hoi
e ~p = p, the remainder always had degree < [p℄; thereforewe just needed to 
ontinue with the quotient. This means that the problem of (Tay-lor) expanding f is redu
ed to expanding a polynomial of degree [f ℄� [p℄. Thoughthis is quite pra
ti
al for polynomials of low degree, for high degree polynomialsa more balan
ed version seems to be better. If [~p℄ = [f ℄+12 , then the problemof (Taylor) expanding one n-th degree polynomials is redu
ed to expanding twopolynomials of degree [f ℄�12 . This approa
h is explained in the following algorithm.2.11. Algorithm. Given polynomials f and non-
onstant p, then the followingmethod 
omputes the Taylor expansion of f around p:if [f ℄ < [p℄ then return felse set i = power of 2 
losest to [f ℄+12[p℄ ;thus �pi� � [f ℄+12use Eu
lidean division of f by pi;set q to the quotient, r to the remainder;return (expansion of q) � pi + expansion of r.2.12. Remark. Let M(n) be the number of �eld operations ne
essary for multi-plying two polynomials of degree n.Suppose [f ℄ = n. In every step, i � n. Thus 
omputing all ne
essary powers piby su

essively 
omputing squares, takes at most O(M(n) � logn) �eld operations.In the �rst step, the Eu
lidean division uses at most O(M(n)) �eld operations, i.e.,has a bound 
 �M(n), for some 
onstant 
. Next, two problems of size � n2 must besolved. So we have to do two Eu
lidean divisions, but of polynomials with degreebound n2 , so it takes at most 2
 �M(n2 ) �eld operations. Similarly, in the third step,we have the bound 4
 �M(n4 ), in general 2i
 �M( n2i ). As 2i � n the total 
ost of



10 Chapter I . Uniqueness Resultsthe algorithm is bounded byO(M(n) � logn) + O( Xi<logn 2i
 �M( n2i )) � O(M(n) logn) +O(
 � Xi<log nM(2i n2i ))= O(M(n) logn) +O(M(n) logn):So the algorithm uses at most O(M(n) logn) �eld operations.2.13. Example. Let us illustrate the algorithm with the 
omputation of the Tay-lor expansion of f as in the last examplef = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xbut around p = x3 + 3x2 + 3x. A

ording to the algorithm we must 
hoose i near12+12�3 = 136 , thus i = 2 and~p = p2 = x6 + 6x5 + 15x4 + 18x3 + 9x2:We divide f by ~p to obtain r1 = 20x3 + 60x2 + 60xas the remainder andq1 = x6 + 6x5 + 15x4 + 25x3 + 30x2 + 21x+ 18as the quotient. Now we 
ontinue re
ursively, 
omputing the Taylor expansion ofboth r1 and q1. As [r1℄ = 3 = [p℄, the 
hoi
e i = 1 is the only possible. We getr2 = 0q2 = 20:Thus r1 = 20p. [q1℄ = 6, hen
e i = 1 is appropriate, i.e., we divide q1 by p, withthe result r3 = 18q3 = x3 + 3x2 + 3x+ 7 = p+ 7:So q1 = (p+ 7) � p+ 18, and we getf = q1 � p2 + r1 = (p2 + 7p+ 18) � p2 + 20p = p4 + 7p3 + 18p2 + 20p:In this example, all Taylor 
oeÆ
ients of f around p happen to be 
onstant.Of 
ourse, this is quite an in
iden
e, and means that p �! f , in fa
tf = (x4 + 7x3 + 18x2 + 20x) Æ p:2.14. De�nition. Let p �! f . The unique polynomial r su
h that f = r Æ p isdenoted by f � p, and we 
all this operation Taylor division.We have 
alled this Taylor division, be
ause it is a spe
ial 
ase of Taylor ex-pansion.That f � p really is uniquely determined follows dire
tly from the right 
an-
ellation law. This does not, however, equip us dire
tly with a method to 
omputethis operation. Additionally there 
ould be the possibility that there exists r su
hthat f = r Æ p only if it is allowed to have 
oeÆ
ients in some extension �eld of |.But we 
an use Taylor expansion.2.15. Proposition. Let f; p 2 |[x℄, p non-
onstant.(i) p �! f i� all 
oeÆ
ients of the Taylor expansion of f around p are 
onstant.(ii) The relation p �! f is independent of the ground �eld.
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ompositions of Polynomials 11(iii) If p �! f , then the 
oeÆ
ients of f � p are rational fun
tions of those of pand f .Proof. The �rst part is immediate from the de�nition. But the algorithm for the
omputation of the Taylor expansion uses only rational operations involving the
oeÆ
ients of f and p. Thus the remaining parts are also obvious.Remember that [p℄ � [f ℄ is a ne
essary 
ondition for p �! f .2.16. Algorithm. Given polynomials f and non-
onstant p, then we 
an de
idewhether p �! f and 
ompute f � p in the aÆrmative 
ase just by 
omputing theTaylor expansion as in algorithm 2.11, and aborting as soon as it 
omputes a poly-nomial whose degree is not a multiple of [p℄, be
ause in this 
ase p 
annot be a(right) 
omponent of f .Note that, if the algorithm is not aborted, then all Taylor 
oeÆ
ients are 
on-stant.Component Latti
eThe following lemma is very surprising and seems to be rather unknown, thoughit appears impli
itly in [Eng41℄.2.17. Lemma. Let f and q be polynomials, andf = q � p+ r; [r℄ < [p℄ :Then a polynomial t is a 
ommon right 
omponent of f and p i� it is one of p, qand r.Proof. The if-part is trivial. Therefore assume that t is a 
ommon 
omponent of fand p, thus there exist polynomials f̂ and p̂ su
h thatf = f̂(t); p = p̂(t):Then, by Eu
lidean division, there exist polynomials q̂, r̂ su
h thatf̂ = q̂ � p̂+ r̂; [r̂℄ < [p̂℄ ;and by substituting t into this equationf̂(t) = q̂(t) � p̂(t) + r̂(t); [r̂(t)℄ < [p̂(t)℄ ;i.e., f = q̂(t) � p+ r̂(t); [r̂(t)℄ < [p℄ :As the quotient and remainder are uniquely determined, it follows that q = q̂(t),r = r̂(t), thus t is a 
omponent of both q and r.2.18. Proposition. Any �nite set F of polynomials has a greatest 
ommon right
omponent.Proof. Be
ause every polynomial is a right 
omponent of any 
onstant, the 
on-stants 
an be removed from F without 
hanging the result. If F = ?, then any
onstant is a greatest 
ommon right 
omponent. If F = fpg, then p is the result. Soassume that F has at least two elements but no 
onstants. If the greatest 
ommondivisor of the degrees of all polynomials in F is 1, then x is the greatest 
ommonright 
omponent, be
ause its degree must divide 1. Otherwise 
hoose polynomials



12 Chapter I . Uniqueness Resultsf 2 F and p in |[F n ffg℄ with [f ℄ � [p℄ > 0. Thus p 
an be any element of Fdi�erent from f , but 
an as well be formed by adding and multiplying any su
helements. Using Eu
lidean division, we get a quotient q and remainder r. Then, bythe lemma, the sets F and (F n ffg)[ fq; rg have the same right 
omponents. Let~F be the later set with 
onstants omitted. Note that [q℄ + [r℄ � [f ℄� 1, so the sumof the degrees in ~F is smaller than that in F . We pro
eed indu
tively. Be
ause the
onstants are omitted, we eventually must get a singleton set. Its element then hasthe same right 
omponents as the original set, i.e., it is the greatest 
ommon right
omponent.Now we 
an state our lemma in a simpler form.2.19. Proposition. Let f and q be polynomials, andf = q � p+ r; [r℄ < [p℄ :Then f \# p = p \# q \# r:The proof of the Proposition 2.18 
ontains a new algorithm for the 
omputationof \# , whi
h is both simpler and more general than previous ones. It works like akind of 
ompositional Eu
lidean algorithm.2.20. Algorithm. The following program 
omputes the greatest 
ommon right
omponent of a �nite set F of polynomials:Remove all 
onstants from the set F ;if F = ? then return 0;while F 
ontains at least two elementsand the g
d of their degrees is > 1repeat 
hoose polynomials f 2 F and p 2 |[F n ffg℄ with [f ℄ � [p℄ > 0;use Eu
lidean division of f by p, giving q and r;remove f from F ;add q and r instead, if non
onstant;return the single element of Fresp. x, if we terminated be
ause the g
d was = 1.2.21. Example. Let us 
ompute the greatest 
ommon right 
omponent off = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60xandg = x27 + 27x26 + 351x25 + 2924x24 + 17526x23 + 80454x22 + 293985x21 + 877383x20+ 2177361x19 + 4550901x18 + 8084232x17 + 12282381x16 + 16023713x15 + 17986719x14+ 17374647x13 + 14417930x12 + 10238064x11 + 6178974x10 + 3134779x9 + 1313667x8+ 442593x7 + 115013x6 + 21450x5 + 2487x4 + 307x3 + 183x2 + 3x:At the �rst step we divide g by f and get the quotientq1 = x15 + 15x14 + 105x13 + 451x12 + 1317x11 + 2739x10 + 4133x9+ 4527x8 + 3555x7 + 1970x6 + 777x5 + 228x4 + 37x3 � 6x2 + 3xand the remainder r1 = x3 + 3x2 + 3x



x 2. De
ompositions of Polynomials 13Now F = ff; q1; r1g, with degrees f12; 15; 3g. In the next step we have a lot of
hoi
e. Let us get rid of the biggest polynomial, q1, whi
h has degree 15. If wedivide it by f , we get a quotient of degree 3 and a remainder of degree < 12. If wedivide by r1, then the quotient has degree 12 and the remainder < 3. If, however,we divide by r31 = x9 + 9x8 + 36x7 + 81x6 + 108x5 + 81x4 + 27x3;then the quotient will have degree 6 and the remainder < 9, whi
h situation is morebalan
ed. In fa
t, q2 = x6 + 6x5 + 15x4 + 19x3 + 12x2 + 3x+ 2;r2 = �x6 � 6x5 � 15x4 � 17x3 � 6x2 + 3x:We observe that these two polynomials are left asso
iated (r2 = (2�x)Æq2). Be
ausewe are 
omputing in (|[x℄="�=; �), i.e., modulo "�=, we 
an omit one of them. ThusF = ff; q2; r1g, with degrees f12; 6; 3g. The next 
hoi
e is rather straightforward:we get rid of f using division by q2, thusq3 = x6 + 6x5 + 15x4 + 24x3 + 27x2 + 18x+ 10;r3 = �2x3 � 6x2 � 6x� 20:Both polynomials happen to be left asso
iated to some already in F , so f 
an beeliminated from F without 
ompensation. F = fq2; r1g now, and in the last stepwe have to divide these two elements, with the resultq4 = x3 + 3x2 + 3x+ 1;r4 = 2:Again, q4 is left asso
iated to r1, and r4 
an be omitted as it is 
onstant. So,�nally, F is a singleton and its element r1 (or any of its left asso
iates) is thegreatest 
ommon right 
omponent.2.22. Remark. There is a lot of arbitrariness in this algorithm, involved by theword 
hoose, whi
h 
an a�e
t the eÆ
ien
y of the algorithm. In the example wehave used the strategy to repla
e the polynomial of highest degree by two ones thathave about the same degree. Choosing the se
ond polynomial p of the algorithmappropriately in |[F n ffg℄, not just in F , it 
an always be a

omplished that[p℄ � [f ℄2 . Suppose that the biggest polynomial in F has degree n. If all polynomialshave degree � n, then we get rather small polynomials. Thus polynomials of anyorder of magnitude between the smallest and the biggest 
an be 
omputed withO(n logn) �eld operations. Dividing the n-th degree polynomial by one of degree� n2 repla
es it by two ones of degree at most � n2 . Thus, with this strategy, weget the same 
omplexity bound as for our algorithm for Taylor expansion, whi
hwas O(n logn). In fa
t, these two algorithms are not very di�erent and e.g. both
an be used to de
ide whether p �! f .2.23. Theorem. (|[x℄="�=; �) is a bounded latti
e with minimum x and maxi-mum 0.Proof. We have already shown that any two elements have an in�mum. 0 is alwaysa 
ommon left multiple, thus a least 
ommon left multiple must exist, be
ause thereare no in�nite  �-
hains.



14 Chapter I . Uniqueness Results2.24. Remark. The degree fun
tion maps the latti
e (|[x℄="�=; "[;\# ) monotoni
allyonto the latti
e (N ;[;\). But, in general, this is not a latti
e homomorphism.We just get, as an immediate 
onsequen
e of monotoni
ity (Proposition 2.4), the
onsiderably weaker fa
ts[p \# q℄ � [p℄ \ [q℄ ; [p "[ q℄ � [p℄ [ [q℄ :There is, however, a very important lo
al repla
ement, stated in theorem 5.4. Wewill be 
on
erned with its proof in the next se
tions.2.25. Example. Here is an easy 
ounterexample. Obviouslyx2 \# (x2 + x) = x:Later(Proposition 5.2) we will show that this implies thatx2 "[ (x2 + x) = 0;at least if 
har|= 0.Whereas we have got a general and very eÆ
ient method for the 
omputationof the \# -operation, no general method for 
omputing the "[-operation is known.The reason is that the existen
e proof for least 
ommon left multiples was not
onstru
tive. But we 
an test whether there is a 
ommon left multiple of a spe
i�eddegree, be
ause this leads to a system of linear equations. ([Alo94℄)2.26. Algorithm. We 
an test whether two polynomials p, q have a 
ommon leftmultiple of degree n, and 
ompute it in the aÆrmative 
ase.if n 6� [p℄ [ [q℄ then return no 
ommon multiple;try polynomials r; s of degrees n[p℄ and n[q℄ , respe
tively,with indetermined 
oeÆ
ients;Find a solution satisfying r Æ p = s Æ qthis is a linear system of [p℄ [q℄ equations with [p℄ + [q℄ variables;if it has a solutionthen return r Æ p = s Æ q (for that solution)else return no 
ommon multiple.2.27. Algorithm. The following semialgorithm 
omputes p "[ q, if it is not a 
on-stant, and never stops otherwise.n := [p℄ [ [q℄;for k 2 Nrepeat if there is a 
ommon left multiple f of degree knthen return felse 
ontinue.Thus the general 
ase is not very satisfa
tory. Be
ause we 
annot wait until theend of time to see that the algorithm did not stop, we hope to obtain a bound for[p "[ q℄. The general 
ase is unsolved, but for 
har|= 0, there is a very satisfa
toryanswer, given in the next se
tion. But in this 
ase we 
an use the 
hara
terizationof bide
ompositions in 
hapter II to obtain an even more eÆ
ient algorithm.Normed PolynomialsThe 
omponent latti
e 
ontains equivalen
e 
lasses of polynomials. This issometimes in
onvenient, in parti
ular, if we try to 
ompose these equivalen
e 
lasses,be
ause "�= is not a 
ongruen
e with respe
t to 
omposition. This prohibits having
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e operations and 
omposition in one stru
ture. But we 
an 
hoose agood system of 
anoni
al representatives to a
hieve this.2.28. De�nition. Let p = anxn + an�1xn�1 + � � �+ a0 be a polynomial of degreen. (i) p is 
alled zerosymmetri
 i� a0 = 0.(ii) p is 
alled moni
 i� an = 1.(iii) p is 
alled normed i� it is moni
 and zerosymmetri
.(iv) a de
omposition is normed i� all its 
omponents are normed.2.29. Proposition.(i) The (normed, zerosymmetri
, moni
) polynomials form a submonoid of themonoid (|[x℄; Æ). They are also 
losed under multipli
ation.(ii) Ea
h non-
onstant polynomial q has exa
tly one de
ompositionq = u Æ p;su
h that u is linear and p normed.(iii) Ea
h polynomial has exa
tly one normed left asso
iate.(iv) Ea
h de
omposition of a normed non-
onstant polynomial is left asso
iatedto exa
tly one normed one.Proof.(i) Trivial.(ii) Let q = dnxn + � � �+ d0, u = ax+ b, and p = 1xn + 
n�1xn�1 + � � �+ 0. We
ompare the 
oeÆ
ients of q and u Æ p; thus obtaindn = adi = a
i; for 0 < i < nd0 = b;whi
h, if q is given, has a unique solution for a, b, and all 
i.(iii) For non-
onstant polynomials this is 
lear by the previous part. Note that 0is the only normed 
onstant, and for ea
h 
onstant 
 we have 
 = (x+ 
)Æ0.(iv) Let f = qn Æ � � � Æ q2 Æ q1 be a de
omposition. Ea
h left asso
iate of thisde
omposition looks likef = (un Æ qn Æ uÆ�1n�1) Æ � � � Æ (u2 Æ q2 Æ uÆ�11 ) Æ (u1 Æ q1):We have to 
hoose the ui appropriately to make all 
omponents normed. Forthe rightmost 
omponent, part (ii) shows that there is exa
tly one 
hoi
e.But then u2 must make q2 Æ uÆ�11 normed, and by the same argument, weget exa
tly one solution. This way we 
ontinue until un is determined.x 3. Roots of Tame Polynomials3.1. De�nition. Let f be a normed polynomial of degree nm. A normed poly-nomial p su
h that [f � pn℄ � nm�mis 
alled an n-th (approximate) root of f . We will use the notation p = npf , if itexists uniquely.3.2. Proposition. Let r and p be non
onstant normed polynomials of degrees nand m. Then p is an n�th root of r Æ p.



16 Chapter I . Uniqueness ResultsProof. Let r = xn + b � xn�1 + � � � . Thenr Æ p = pn + b � pn�1 + � � � :But �b � pn�1� = (n� 1)m = nm�m. All further terms are even smaller.3.3. Example. If | has 
hara
teristi
 2, then the polynomial x4 + x3 has no 2ndroot, be
ause (x2+ ax)2 = x4+ a2x2, for ea
h a 2 |, whi
h has no term for x3. Onthe other hand, ea
h polynomial of this form is a 2nd root of x4. We want to avoidsu
h wild behavior.3.4. De�nition. An integer is 
alled tame (relatively to |) i� it is has an inversein |, i.e., if it is not a multiple of the 
hara
teristi
. A polynomial is tame i� itsdegree is tame.3.5. Remark. If 
har|= 0, a polynomial is tame i� it is non-
onstant.3.6. Lemma. Suppose that the non
onstant normed polynomials f and p with[f ℄ = nm, [p℄ = m and tame n satisfy[f � pn℄ � nm� kfor some 1 � k < m. Then(i) for ea
h polynomial q of degree at most m� k, we again have[f � (p+ q)n℄ � nm� k:(ii) with ~k := min(2k;m), there is exa
tly one zerosymmetri
 polynomial q ofdegree at most ~k � k su
h thathf � (p+ q � xm�~k)ni � nm� ~k:Proof.(i) [f � (p+ q)n℄ = �f � pn � npn�1 � q � � � � � � nm�k, be
ause �npn�i � qi� �(n� i)m+ i(m� k) = nm� ik � nm� k for i � 1.(ii) The 
ondition on q ishf � (p+ q � xm�~k)ni = hf � pn � npn�1 � q � xm�~k � � � � i � nm� ~k:The omitted terms have degrees � (n�i)m+i(~k�k)+i(m�~k) = nm�ik �nm� ~k for i � 2. By the assumption,hf � pn � f̂ � xnm�~ki � nm� ~k;for (exa
tly) one zerosymmetri
 polynomial f̂ of degree at most ~k�k. Thusthe 
ondition turns intohf̂ � xnm�~k � npn�1 � xn�~k � qi � nm� ~k:Be
ause hpn�1 � xm�~ki = nm � ~k, and n is tame, we see, after dividing byx, that qx is the unique Eu
lidean quotient of f̂ � xnm�~k�1 by npn�1.3.7. Proposition. Let f be a normed polynomial with [f ℄ = nm. If n is tame,then there exists exa
tly one normed n-th root of f .



x 3. Roots of Tame Polynomials 17Proof. There is exa
tly one polynomial p with only one term su
h that [f � pn℄ �nm � 1, namely xm. Thus we 
an apply the lemma with p = xm and k = 1, andsubsequently with k = 2,4,8; : : : ; 2i < m until we get an n-th root. Be
ause theadditional 
oeÆ
ients that we get at ea
h step are unique, npf is also.3.8. Remark. Note that the proof of the lemma always deals only with the leadingk, or ~k 
oeÆ
ients of the o

urring polynomials. In the following algorithm thenotation 
(k)1 (f) denotes the polynomial of degree < k 
onstru
ted from the leadingk 
oeÆ
ients, thus hf � 
(k)1 (f) � xn�k+1i � n � k. Similarly 
(k)2 (f) denotes thenext k 
oeÆ
ients.3.9. Algorithm. The npf 
an be 
omputed a

ording to the proof of the lemma inthe following way:m := [f ℄n ;~f := 
(m)1 (f); we forget the remaining 
oeÆ
ients!k := 1; p1 := xm;while k < nrepeat ~k := min(2k;m);f1 := 
k1( ~f);f2 := 
~k�k2 ( ~f);p2 := 
k2(pm1 );q1 := Eu
lideanQuotient(p1�(f2�p2)nf1 );p1 := p1x~k�k + q1;k := ~kreturn p � x.3.10. Example. Let us 
ompute the se
ond root of the example in the previousse
tion f = x12 + 12x11 + 66x10 + 223x9 + 522x8 + 900x7 + � � � :Here, we do not even want to know what the remaining 
oeÆ
ients are. In thenotation of the Algorithm we have n = 2, m = 6, and~f = x5 + 12x4 + 66x3 + 223x2 + 522x+ 900:frees us from the super
uous 
oeÆ
ients.We start with k := 1 and p1 := 1 (a

ording to the �rst approximation xm). Inthe �rst step we want to obtain the �rst ~k = 2k = 2 
oeÆ
ients. We see immediatelyf1 := 1f2 := 12p2 := (2nd 
oeÆ
ient of p21) = 0:Now we obtain the 2nd 
oeÆ
ient of the rootq1 = p1(f2 � p2) : nf1 = 1(12� 0) : 2 = 6;thus we enter with p1 := p1x+ q1 = x+ 6



18 Chapter I . Uniqueness Resultsand k := 2 into the se
ond step, to obtain the �rst ~k = 2k = 4 
oeÆ
ients We readthe next 
oeÆ
ients from ~f : f1 := x+ 12f2 := 66x+ 223:and 
ompute p21: (x+ 6)2 = x2 + 12x+ 36;The �rst 2 
oeÆ
ients must 
oin
ide with that of f , andp2 := 36x:Now we get the next two 
oeÆ
ients byq1 = p1(f2 � p2) : nf1 = (x+ 6)((66x+ 223)� (36x)) : 2(x+ 12) = 15x+ 432 ;thus we enter with p1 := p1x2 + q1 = x3 + 6x2 + 15x+ 432and k := 4 into the third step, to obtain the �rst ~k = min(2k;m) = min(8; 6) = 6
oeÆ
ients, i.e., the 
omplete root. We read the next 
oeÆ
ients from ~f :f1 := x3 + 12x+ 66x+ 223f2 := 522x+ 900:This time f2 has smaller degree, be
ause there are no more 
oeÆ
ients. We 
om-pute p21:(x3 + 6x2 + 15x+ 432 )2 = x6 + 12x5 + 66x4 + 223x3 + 483x2 + 645x+ � � � :The last 
oeÆ
ient will not be needed. The �rst 4 
oeÆ
ients again must 
oin
idewith that of f , and from the next ~k � k = 2 ones we getp2 := 483x+ 645:Now we get the remaining 
oeÆ
ients byq1 = p1(f2 � p2) : nf1= (x3 + 6x2 + 15x+ 432 )((522x+ 900)� (483x+ 645)) : 2(x3 + 12x2 + 66x+ 223)= 392 x+ 212 :Thus p1 := p1x2 + q1 = x5 + 6x4 + 15x3 + 432 x2 + 392 x+ 212 ;gives all 
oeÆ
ients of the root and 2pf = x � p1 is normed and of degree 6. In fa
t,squaring this polynomial gives( 2pf)2 = x12+12x11+66x10 = 223x9+522x8+900x7+ 46934 x6+ 23072 x5+ 33274 x4+ 8192 x3+ 4414 ;and we 
he
k that its �rst 6 
oeÆ
ients 
oin
ide with that of f .3.11. Remark. Be
ause at ea
h step in the iteration the number of 
oeÆ
ients ofnpf already 
omputed is doubled, our algorithm needs only O(logn) iterations. Themost expensive part in the i-th iteration is the 
omputation of the �rst 2i 
oeÆ
ientsof the n-th power of a polynomial of degree 2i�1. This 
an be a

omplished bythe usual method of su

essive squaring with O(logn � M(2i)) �eld operations.AgainM(k) denotes the number of steps used for multiplying polynomials of degreek. A

ording to [SS71℄ we 
an 
hoose M(k) = k log k. For pra
ti
al purposes,however, M(k) = k1:5 is more appropriate (Karatsuba method). In any 
ase, we



x 3. Roots of Tame Polynomials 19have M(2k) � 2M(k), thus the total 
ost of our algorithm is dominated by the 
ostof the last step, whi
h is O(M(m) logn). This is a very good bound, at least if k isa �nite �eld. For in�nite �elds, the growth of the size of the 
oeÆ
ients be
omesessential. A good polynomial bound is obtained in [vzG90℄.3.12. Theorem. Let f be a tame normed polynomial.(i) For ea
h divisor n of [f ℄ there is exa
tly one normed root npf ; its 
oeÆ
ientsare rational fun
tions of the �rst [f ℄n 
oeÆ
ients of f .(ii) For ea
h divisorm of [f ℄ there is at most one normed right 
omponent p �! fof degree m, and, in the aÆrmative 
ase, p = npf , with n = [f ℄m .(iii) For ea
h �nite sequen
e nk; : : : ; n1 2 N there is at most one normed de
om-position f = pk Æ � � � Æ p1 su
h that [pi℄ = ni.(iv) One gets no more normed de
ompositions of f when 
omponents are allowedto have 
oeÆ
ients in some algebrai
 extension �eld of |. In parti
ular, apolynomial is prime over an extension �eld i� it is prime over |.Proof.(i) Proposition 3.7 proves uniqueness, and from the algorithm we see that onlyelementary �eld operations are used in its 
omputation.(ii) Ea
h right 
omponent of degree m must be an n-th root by proposition 3.2.Thus it is the unique one.(iii) The rightmost 
omponent is unique by the previous part. Then we useTaylor division to see that fk Æ � � �Æf2 is also uniquely determined. Applyingthe same argument re
ursively, we see that all 
omponents are determined.(iv) As both root 
omputation and Taylor division use only rational operations,this is 
lear from the 
onstru
tion in the previous part.This theorem and its proof also show that we have got a fast method to 
omputea prime de
omposition of a tame polynomial f . We just 
ompute roots of f for ea
hdivisor n and get a good (the only possible) 
andidate for being a right 
omponentof the appropriate degree. We 
an test this using Taylor division and 
ontinue byde
omposing f � npf .3.13. Algorithm. Let f be a normed tame polynomial. Its prime de
omposition
an be 
omputed in the following way:For ea
h proper divisor m of [f ℄ (smallest �rst);
ompute the 
andidate p of degree mas an appropriate root.test whether this is a right 
omponent using Taylor division;in the aÆrmative 
ase 
ontinue re
ursively with f � p,otherwise test the next divisor.If all divisors are exhausted, without �nding a right 
omponent,then f is prime.In fa
t, this algorithm �nds the the �rst prime de
omposition, i.e., that withsmallest 
omponents on the right. If we try all proper divisors, (a variant of) thisalgorithm even �nds all prime de
ompositions.



20 Chapter I . Uniqueness Results3.14. Example. Let us now de
ompose our polynomialf = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60x:into prime 
omponents. A

ording to the algorithm, we �rst look for the 
andidateof degree 2; it must be 6pf . Algorithm 3.9 �nds, with only one iteration,6pf = x2 + 2x;but using Taylor division we have already seen in Example 3.10 that this is not aright 
omponent. Note that, for this purpose, we need not do all the 
omputationsin that example, be
ause we obtain a linear Taylor 
oeÆ
ient already at the �rststep. So let us 
ompute the 
andidate of degree 3; we getp := 4pf = x3 + 3x2 + 3x:We already know this polynomial from Example 2.10, where it was shown, usingTaylor division, that this is in fa
t a right 
omponent, andr := f � p = x4 + 7x3 + 18x2 + 20x:As r has degree 4 it 
ould be de
omposable. But 2pr = x2 + x2 , and, using Taylordivision we see that this is not a right 
omponent. So r is prime and we have foundthe prime de
omposition f = r Æ p.We ask whether there are any more prime de
ompositions. Thus 
ompute the
andidate of degree 4: q := 3pf = x4 + 4x3 + 6x2 + 5x:Now Taylor division shows that q is in fa
t another right 
omponent withs := f � q = x3 + 6x2 + 12x:We know already that q is prime, be
ause f has no right 
omponent of degree 2.Thus f has the two essentially di�erent (i.e., not asso
iated) prime de
ompositionsf = r Æp = sÆ q. In fa
t, we have got a prime bide
omposition. To obtain all primede
ompositions of f we 
an now test the 
andidate of degree 6, i.e., 2pf . But inRemark 5.6 we will see that this is in fa
t not ne
essary.3.15. Remark. Though the notion of root for polynomials (in this sense) as wellas its systemati
 use is new, a proof of proposition 3.7 is already 
ontained impli
-itly in [Eng41℄. [LN73℄ 
ontains a similar proof. Additionally, the algorithms forpolynomial de
omposition in [Gut88℄ and [KL89℄ use very similar 
onstru
tions.Our proof is not more 
ompli
ated than the ones mentioned above, and has theadvantage that it almost dire
tly leads to the fastest known algorithms. Whereasthe above methods essentially 
ompare the �rst 
oeÆ
ients, one by one, our proofand algorithm 
ompare the 
oeÆ
ients in a se
ond order manner, thus doublingthe a

ura
y at ea
h step.The similarity with Newton's iteration method is not in
idental: Every poly-nomial f = P aixn�i 
an be identi�ed with the Laurant series P ai � 1x�i�naround 1, whi
h has only negative terms. Thus, if we 
onsider only the leadingk 
oeÆ
ients of the polynomials, we are doing essentially power series arithmeti
up to order O(xn�k). It is well known that the 
lass of power series with leading
oeÆ
ient 1 has unique roots. The paper [BK78℄ outlines how these roots 
an be
omputed eÆ
iently using Newton's iteration method, and [vzG90℄ proposes thisfor polynomial de
omposition. So our Algorithm 3.9 does essentially the same asthat in [vzG90℄.



x 3. Roots of Tame Polynomials 21The proofs in [Rit22℄ and [DW74℄ do not 
ontain any version of proposition 3.7,but use Riemann surfa
es resp. valuation theory instead, whi
h essentially redu
eto the use of Laurant series. Using roots for polynomials dire
tly, we 
an avoid thedis
ourse to in�nite stru
tures 
ompletely.Roots have proved very useful in developing good algorithms for de
ompositionas well as some interesting uniqueness results. One 
an get even more.3.16. Remark. Yet another way to express part (ii) of theorem 3.12 is that thedegree fun
tion inje
tively maps the 
omponent latti
e into the divisor latti
e of [f ℄.Though it is trivially monotone, we do not yet know that it is a latti
e homomor-phism. The next proposition proves one half of this, the rest must be postponed.3.17. Lemma. Let r be a normed polynomial and let n be a tame divisor of [r℄;then for all normed polynomials pnpr Æ p = npr Æ p:Proof. We have to prove that npr Æp satis�es the 
hara
teristi
 property of an n-throot of r Æ p. Thus we estimate�r Æ p� ( npr Æ p)n� = �r Æ p� xn Æ npr Æ p�= �r � xn Æ npr� [p℄(by de�nition of npr) � ([r℄� [r℄n ) [p℄= [r Æ p℄� [r Æ p℄n ;whi
h is what we wanted.3.18. Proposition. If p and q have any tame 
ommon left multiple, then[p "[ q℄ = [p℄ [ [q℄ :Proof. Let f = r Æ p = s Æ q be tame, then [f ℄ � [p℄ [ [q℄, and withn := [f ℄[p℄ [ [q℄ = [r℄ \ [s℄we have npf = npr Æ p = nps Æ qas another 
ommon left multiple, and this one has the appropriate degree [p℄ [ [q℄.The proof of the 
orresponding result for \# (5.2) is 
ompletely di�erent andsurprisingly needs a dis
ourse to rational fun
tion de
omposition.That the greatest 
ommon right 
omponents are independent of the ground�eld was not surprising, as this is so for greatest 
ommon divisors, too. But for
omplete fa
torizations the ground �eld is essential. Thus, prime de
ompositionshave a 
onsiderably simpler stru
ture in this respe
t, at least in the tame 
ase. Onthe other hand, every polynomial 
an be fa
tored into linear ones over its splitting�eld. There is no (known) 
ompositional repla
ement for this. One 
ould expe
tthat every polynomial 
an be de
omposed into ones of prime degree, whi
h aretrivially prime, just like the linear polynomials are trivially irredu
ible. But this,



22 Chapter I . Uniqueness Resultsby far, is not true, as most polynomials are prime. In fa
t, If f = r Æ p andg is some polynomial with [g℄ � [f ℄ � [p℄, then [(f + g)� pn℄ � [f ℄ � [p℄, thusp = npf = npf + g. Suppose f + g = r̂ Æ p; As f = r Æ p, g = (r � r̂) Æ p.Thus, for e.g. every polynomial g su
h that its degree is not a multiple of [p℄,f + g is inde
omposable. So for ea
h de
omposable polynomial we get a wholebun
h of prime polynomials of any degree. Another way to see this is looking atthe number of 
oeÆ
ients: r Æ p is 
omputed from [r℄ + [p℄ 
oeÆ
ients, whereas ageneral polynomial of the some degree has [r℄ � [p℄ 
oeÆ
ients.In this 
ontext it would be parti
ularly interesting to know what happens whende
omposing into algebrai
 fun
tions.Another interesting question is whether there is a 
ompositional repla
ementfor squarefree fa
torizations.x 4. Rational Fun
tion De
omposition4.1. Notation. The elements of the �eld |(x) will be 
alled rational fun
tions,as it 
onsists of all rational expression involving x. It is the quotient �eld of theintegral domain of polynomials |[x℄, thus the elements 
an be represented in theform pq , where p and q 6= 0 are polynomials. pq is said to be in prime form i� p andq are relatively prime. Of 
ourse, every rational fun
tion has a prime form whi
his unique up to 
onstant fa
tors.If f and g are rational fun
tions, then we 
an substitute g for the x in f to toget another rational fun
tion g(f). We get problems, however, if f is 
onstant andg has a pole at f . In this 
ase we assign a new 
onstant value 1 to g(f). Note,in parti
ular, that 1x Æ 0 = �1x Æ 0 = 1, thus 1 = �1. Consistently, we assigng( 1x )(0) to g(1), and we de�ne 1 Æ f = 1. So we 
an view rational fun
tionsas fun
tions from |(x)1 := |(x)[ f1g onto itself. Note that x then is viewed asthe identity fun
tion, and that g(x) = g, so di�erent rational fun
tions give rise todi�erent fun
tions. This justi�es the name rational fun
tion.As the rational fun
tions are really fun
tions, they 
an be 
omposed, and wehave f Æ g = f Æ g Æ x = (f Æ g)(x) = f(g(x)) = f(g);thus extending 
omposition of polynomials to rational fun
tions.We have done this rather pedanti
 introdu
tion of 
omposition to be sure thatasso
iativity is preserved even if 
onstants are involved. But now the following isimmediate.4.2. Proposition. (|(x)1; Æ) is a monoid with identity x. It 
ontains the sub-monoid of polynomials.4.3. Remark. A rational fun
tions f does not ne
essarily give rise to a fun
tionof | into itself, as it 
an have poles. But �f : a 7! f Æ a is a fun
tion of |1 intoitself. Note, however, that, if | is �nite, �f may vanish, without f being zero. Forexample, x2 + x 
orresponds to the zero fun
tion of Z2 into itself.4.4. Notation. Be
ause the rational fun
tions form a monoid, we 
an use the the-ory of x1. In parti
ular, we speak of right 
omponents of a rational fun
tion, its
omponent stru
ture, de
ompositions, and so on, just like for polynomials. How-ever, we have to be 
areful here, be
ause a polynomial, inde
omposable as an ele-ment of (|[x℄; Æ), 
ould have a non-trivial de
omposition into rational fun
tions. We



x 4. Rational Fun
tion De
omposition 23will prove at the end of this se
tion that this 
annot happen and that no ambiguityis possible here. Until then, the rational fun
tion meaning is used ex
lusively.Rational Fun
tion FieldsThough rational fun
tions have a more 
ompli
ated stru
ture than polynomials,there is one advantage: |(x) is a �eld, thus we 
an use the well developed theory of�eld extensions. We establish some important fa
ts in this area, mainly along thelines of [vdW66, x73℄.4.5. Notation. Let k and K be arbitrary �elds. If k � K, i.e., if k is a sub�eldof K, then K is 
alled an extension of k, and we denote it by K : k. Its degree, i.e.,the dimension of K as a ve
tor spa
e over k, is denoted by [K : k℄. Fields betweenk and K are 
alled the intermediate �elds of K : k. Extensions of the form k(f) : k,are 
alled simple. If L is another extension of k, then a homomorphism from K : kto L : k is one from K to L that �xes k. It is also 
alled a k-homomorphism.4.6. Remark. In parti
ular, for ea
h f 2 |(x), |(x) is a (simple) extension of|(f). In general, the intermediate �elds of |(x) : | are 
alled the rational fun
tion�elds.4.7. Proposition. Let f be a non-
onstant rational fun
tion. The mappingÆf : |(x)! |(f)g 7! g Æ fde�nes an isomorphism of the extension �elds |(x) : | and |(f) : |.Proof. We have to prove the distributive laws(g + h) Æ f = g Æ f + h Æ f(g � h) Æ f = g Æ f � h Æ fg�1 Æ f = (g Æ f)�1;but these are satis�ed by the de�nition as substitution. Also 1 Æ f = 1. Beinga homomorphism of �elds, the map is automati
ally inje
tive, it is onto by thede�nition of |(f). Obviously, the 
onstants are �xed.4.8. Remark. The distributive laws are also satis�ed if f is 
onstant, as long as1is not involved. More exa
tly, an indeterminate expression like1+1 or 00 must noto

ur. For example, ( 1x+ 1x )Æ0 = 2x Æ0 = 20 =1, but 1x Æ0+ 1x Æ0 = 10+ 10 =1+1;or xx Æ 0 = 1 Æ 0 = 1, but xÆ0xÆ0 = 00 .4.9. Proposition. Let f; h 2 |(x) thenf �! h () |(f)� |(h)f "�= h () |(f) = |(h)Proof. f �! h just means that h 2 |(f). But |(h) is the smallest �eld 
ontaining| and h, so |(f) � |(h). Conversely, from h 2 |(f), we have h  � f . The se
ondassertion is a trivial 
onsequen
e of the �rst.



24 Chapter I . Uniqueness Results4.10. Remark. This means that the 
omponent stru
ture of rational fun
tions,(|(x)="�=; �) 
an be embedded into the latti
e of intermediate �elds of |(x) : |,ordered by �. Note the reversion of the symbol.4.11. De�nition. We extend the notion of degree to rational fun
tions by de�ning[f ℄ := max([p℄; [q℄);where f = pq is in prime form.Note that f = pq must be in prime form to make this well-de�ned.4.12. Notation. As |(x) is a �eld, it will be 
onvenient to 
onsider polynomialsover |(x). For this reason, we 
hoose a new variable y to denote the indeterminateof su
h polynomials. Thus polynomials over a rational fun
tion �eld are understoodto be elements of |(x)[y℄.We 
ite one form of Gau�'s lemma ([Coh77℄ or [vdW66, x30℄). Note that apolynomial over a ring is 
alled primitive i� its 
oeÆ
ients are 
oprime.4.13. Lemma (Gau�). A polynomial over |[x℄ is irredu
ible i� it is primitive andirredu
ible over |(x).4.14. Proposition. Let f = pq 2 |(x) be a non-
onstant rational fun
tion inprime form. Then |(x) : |(f) is a �nite �eld extension. The minimal polynomialof x over |(f) is given by m(y) = p(y)� f � q(y);thus [|(x) : |(f)℄ = [f ℄.Proof. Obviouslym(y) 2 |(f)[y℄, and it satis�esm(x) = p(x)�f �q(x) = p�pq �q = 0.Thus x is algebrai
 over |(f). m(y) has degree max([p℄ ; [q℄) = [f ℄ (in y), So, if we
an show that m(y) is irredu
ible over |(f), all the remaining assertions are also
lear.Note that the �eld |(f) is isomorphi
 to |(x), thus we 
an treat f as anindependent variable. Be
ause m(y) 2 |[f ℄[y℄, and |[f ℄[y℄ = |[y℄[f ℄, we 
an alsoview m(y) as a polynomial in f over |(y). As su
h, it is linear, hen
e irredu
ible,and primitive be
ause p and q are 
oprime. Thus, by Gau�'s lemma, m(y) is alsoirredu
ible in |[y℄[f ℄ = |[f ℄[y℄. Hen
e, again by Gau�'s lemma, irredu
ible over|(f).4.15. Theorem (L�uroth). All rational fun
tion �elds are simple, i.e., of the form|(f) for some rational fun
tion f .Proof. E.g. [vdW67℄ or [Coh77℄ 
ontain elementary proofs. They make essentialuse of Proposition 4.14 and Lemma 4.13.4.16. Corollary. The 
omponent stru
ture of rational fun
tions, (|(x)1="�=; �),is isomorphi
 to the latti
e of intermediate �elds of |(x) : |, ordered by �.Proof. We have already remarked (4.10) that (|(x)1=="�=; �) 
an be embedded intothe latti
e of intermediate �elds. But L�uroth's theorem ensures that this embeddingis surje
tive.



x 4. Rational Fun
tion De
omposition 25Component Latti
e4.17. Proposition.(i) The degree fun
tion is a homomorphism from (|(x)1; Æ) onto (N0 ; �), i.e.,[g Æ f ℄ = [g℄ [f ℄for all rational fun
tions f and g.(ii) The units of (|(x)1; Æ) are those of degree 1.(iii) f is a right 
an
ellable element of (|(x)1; Æ) i� it is not 
onstant.Proof.(i) If one of f and g is 
onstant so is g Æ f , and the result is immediate. Thusassume that both are non-
onstant. Then both |(gÆf) : |(f) and |(f) : |(x)are �nite �eld extensions, thus[g Æ f ℄ = [|(x) : |(g Æ f)℄ = [|(f) : |(g Æ f)℄[|(x) : |(f)℄℄= [|(x) : |(g)℄[|(x) : |(f)℄ = [g℄ [f ℄ :(ii) One 
an use the degree fun
tion, just as for polynomials (Proposition 2.5).Here is another possibility: Let f be non-
onstant. Using the inje
tivityof the isomorphism in proposition 4.7, g Æ f = 0 implies g = 0. So, bythe distributive law, f is right 
an
ellable. Conversely, 
onstants are not
an
ellable: g(
) = h(
) just means that g and h have the same value on 
.(iii) By the �rst part, every unit must have degree 1. On the other hand[|(x) : |(u)℄ = 1 whenever [u℄ = 1. Thus u indu
es an automorphism of|(x) (
f. 4.7), mapping some element v to x, i.e., v Æ u = x.The multipli
ativity of the degree is parti
ularly good news. For example,it allows us to 
ompute 
omplete de
ompositions of rational fun
tions, by an ap-proa
h with indetermined 
oeÆ
ients, just like in the polynomial 
ase (2.6). Thepolynomial time algorithm in [Zip91℄ also works for rational fun
tions, in fa
t, wasdesigned for this 
ase. [AGR℄ 
ontains an algorithm that has exponential worst
ase 
omplexity, but is faster in pra
ti
e.4.18. Proposition. Let both g = rs and f = pq be rational fun
tions in primeform.(i) r Æ p and s Æ p are relatively prime.(ii) Let u := (r Æ f) � q[g℄;v := (s Æ f) � q[g℄;i.e., with r =Pni=0 rixi and s =Pmi=0 sixiu := rnpnq[g℄�n + rn�1pn�1 � q[g℄�n+1 + � � �+ r0q[g℄v := smpmq[g℄�m + sm�1pm�1 � q[g℄�m+1 + � � �+ s0q[g℄Then g Æ f = uv is in prime form.(iii) If g Æ f is a non-
onstant polynomial and [p℄ > [q℄, then both f and g arepolynomials.Proof.



26 Chapter I . Uniqueness Results(i) As r and s are 
oprime, a � r+ b � s = 1, for some polynomials a; b (Bezout'srelation). We substitute p, and geta(p) � r(p) + b(p) � s(p) = 1;thus r(p) and s(p) are 
oprime again.(ii) As above, we substitute f into Bezout's relation: a(f) �r(f)+b(f) �s(f) = 1.This time, however, rational fun
tions are involved. To transform this intoa relation involving only polynomials, we multiply by an appropriate powerof q to get an equation of the form~a � u+~b � v = qk;su
h that both ~a and ~b are polynomials. So g
d(u; v) must divide qk. Butat least one of u and v has the form rnp[g℄ + q � (: : : ) or smp[g℄ + q � (: : : ),respe
tively, so is 
oprime to q, as p and q are 
oprime. Thus g
d(u; v) = 1.(iii) If g Æ f is a polynomial, then [v℄ = 0. But [p℄ > [q℄ implies0 = [v℄ = m [p℄ + ([g℄�m) [q℄ :As [g℄ � m and [p℄ > [q℄ � 0, we 
on
lude m = 0. But then [g℄ [q℄ = 0, so[q℄ = 0, as [g℄ 6= 0.Thus we have got the prime form of g Æ f quite expli
itly in terms of that of fand g. No polynomial g
d-
omputation is ne
essary for its 
omputation.4.19. De�nition. A sublatti
e S of a latti
e L is 
onvex i� for all a; b 2 S and
 2 L, a � 
 � b implies 
 2 S.4.20. Theorem.(i) The 
omponent latti
e of a polynomial is independent whether is 
onsideredin (|(x)1; Æ) or in (|[x℄; Æ).(ii) The 
omponent latti
e of polynomials is a 
onvex sublatti
e of the 
omponentlatti
e of rational fun
tions.Proof. If p and q are left asso
iated polynomials, then p = u Æ q for some somefra
tional linear fun
tion u. Thus, with 4.18.(iii), u is a linear polynomial. Hen
ewe 
an identify (|[x℄="�=; "[;\# ) with a subset of (|(x)1="�=; "[;\# ).Suppose that gÆf is a polynomial and f = pq . If [p℄ > [q℄, we 
an apply 4.18(iii)dire
tly. If [p℄ < [q℄, we apply it to the asso
iated de
omposition (g Æ 1x ) Æ qp . In the
ase [p℄ = [q℄ the quotient of the Eu
lidean division of p by q is some 
onstant, say
, thus p = 
 � q + r, where r is the remainder (so [r℄ < [q℄), thuspq = 
+ rq = (
+ x) Æ rq ;and again we get an asso
iated de
omposition to whi
h the proposition 
an beapplied. In any 
ase, the de
omposition is left asso
iated to one using only poly-nomials. This proves that the 
omponent latti
es are the same.For the se
ond part, it remains to show that, for arbitrary polynomials p and q,p "[q is (left asso
iated to) a polynomial. If p "[q is 
onstant, this is trivial. Otherwisewrite it in the form p "[ q = rs Æ p = r̂̂s Æ q;



x 5. The Invariant Integers 27then, rÆpsÆp = r̂ÆqŝÆq , and, by the �rst part of proposition 4.18 both sides are in primeform. Thus, up to a 
onstant fa
tor, rÆp = r̂Æq and sÆp = ŝÆq. The non-
onstantone is a polynomial 
ommon left multiple whose degree is � [p "[ q℄.Expressed less formally, this theorem says that we never have to take 
arewhether notions like right 
omponent, 
omponent latti
e of f , least 
ommon leftmultiple, prime de
omposition are relative to the monoid of polynomials or that ofrational fun
tions. x 5. The Invariant IntegersWe 
ontinue 
onsidering tame polynomials over the �eld |.5.1. Lemma. Suppose the polynomials p and q have a tame 
ommon left multiple,but no nontrivial 
ommon right 
omponent, i.e., p \# q = x. Then their degrees are
oprime, i.e., [p℄ \ [q℄ = 1.Proof. Let p "[ q = r Æ p = s Æ q. From proposition 3.18,[p "[ q℄ = [p℄ [ [q℄ = [r℄ [p℄ = [s℄ [q℄ :Thus [r℄ \ [s℄ = 1, and we will prove [p℄ = [s℄, [q℄ = [r℄. Obviously, [p℄ � [s℄ and[q℄ � [r℄, and [p℄ > 0. We show [p℄ � [s℄, then [q℄ � [r℄ follows by symmetry, provingthe proposition.De�ne the polynomial m(y) = s(y)� r Æ p, thus m(y) 2 |(p)[y℄, with degree [s℄in y. Then m(q) = s(q)� r Æ p = 0. This means (
f. Proposition 4.14),[|(p)(q) : |(p)℄� [s℄ :But from 
orollary 4.16,|(p)(q) = |(p; q) = |(p\# q) = |(x):As [|(x) : |(p)℄ = [p℄, [p℄ � [s℄.5.2. Proposition. If polynomials p and q have a tame 
ommon left multiple, then[p \# q℄ = [p℄ \ [q℄ :Proof. One simply gets rid of the 
ommon 
omponent using Taylor division anduses the lemma. In detail: Let t = p \# q. We already have t � [p℄ \ [q℄ (
f. Remark2.24). By Taylor division, there are unique polynomials ~p and ~q su
h that p = ~p Æ tand q = ~q Æ t. By the lemma, [~p℄ \ [~q℄ = 1. But [~p℄ [t℄ = [p℄ and [~q℄ [t℄ = [q℄, so[t℄ � [p℄ \ [q℄.Somewhat strange, we need the existen
e of a nontrivial 
ommon multiple toprove this property of 
ommon 
omponents. Note that the 
orresponding equalityfor "[ has been proved 
ompletely di�erently, and was in fa
t used here.5.3. Corollary. Prime bide
ompositions permute the degrees, i.e., in the primebide
omposition r Æ p = s Æ q, [p℄ = [s℄ and [r℄ = [q℄ :Now we are �ne out and have got the essential result of this 
hapter:5.4. Theorem. The 
omponent latti
e of a tame polynomial f is isomorphi
 to asublatti
e of the divisor latti
e of [f ℄. The degree fun
tion provides the embedding.



28 Chapter I . Uniqueness ResultsProof. By the 
orollaries 3.18 and 5.2, the degree is a latti
e homomorphism, andby theorem 3.12 it is inje
tive.5.5. Example. Let f = x12. Its right 
omponents are x; x2; x3; x4; x6; x12. Thus,in this 
ase, the right 
omponent latti
e of f is even isomorphi
 to the divisor latti
eof 12. Of 
ourse, we have the same situation with all polynomials of the form xn.The Di
kson polynomials (des
ribed in Chapter II) provide a 
lass of polynomialswith the same property.5.6. Remark. Of 
ourse, these polynomials are rather spe
ial. It is not surprisingthat most polynomials miss 
omponents of 
ertain degrees. Conversely it is some-what remarkable that, if a polynomial has right 
omponents of degrees e.g. 6 and 4,then it has also one of degree 2, be
ause 2 = 6 \ 4, and the 
omponent latti
e isa sublatti
e. This 
an save us a lot of 
omputations, if we want to know all primede
ompositions of a given polynomial.5.7. Example. Let us re
onsider the polynomial f from Example 3.14. It hasright 
omponents of degrees 3 and 4, but not of degrees 2. Hen
e it 
annot haveone of degree 6, whi
h frees us from testing the 
andidate of degree 6. Additionally,it was unne
essary in that example to test whether r is prime, be
ause that wouldimply a right 
omponent of degree 6.Summarizing, the right 
omponent latti
e of f is isomorphi
 to the latti
e1 � 3; 4 � 12, whi
h is a proper sublatti
e of the divisor latti
e of 12.5.8. Corollary. The 
omponent latti
e of any tame polynomial is distributive.Proof. By the theorem, it is (homomorphi
 to) a sublatti
e of the distributive latti
e(N;�).Note that every bounded sublatti
e of (|[x℄n; �), not 
ontaining 0, is a sub-latti
e of the 
omponent latti
e of some polynomial (namely the maximum).5.9. De�nition. A latti
e is 
alled to have some property lo
ally i� it is true forevery bounded sublatti
e that does not 
ontain a global maximum.With this notion we 
an express our lo
al result in a global form:5.10. Corollary. Let 
har|= 0. Then the latti
e (|[x℄n; �) is embedded lo
allyinto (N ;�) by the degree fun
tion. Thus it is lo
ally distributive.Proof. By the assumption about the 
hara
teristi
, every bounded sublatti
e not
ontaining 0 is the 
omponent latti
e of a tame polynomial. Thus the assertionfollows with the theorem and its 
orollary.Using our abstra
t theory of x1 we get the 
lassi
al result on prime de
ompo-sitions as a 
orollary to our Theorem 5.45.11. Theorem (Ritt). Let f be a tame polynomial.(i) All prime de
ompositions of f are related.(ii) The number and the degrees of the 
omponents in a prime de
omposition,but not ne
essarily their order, are invariant.



x 5. The Invariant Integers 29Proof. The right 
omponent stru
ture is distributive, thus modular, thus semimod-ular. Thus theorem 1.10 
an be used. By 
orollary 5.3, prime bide
ompositionsjust permute the degrees.Using theorem 4.7, there is another interesting 
onsequen
e.5.12. Corollary. For every tame polynomial f the latti
e of intermediate �eldsof |(x) : |(f) is isomorphi
 to a sublatti
e of [f ℄, hen
e is distributive and all itsmaximal 
hains are related.5.13. Remark. To proof that all prime de
ompositions are related one just needsthat the 
omponent latti
e is semimodular. No easier proof for semimodularitythan that via distributivity via the embedding into the integers is known, norhandy 
onditions on a non-tame polynomial for having a semimodular 
omponentlatti
e.The theorem leaves open the question, how many bide
ompositions there areand how they look like. This is the topi
 of the next 
hapter.





CHAPTER IIChara
terization of Prime Bide
ompositionsx 1. Bide
ompositionsThis 
hapter 
ontains a simpli�ed proof of Ritt's 
hara
terization of all prime bide-
ompositions of the monoid (|[x℄; Æ).1.1. Example. An easy example of bide
ompositions is given by the powers, be-
ause they, trivially, satisfy xm Æ xn = xn Æ xm:This 
an be generalized a bit to(xm � t(x)n) Æ xn = xn Æ (xm � t(xn)); (1)for an arbitrary polynomial t, as 
an be veri�ed immediately. A se
ond important
lass 
omes from the Di
kson polynomials, as de�ned in the next se
tion. Theysatisfy Dm(x; an) ÆDn(x; a) = Dn(x; am) ÆDm(x; a); (2)for all 
onstants a.1.2. De�nition. Let r Æ p = s Æ q be a bide
omposition. For all units a; b; 
; d thebide
omposition(a Æ r Æ b) Æ (bÆ�1 Æ p Æ 
) = (a Æ s Æ d) Æ (dÆ�1 Æ q Æ 
)is 
alled asso
iated to the original one.1.3. De�nition. A bide
omposition asso
iated to one of type (1) is 
alled expo-nential , one asso
iated to one of type (2), but not of type (1), is 
alled trigonometri
.1.4. Notation. With |alg we denote the algebrai
 
losure of |.We will need a stronger hypothesis than just tame:1.5. De�nition. A tame polynomial f is 
alled 
ompletely tame i� for all e 2|alg, f � e has no zero (in |alg) whose multipli
ity � is a multiple of 
har|. A(bi)de
omposition is 
ompletely tame i� all its 
omponents are.1.6. Remark. Again, in the 
ase of 
hara
teristi
 0, 
ompletely tame just meansnon-
onstant. Otherwise a suÆ
ient 
ondition is [f ℄ < 
har|.Now we 
an express the theorem that we want to proof in the next �ve se
tions.1.7. Theorem (Ritt). All 
ompletely tame prime bide
ompositions over a �eld notof 
hara
teristi
 2 are either exponential or trigonometri
.1.8. Corollary. 31



32 Chapter II . Chara
terization of Prime Bide
ompositions(i) Over a �eld of 
hara
teristi
 0 all prime bide
ompositions are either expo-nential or trigonometri
.(ii) If 
har| 6= 0 then all prime bide
ompositions using polynomials of degrees< 
har| are either exponential or trigonometri
.This theorem again goes ba
k to [Rit22℄, with generalizations in [Lev42℄, [LN73℄,[DW74℄, [S
h82℄.The proof given here is 
ompletely elementary, in the sense that, ex
ept for theresults proved in 
hapter I, the basi
 theory of �eld extensions is the most advan
edmathemati
s involved. Nevertheless it is not longer, quite on the 
ontrary, somesimpli�
ations, just in the most involved passages, were possible. Our s
hedule willbe as follows.After dis
ussing some not so widely known properties of Di
kson (or Cheby-shev) polynomials and of the Ts
hirnhaus transform, we will take a 
loser look atthe rami�
ation stru
ture of the 
omponents in a bide
omposition. Then, in x5,we 
an give a 
ondition for a bide
omposition to be exponential. The same is donein x6 for the trigonometri
 
ase. As exa
tly one of these two 
onditions is alwayssatis�ed the proof is 
omplete then.From Proposition I.3.12 we see that every bide
omposition that is prime overan extension �eld of | is also prime over |. Nevertheless we 
annot simply restri
tus to algebrai
ally 
losed �elds, be
ause the theorem says more: that every primebide
omposition is asso
iated to one of the spe
i�ed types, and polynomials over| that are asso
iated over an extension �eld need not be asso
iated over |. Onemay obtain this stronger result from that for algebrai
ally 
losed �elds by a 
arefulanalysis of the linear polynomials involved as in [S
h82℄. As an alternative, we givethe proof in a version that dire
tly proves the 
hara
terization for general �elds.On the other hand, every bide
omposition is asso
iated (even over the ground�eld |) to one 
ontaining only moni
 polynomials. Therefore we 
an restri
t our-selves to moni
 polynomials whenever we want.x 2. Di
kson PolynomialsAs the Di
kson polynomials 
onstitute bide
ompositions, a 
loser look at theirproperties will be useful.2.1. De�nition. Let a 2 |. We de�ne the Di
kson polynomials Dn(x; a) re
ur-sively asDn+2(x; a) = x �Dn+1(x; a)� aDn(x; a); D0(x; a) = 2; D1(x; a) = x:Instead of Dn(x; 1) we sometimes simply write Dn.Note. The 
lassi
al Chebyshev polynomials tn, de�ned by 
osnx = tn(
osx), are
onjugate to our Di
kson polynomials by tn(x) = 12Dn(2x; 1). One advantage ofthe usage of Di
kson polynomials instead of Chebyshev ones is that they are moni
.Using the additional parameter we sometimes 
an avoid extensions of the 
onstant�eld. Confer the next remark and the dis
ussion at the end of the �rst se
tion.[LMT93℄ 
ontains a detailed treatment of su
h polynomials. For 
onvenien
ewe mention some well-known and easy to establish properties.2.2. Proposition. The Di
kson polynomials satisfy(i) Dn(�x; �2) = �nDn(x; 1),



x 2. Di
kson Polynomials 33(ii) Dn(x; a) Æ (x+ ax�1) = (x+ anx�1) Æ xn,(iii) Dm(x; an) ÆDn(x; a) = Dnm(x; a) = Dn(x; am) ÆDm(x; a),for arbitrary 
onstants a and �.2.3. Remark. Obviously Dn(x; 0) = xn, and part (i) of this proposition in par-ti
ular says that for � 6= 0 Dn(x; �2) �= Dn:Thus, if | is algebrai
ally 
losed, or at least 
losed under the square root operation,the extra parameter is super
uous for the 
hara
terization of prime bide
omposi-tions. But for the general 
ase it is needed.Note. Using Proposition 2.2 it is easy to prove a well known di�erential equationfor Di
kson polynomials (D2n � 4) � n2 = (x2 � 4) �D0n2:Conversely, the Di
kson polynomials Dn, together with their negatives �Dn, 
on-stitute all polynomial solutions to this di�erential equation. This is proved e.g. in[LN73℄ and, in an even stronger form, in [S
h82℄. The idea in the latter referen
eis used in the proof of the next lemma, whi
h will be enough for our purposes.2.4. Lemma. Let K be any �eld not of 
hara
teristi
 2. If a polynomial f ofdegree n over K satis�es f � 2�n = (x� 2�) � g2�f + 2�n = (x+ 2�) � g2+for some polynomials g�; g+ 2 K[x℄ and �(6= 0) 2 K, thenf = Dn(x; �2):Proof. Note that n must be odd. Let a = �2. We substitute x+ ax�1 into the �rstequation and multiply by xn; thus obtain(f(x+ ax�1)� 2�n) � xn = (x+ ax�1 � 2�) � x � g2�(x+ ax�1) � xn�1= (x� �)2 � g2�(x+ ax�1) � xn�1= h2�for some polynomial h�, be
ause [g�℄ = n�12 . Similarly(f(x+ ax�1) + 2�n) � xn = h2+:Substra
ting these two equations we get4�nxn = h2+ � h2� = (h+ + h�) � (h+ � h�) (�)But both h+ and h� have degree n. As 
harK 6= 2, we 
an 
hoose the signs su
hthat [h+ + h�℄ = n. But then [h+ � h�℄ = 0, thus h+�h� = 
 for some 
onstant 
.We substitute � for x into equation (�) to obtain4an = (2h�(�) + 
) � 
:Using h�(�) = 0 we see 
2 = 4an, thus 
an assume 
 = 2�n. Now equation (�)turns into 4�nxn = (2h+ � 2�n) � 2�n;



34 Chapter II . Chara
terization of Prime Bide
ompositionsfrom whi
h it follows that h+ = xn+�n and 
onsequently h� = xn��n. Thereforef(x+ ax�1) + 2�n = x�n � (xn + �n)2= xn + 2�n + anx�n;thus f(x+ ax�1) = xn + ax�n;whi
h is the 
hara
teristi
 equation for a Di
kson polynomial (2.2).The assumption in 2.4 was rather spe
ial. Using linear transformations we 
anmake it more general.2.5. Corollary. Let K � | be an extension �eld of k. If a polynomial f over |satis�es f � e1 = (x� �1) � g21f � e2 = (x� �2) � g22;for some 
onstants �1; �2 2 K, polynomials g1; g2 over K, and e1, e2 2 K that aretwo di�erent solutions of some quadrati
 equation over |, then f �= D(x; a) (evenas polynomials over |) for some a 2 |.Proof. If | is algebrai
ally 
losed this is rather trivial. The point is to show thatno �eld extensions are ne
essary.Being the solution of a quadrati
 equation, the ei have the forme1;2 = e0 � �for some e0 2 | and � 2 K su
h that �2 2 |.In parti
ular, the f � ei are polynomials over |[�℄, and so are x � �i, as theyare fa
tors of a square-free fa
torization over |[�℄. Thus the �i 
an be written as�0 � 
i�, with �0; 
1; 
2 2 |. But �1 + �2 2 |, so 
1 = �
2, and we have morepre
isely �1;2 = �0 � 
�for some �0; 
 2 |. Let n = [f ℄; after multiplying with 2�n�1 (2 |, as n is odd) theequations look like2�n�1(f � e0)� 2�n = (x� �0 � 
�)2�n�1g21;2:Thus ~f := 2�n�1(x� e0) Æ f Æ ( 
2x+ �0) �= f satis�es~f � 2�n = (x� 2�) � �n�1�g1;2( 
2x+ �0)�2;whi
h is in the form required to use the lemma, thus ~f = Dn(x; �2) and f �=Dn(x; �2), even over |.x 3. The Ts
hirnhaus Transform3.1. De�nition. Let p; q 2 |[x℄, q 6= 0 moni
 with 
anoni
al fa
torizationQi(x� �i)�i over its splitting �eld. Then the Ts
hirnhaus transform of q by p,denoted by pq is de�ned by pq :=Yi (x� p(�i))�i :



x 4. Rami�
ation 35In other words, we obtain the Ts
hirnhaus by transforming the zeros of q byp. As a symmetri
 fun
tion of the zeros of q, it is 
lear that it is a polynomialover |. In fa
t, the Ts
hirnhaus 
an easily be expressed without any referen
e toan extension �eld as a resultant:3.2. Proposition. For any polynomials p, q, we have, up to the sign,pq(y) = resx(p(x)� y; q(x)):Proof. Let q = Qi(x � �i)�i as above. Then by an elementary property of theresultant resx(p(x)� y; q(x)) =Yi (p(�i)� y)�i = �pq(y):For bide
ompositions the following property turns out to be most useful.3.3. Proposition. Let f = r Æ p = s Æ q be a prime bide
omposition using moni
polynomials; then p(q � b) = r � s(b):Proof. Let q � b = Qi(x � �i). Thus p(q � b) = Qi(x � p(�i)) and p(�i) is also azero of r(x)� s(b), be
ause r(p(�i)) = s(q(�i)) = s(b).Assume that b is trans
endental. Then all the �i are distin
t and trans
en-dental, as q is tame. Suppose p(�1) = p(�2). As p and q have no 
ommon right
omponent, L�uroth's Theorem (4.15), provides a rational fun
tion f su
h thatf(p; q) = x. Now�1 = f(p; q)(�1) = f(p(�1); q(�1)) = f(p(�2); q(�2)) = �2;where the trans
enden
y of the �i guarantees the validity of substitution here. Butthis means, that p maps the zeros of q � b inje
tively to the zeros of r � s(b). As[p℄ = [q℄, this is even a bije
tion, and the proof is 
omplete for trans
endental b.For arbitrary b we 
hoose some new trans
endental element, say y. Thenp(q � y) = r � s(y). Proposition 3.2 allows us to substitute b for y here, thus pro-viding the full assertion. x 4. Rami�
ation4.1. De�nition. Let f be a polynomial. We say that e is a rami�
ation pointof f i� f � e and f 0 have a 
ommon zero. The degree of g
d(f � e; f 0) is 
alledthe (rami�
ation) index of f at e and is denoted by inde f . If f 0 6= 0 has leading
oeÆ
ient 
, we 
all the Ts
hirnhaus transform f(1
f 0) the rami�
ation polynomialof f (this name is justi�ed by the next proposition).4.2. Proposition. Suppose that the rami�
ation polynomial of f has the 
anoni
alfa
torization over |alg ff 0 =Yi (x� ei)"i ;then the ei are just the rami�
ation points of f andindei f = "i:



36 Chapter II . Chara
terization of Prime Bide
ompositionsProof. inde f 
ounts the number of zeros � of f 0, with multipli
ities, that ful�llf(�) = e. But the Ts
hirnhaus transforms exa
tly these zeros, together with theirmultipli
ity, into the zero e of the rami�
ation polynomial.4.3. Corollary. Let f be a tame polynomial. ThenXe2|alg inde f = [f ℄� 1:Proof. Tameness guarantees that [f 0℄ = [f ℄� 1. So this is a trivial 
onsequen
e ofthe proposition.4.4. Example. Let us 
onsider our standard example from 
hapter I:f = x12+12x11+66x10+223x9+522x8+900x7+1179x6+1188x5+918x4+533x3+222x2+60x;
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

-8.1

-8.05

-7.95

Its rami�
ation polynomial (
omputed from resx(f � e; f 0))rr0(e) = (e+ 8)8 � (e+ 2075256 )3tells us that �8 and � 2075256 � �8:10547 are its rami�
ation points (obvious alsofrom the pi
ture) with indi
es 8 and 3, respe
tively (not obvious from the pi
ture).Observe that we 
an read o� the number of rami�
ation points and their indi
esalready from the squarefree fa
torization of the rami�
ation polynomial.The next proposition, whi
h will be used frequently, unfortunately needs 
om-pletely tame as hypothesis (De�nition 1.5).4.5. Proposition. Suppose that f is 
ompletely tame and e 2 |alg. If f � e =Q(x� ai)�i is the 
anoni
al fa
torization, theninde f =Xi (�i � 1):Proof. As f was assumed to be 
ompletely tame, all �i 6= 0 (mod 
har|). Thusthe multipli
ity of ai in f 0 is �i � 1, whi
h proves the result.4.6. Example. We 
ontinue with our f . We havef + 8 = (x+ 1)3 � (x+ 2)3 � (x2 + x+ 1)3:The �rst two zeros are 
lear from the graph, the remaining two are 
omplex. Allfour zeros have multipli
ity 3, thus ind�8 f = (3�1)+(3�1)+(3�1)+(3�1) = 8, as



x 4. Rami�
ation 37we have already seen from the rami�
ation polynomial. For the se
ond rami�
ationpoint we get the fa
torizationf + 2075256 = (x3 + 3x2 + 3x+ 54 )2 � (x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316);thus it has three double zeros, the remaining being simple. Again we verify thatthe index at this point is (2� 1) + (2� 1) + (2� 1) = 3.4.7. Remark. The polynomials with only one rami�
ation point are exa
tly thosewhi
h are asso
iated to some power xn.4.8. Convention. For the rest of this se
tion and the following two ones we �x a
ompletely tame prime bide
ompositionf = r Æ p = s Æ qwith n = [p℄ = [s℄ and m = [q℄ = [r℄. We assume all these polynomials to be moni
.For every point e 2 |alg we use the following 
anoni
al fa
torizations over |algr � e = �Yi=1(x� ai)�is� e = �Yj=1(x� bj)�j :Then f � e = �Yi=1(p� ai)�i= �Yj=1(q � bj)�j=Yi;j 
ijY�=1(x� �ij�)"ij� ;where the �ij� should be the zeros of f � e 
lassi�ed a

ording to p(�ij�) = ai andq(�ij�) = bj ; the "ij� denote their multipli
ities and the 
ij the number of su
hzeros. Comparing the above fa
torizations we see that for all i resp. j(p� ai)�i =Yj 
ijY�=1(x� �ij�)"ij� (3)(q � bj)�j =Yi 
ijY�=1(x� �ij�)"ij� : (4)All these notions depend on the point e. If it is ne
essary to indi
ate thisdependen
e, we use upper indi
es: a(e)i , �(e)ij� and so on.4.9. Example. As dete
ted in 
hapter I, Example 3.14, our polynomial f has thebide
ompositionf = r Æ p = s Æ q= (x4 + 7x3 + 18x2 + 20x) Æ (x3 + 3x2 + 3x) = (x3 + 6x2 + 12x) Æ (x4 + 4x3 + 6x2 + 5x):



38 Chapter II . Chara
terization of Prime Bide
ompositionsLet us 
ompute the fa
torizations for this example. For the �rst rami�
ation point,�8, we get r + 8 = (x+ 1) � (x+ 2)3;s+ 8 = (x+ 2)3:Thus a1 = �1, �1 = 1; a2 = �2, �2 = 3; b1 = �2, �1 = 3. With these zeros we
ontinue fa
toring p+ 1 = (x+ 1)3;p+ 2 = (x+ 2) � (x2 + x+ 1);q + 2 = (x+ 1) � (x+ 2) � (x2 + x+ 1):Of 
ourse, we have got the zeros of f again, now 
lassi�ed a

ording to their valuesby r and s, respe
tively:
11 = 1; "111 = 3; �111 = �1;
21 = 3; "211 = "212 = "213 = 3; �211 = �2;and �212 and �213 satisfy x2 + x+ 1.We do the same for the se
ond rami�
ation pointr + 2075256 = (x+ 54 ) � (x2 + 98x+ 83256);s+ 2075256 = x3 + 6x2 + 12x+ 2075256 :Thus a1 = � 54 , with �1 = 2, and a2 and a3 are zeros of (x2 + 98x + 83256), with�2 = �3 = 1, whereas b1, b2, and b3 all satisfy an irredu
ible polynomial of degree 3,with �1 = �2 = �3 = 1. Be
ausep+ 54 = x3 + 3x2 + 3x+ 54 ;we have got ba
k one of the fa
tors of f � 2075256 . We 
ontinue 
omputing fa
toriza-tions p2 + 98p+ 83256 = x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316 ;q3 + 6q2 + 12q + 2075256 = (x3 + 3x2 + 3x+ 54 )2 � (x6 + 6x5 + 15x4 + 452 x3 + 452 x2 + 272 x+ 8316 );and obtain the remaining fa
tors of f � 2075256 .4.10. Lemma. For all i; j we have�i�j = 
ijX�=1 "ij�:In parti
ular "ij� � �i�j for all i; j; �.Proof. Using the Ts
hirnhaus transform we get for ea
h jp(q � bj)�j =Yi 
ijY�=1 p(x� �ij�)"ij�=Yi 
ijY�=1(x� p(�ij�))"ij� :=Yi 
ijY�=1(x� ai)"ij� =Yi (x� ai)P� "ij� :



x 5. Exponential Solutions 39But on the other hand, using Proposition 3.3,p(q � bj)�j = (r � s(bj))�j = (r � e)�j =Yi (x� ai)�i�j ;and this 
anoni
al fa
torization must 
oin
ide with that obtained before.4.11. Remark. Remember the symbolism for the latti
e (N ;[;\). We will fre-quently use the following simple properties:n � m =) n � m;n � m =) n � m2 ;valid for all n;m 2 N .4.12. Lemma. For all i; j; � we have"ij� � �i [ �j
ij � �i \ �j :Proof. From the fa
torization (3) we see that "ij� � �i. Similarly "ij� � �j . Thus"ij� � �i [ �j and the �rst inequality is 
lear. From this, together with Lemma4.10, �i�j = 
ijX�=1 "ij� � 
ij(�i [ �j):We divide by �i [ �j and obtain the se
ond inequality.4.13. Lemma. For all i we haveindai p =Xj (�j � 
ij) �Xj (�j � �i \ �j):Proof. Using Proposition 4.5 we getindai p =Xj 
ijX�=1�"ij��i � 1� =Xj  
ijX�=1 "ij��i � 
ijX�=1 1! =Xj (�j � 
ij):The inequality then follows from the previous lemma.x 5. Exponential SolutionsThe following result now has got a dire
t and 
onsiderably shorter proof.5.1. Proposition. If s has only one rami�
ation point, then our bide
ompositionis exponential.Proof. Let e be the unique rami�
ation point. Then e 2 |, and in our fa
torizations� = 1; �1 = n;where n must be prime by the primality of s. Hen
e some �i is relatively prime ton as p is prime. Thus let us assume n \ �1 = 1. Now from Lemma 4.13n� 1 � inda1 p � �Xj=1(�j � �1 \ �j) = n� �1 \ n = n� 1:



40 Chapter II . Chara
terization of Prime Bide
ompositionsThus a1 is the unique rami�
ation point of p, and as su
h is in |. For i 6= 1 wehave 0 = indai p � n� �i \ n;hen
e �i � n. So r has the formr � e = (x� a1)�1 � tnfor some polynomial t. a1 and the 
oeÆ
ients of t are elements of | be
ause they
an be 
omputed from the squarefree fa
torization. The form of q is determined bythe other three polynomials.5.2. Example. The bide
omposition of the examples in the previous se
tion isexponential, be
ause s has the single rami�
ation point �8, as s+ 2075256 is squarefree,i.e., it splits into linear fa
tors over |alg. In fa
t, it is veri�ed immediately that allpolynomials have the spe
i�ed forms.Be
ause the results in this se
tion are symmetri
 in the sense that we 
aninter
hange the rôles of the two de
ompositions r Æ p and s Æ q, we 
an summarize5.3. Proposition. If at least one of the two polynomials r and s has only onerami�
ation point, then our bide
omposition is exponential.x 6. Trigonometri
 SolutionsThe next proposition is very important for our simpli�
ations. First we need ate
hni
al lemma.6.1. Lemma. Suppose that the �i 2 N have no 
ommon divisor, i.e., Ti �i = 1.Then for all � 2 N Xi (� � �i \ �) � � � 1:Proof. Suppose that �i is not a multiple of �. Then �i \ � � �, thus � �2 , and thei-th summand is � �2 . If there are two su
h summands, then they sum up to � andthe lemma is proved. Thus 
onsider the 
ase that �i � � for all but at most one i.Take i = 1 for the possible ex
eption. Then1 =\i �i = �1 \\i6=1�i � �1 \ �;thus �1 \ � = 1, and we just have to look at the �rst summand � � �1 \ � = � � 1to prove the lemma also in this 
ase.6.2. Proposition. If r has at least two rami�
ation points, thenXi indai p = indes:Proof. Be
ause r � e is not asso
iated to a power, but prime, T�i = 1. Thus we
an apply the lemma for all �j :Xi (�j � �i \ �j) � �j � 1:



x 6. Trigonometri
 Solutions 41Now we take the sum over all j and, together with Lemma 4.13, obtain the estima-tion Xi indai p �Xi Xj (�j � �i \ �j) �Xj (�j � 1) = indes;thus proving the �-part.To see equality we 
onsider the fa
torizations of Convention 4.8 for various e's.Note that r � e1 and r � e2 have no 
ommon zero whenever e1 6= e2, thus all theelements �(e)i are distin
t, so from summing up over all e 2 |we getm� 1 =Xe inde p =Xe Xi inda(e)i p �Xe inde s = m� 1;hen
e the � here is an equality, and, by the part just proved, all summands areeven equal.6.3. Example. Again we illustrate this with our bide
omposition from the previ-ous se
tions. Let us 
he
k it for the rami�
ation point �8: From the fa
torizationswe obtain ind�8 s = 2, inda1 p = 0, inda2 p = 2. As 2 = 0 + 2 this is in a

ordan
ewith the proposition. One 
an also 
he
k this for the se
ond rami�
ation pointe := � 2075256 , and gets the same observation, as must be the 
ase, be
ause r has tworami�
ation points. But s has only one rami�
ation point, as s � e is squarefree,so the symmetri
 property Xj indbj q = indermight be false in this 
ase. In fa
t, inde r = 1, but indai = 0 for all i, and1 6= 0 + 0 + 0.6.4. Lemma. If r has two rami�
ation points and r � e 
ontains a simple zero,say a1 (i.e. �1 = 1), then �i �[j �j ; for all i 6= 1.Proof. By Proposition 6.2 together with Lemma 4.13Xj (�j � 1) = inde s =Xi indai p �Xi Xj (�j � �i \ �j);and using �1 \ �j = 1, =Xj (�j � 1) +Xi6=1Xj (�j � �i \ �j)Thus for i 6= 1 and all j we have �i � �j .6.5. Remark. If r � e has no simple zero, then all its zeros are at least double,hen
e their number is at most m2 , so inde r � m2 . By Proposition 4.3, this 
annothappen twi
e.6.6. Proposition. If both r and s have at least two rami�
ation points, then theyhave exa
tly two (
ommon) ones. Let e be one of them. Then both r � e and s� ehave exa
tly one simple zero, the remaining ones being double.



42 Chapter II . Chara
terization of Prime Bide
ompositionsProof. Suppose e is a rami�
ation point of s su
h that r� e has a simple zero, saya1, thus �1 = 1. By the lemma, all the remaining �i are multiples of all the �j . Butsome bj > 1, thus, in parti
ular, ai � 2 for all i 6= 1. Hen
e e is also a rami�
ationpoint of r and inde r � m�12 be
ause � � m�12 . If e0 is another rami�
ation pointof r, then its index is bounded by m�12 , so r � e0 has a simple zero, too, and thewhole story is equally true for this se
ond rami�
ation point. Thus r has exa
tlythe two rami�
ation points e and e0, both with index m�12 , hen
e � = m+12 . r � ehas one simple zero, the multipli
ities of the remaining m�12 ones sum up to m� 1,thus are double. The same is true for e0 and, by symmetry, for the rami�
ationpoints of s.6.7. Remark. This means that �1 = �1 = 1 and �i = �i = 2 for all i 6= 1, forboth rami�
ation points. Thus 
11 = 1, "111 = 1, and "ij� � 2, if not i = j = 1. Inparti
ular, if e1; e2 are the two rami�
ation points, thenf � e1 = (x� �1) � g21;f � e2 = (x� �2) � g22for some polynomials g1; g2. Be
ause f has exa
tly two rami�
ation points, e1 ande2 satisfy a quadrati
 equation over | (4.2). So we 
an apply Corollary 2.5, andobtain:6.8. Corollary. If both r and s 
ontain two rami�
ation points, then our bide
om-position is trigonometri
. x 7. Final RemarksNow the proof of Ritt's bide
omposition theorem is 
omplete. Let us outline wheresimpli�
ations have been made, and whi
h further improvements seem to be possi-ble. Previous proofs assume that the ground �eld |is algebrai
ally 
losed. In [S
h82℄the theorem for general �elds is obtained as a 
orollary to that for algebrai
ally
losed ones. Our version proves the general form dire
tly. There are only fewpoints where we must take 
are of this, mainly in Corollary 2.5, whose nontrivialpart says that the linear transformations 
an be 
hosen in the ground �eld.That we use the Ts
hirnhaus transform instead of the norm as the previousproofs that avoid valuation theoreti
 or analyti
 methods is mainly a matter oftaste. Note that pq Æ p = �N|(x):|(p)(q). The usage of resultants is new in this
ontext and may supply further improvements, when used more extensively. Ourproof of Proposition 3.3 serves as an alternative to the usage of norms and minimalpolynomials; it seems to be more dire
t.The se
tion on rami�
ation 
ontains results mixed from the previous proofs.Lemma 4.12 has got an elementary proof. [DW74℄ even prove equality for this state-ment, using valuation theoreti
 methods. This stronger form 
an also be obtainedas a 
orollary to the 
hara
terization Theorem 1.7.Our major simpli�
ations are 
ontained in se
tions 5 and 6. There is no dis-
ussion of extra points any more. We just make the distin
tion on the number oframi�
ation points and rather qui
kly see, by analyzing the rami�
ation stru
ture,that we have the exponential or trigonometri
 
ase, respe
tively.These improvements essentially use that the 
omponents of prime bide
ompo-sitions are prime. Thus they do not generalize as in [S
h82℄, partially 
hara
terizing



x 7. Final Remarks 43bide
ompositions that need not be prime. This raises the question, whether Ritt'sTheorems (5.11 in 
hapter I and 1.7) 
an be used to give an even more expli
itdes
ription of all possible de
ompositions. In parti
ular, we may ask whether thereis a 
anoni
al de
omposition.The de
ompositions of polynomials asso
iated to xn may be 
onsidered to betrivial as they simply 
orrespond to the divisors of n. The same is true with Di
ksonpolynomials. This suggests that a 
anoni
al de
omposition 
ould look like this: a
omposition of polynomials that are either of exponential or of trigonometri
 type,or do not 
ontain any of these.As another further improvement it might be possible to extensively use theresultant 
al
ulus and square-free fa
torizations instead of the involved analysis ofthe zeros and their multipli
ities in se
tions 4 to 6.The assumption about 
har 2 in the theorem was ne
essary be
ause Proposition2.4 uses it, whi
h in turn is needed in 6.8. It is not 
lear whether we get anyadditional bide
ompositions in 
ase of 
hara
teristi
 2.The restri
tion to 
ompletely tame polynomials was ne
essary in proving 4.5,whi
h is basi
 for all results about the index. It is not known how far this 
an beweakened, e.g. to tame polynomials. No 
ounterexample for this is known. Theexample in the note of [Cor90℄ does not work for this purpose as it is of exponentialtype.A whole 
lass of 
ounterexamples using non-tame polynomials is given byx� Æ f = f Æ x�;where � := 
har|. Perhaps all prime bide
ompositions 
an be redu
ed to a trigono-metri
 or exponential form using this ambiguity somehow.
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