
POLYNOMIAL CLONES ON GROUPS OF ORDER pq

ERHARD AICHINGER AND PETER MAYR

Abstract. For two distinct primes p, q, we describe those clones on a set
of size pq that contain a given group operation and all constants operations.
We show that each such clone is determined by congruences and commutator
relations. Thus we obtain that there is only a finite number of such clones on
a fixed set.

1. Introduction

A clone [17, Definition 4.1] on a set A is a collection of finitary functions
on A that contains all projections and is closed under all compositions. We will
investigate those clones that contain all constant functions; such clones have been
called constantive in [14]. From [2] we know that, if |A| ≥ 3, there are 2ℵ0 clones
containing all constant functions on A. In [14] it was proved that for |A| ≥ 4
infinitely many clones on A contain a ternary Mal’cev operation. Now given a
finite set and a Mal’cev operation, one may ask how many constantive clones
contain this operation. For example, if p is a prime, then there are precisely two
constantive clones on Zp that contain the ternary function (x, y, z) 7→ x− y + z.
By [9] there are countably infinitely many constantive clones on Zp × Zp that
contain (x, y, z) 7→ x−y+z. It is not known whether there is a Mal’cev operation
on some finite set that is contained in more than countably many constantive
clones. We will investigate this problem for the case when the Mal’cev operation
is the Mal’cev operation of some abelian group.

Let 〈V, +〉 be a (not necessarily abelian) group, let F1, F2 be sets of finitary
operations on V , and let V1 := 〈V, {+} ∪ F1〉 and V2 := 〈V, {+} ∪ F2〉 be two
expansions of 〈V, +〉. Following [17, Definition 4.139], we call these expansions
polynomially equivalent if Pol(V1) = Pol(V2). Classifying the expansions of
〈V, +〉 modulo polynomial equivalence is a way to obtain a description of the
constantive clones that extend the clone of polynomial functions of the group
〈V, +〉. In [14, Conjecture 9] P. M. Idziak has conjectured that for a squarefree n
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Figure 1. Polynomial clones on expansions V of 〈Zpq, +〉: Each
clone Pol(V) is represented by Con∗(V). Simple factors are la-
belled 2 if they are abelian and 3 otherwise. A minimal factor
which is labelled 2† is central; if it is labelled 2*, it is not central.
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the group 〈Zn, +〉 has only finitely many polynomially inequivalent expansions.
Furthermore he conjectures that for each expansion V of 〈Zn, +〉 the clone of
polynomial functions of V is uniquely determined by the congruences of V and
their commutators. In the present paper we confirm this conjecture for the case
when n is the product of two primes.

For any algebra A we will denote the set of its congruences by Con(A). By
Con(A) we denote the lattice 〈Con(A),∧,∨〉, and by Con∗(A) we denote the
algebra 〈Con(A),∧,∨, [., .]〉, where [., .] is the term condition commutator on the
congruences of A as defined in [17, Definition 4.150] (see also [11]). The main
result of the present paper is the following theorem.

Theorem 1.1. Let p, q be primes with p 6= q, let G be a group of order pq, and
let V1 and V2 be two expansions of G. Then the following are equivalent:

(1) Pol(V1) = Pol(V2).
(2) Pol2(V1) = Pol2(V2).
(3) Con∗(V1) = Con∗(V2).

The proof will be given in Section 7. From this result we will derive the
following consequences.

Corollary 1.2. Let p, q be primes with p 6= q. Then there are precisely 17 clones
on Zpq that contain the addition of Zpq and all constant operations. The inclusions
among these clones are given in Figure 1.

Corollary 1.3. Let p, q be primes with p 6= q. Then there are only finitely many
constantive clones on a set with pq elements that have a group operation among
their binary operations.

2. Some facts about commutators

Our first goal in this section is to define and to investigate when a function
preserves the commutators of an algebra A. For an algebra A = 〈A, F 〉 and a
finitary operation f on A we let A + f denote the algebra 〈A, F ∪ {f}〉.

Definition 2.1. Let A be an algebra, let k ∈ N, and let f : Ak → A. Then f is
commutator preserving if Con∗(A) = Con∗(A + f).

By this definition a commutator preserving function is also congruence pre-
serving. Based on [16] it is proved in [10, Lemma 4] that for an algebra in a
congruence modular variety the set of commutator preserving functions is closed
under all compositions and hence forms a clone. Actually the commutator pre-
serving functions are described as those that preserve certain 5-ary relations on
A. We give a brief self-contained account of this description, specialized to con-
gruence permutable varieties. For a set A, a set R of finitary relations on A, and
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k ∈ N we abbreviate the set of all k-ary functions on A that preserve all relations
in R by Compk(A, R). Furthermore

Comp(A, R) :=
⋃
{Compk(A, R) ||| k ∈ N}.

We note that Comp(A, R) has also been called the set of polymorphisms of the
relations in R and has often been denoted by Pol R.

Definition 2.2. Let A be an algebra, let m : A3 → A, and let α, β, η ∈ Con(A).
Then we define a relation ρ(α, β, η,m) by

ρ(α, β, η,m) := {(a, b, c, d) ∈ A4 ||| a α b, b β c,m(a, b, c) η d}.

A ternary operation m on A is called a Mal’cev operation if m(a, b, b) =
m(b, b, a) = a for all a, b ∈ A. A Mal’cev polynomial of A is a Mal’cev oper-
ation that lies in Pol3(A). The following proposition shows that in an algebra
with a Mal’cev polynomial the centralizing relation from [17, Definition 4.148] is
determined by the commutator operation.

Proposition 2.3. Let A be an algebra that has a Mal’cev polynomial, and let
α, β, η ∈ Con(A). Then [α, β] ≤ η if and only if α centralizes β modulo η.

Proof: The “if”-direction follows from the definition of the commutator [17,
Definition 4.150]. For the “only if”-direction we observe that α centralizes β
modulo [α, β]. By [17, Exercise 4.156 (13)] the congruence α then centralizes β
modulo η. �

Lemma 2.4. Let A be an algebra in a congruence permutable variety, let m be
a Mal’cev polynomial on A, and let α, β, η ∈ Con(A). Then the following are
equivalent:

(1) Every f ∈ Pol(A) preserves ρ(α, β, η,m).
(2) α centralizes β modulo η (as defined in [17, Definition 4.148]).

Proof: We abbreviate ρ(α, β, η,m) by ρ.
(2)⇒(1): Let k ∈ N, let f ∈ Polk(A), and let (a, b, c, d) ∈ ρ[k]. Here (a, b, c, d) ∈

ρ[k] means (ai, bi, ci, di) ∈ ρ for each i ∈ {1, 2, . . . , k}. We have to show

(2.1) (f(a), f(b), f(c), f(d)) ∈ ρ.

First we prove
(2.2)

m(f(a), f(b), f(c)) ≡ f(m(a1, b1, c1), m(a2, b2, c2), . . . ,m(ak, bk, ck)) (mod η)

For x, y, z ∈ Ak we define m(x, y, z) ∈ Ak by

(2.3) m(x, y, z) := (m(x1, y1, z1), m(x2, y2, z2), . . . ,m(xk, yk, zk)).

We define a function t ∈ Pol2k(A) by

t(x, y) := m(m(f(x), f(b), f(y)), f(m(x, b, y)), f(m(a, b, c))).
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We have t(b, b) = t(b, c) = f(m(a, b, c)). Hence, applying [17, Exercise 4.156 (2)],
we obtain t(a, b) ≡ t(a, c) (mod η). This yields

f(m(a, b, c)) ≡ m(f(a), f(b), f(c)) (mod η) ,

which completes the proof of (2.2). For the proof of (2.1) we note that f , as a
polynomial function, preserves congruences. Hence we have

f(a) α f(b) and f(b)β f(c).

What remains to show is

m(f(a), f(b), f(c)) ≡ f(d) (mod η) .

We observe that by (2.2) we have m(f(a), f(b), f(c)) ≡ f(m(a, b, c)) (mod η).
Since (a, b, c, d) ∈ ρ[k] and since f is congruence preserving, we have
f(m(a, b, c)) ≡ f(d) (mod η). This completes the proof of (2.1).

(1)⇒(2): We show that α centralizes β modulo η. To this end we let k ∈ N,
t ∈ Clok+1(A), and a, b ∈ A, c, d ∈ Ak such that a α b and c β d. We assume
t(a, c) η t(a, d). We have (b, a, a, b) ∈ ρ, and (d, d, c, c) ∈ ρ[k]. Hence we have

(t(b, d), t(a, d), t(a, c), t(b, c)) ∈ ρ.

Therefore we have m(t(b, d), t(a, d), t(a, c)) ≡ t(b, c) (mod η). Hence

m(t(b, d), t(a, d), t(a, d)) ≡ t(b, c) (mod η) ,

and thus

t(b, d) η t(b, c),

which completes the proof. �

Definition 2.5. Let A be an algebra, and let m be a Mal’cev polynomial on A.
We define a set Cen(A, m) of 4-ary relations on A by

Cen(A, m) :=

{ρ(α, β, η,m) |||α, β, η ∈ Con(A) and α centralizes β modulo η in A}.

Lemma 2.6. Let k ∈ N, let A be an algebra with Mal’cev polynomial m, and let
f be a mapping from Ak to A. Then the following are equivalent:

(1) The function f is a commutator preserving function of A.
(2) The function f preserves all relations in Con(A) ∪ Cen(A, m).

Proof: (2)⇒(1): Since f is congruence preserving, we have Con(A) = Con(A+
f). Now we show that the commutators are the same. We claim that

for all α, β, η ∈ Con(A), α centralizes β modulo η in A if and only
if α centralizes β modulo η in A + f .
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The “if”-direction is immediate from [17, Definition 4.148] since A is a reduct of
A + f . To show the “only if”-direction of this statement, we let α, β, η be such
that α centralizes β modulo η in A. By the assumption f preserves ρ(α, β, η,m).
Using this fact and (2)⇒(1) of Lemma 2.4 for the algebra A, we obtain that
every fundamental operation of A + f is in Comp(A, {ρ(α, β, η,m)}). Thus we
have

Pol(A + f) ⊆ Comp(A, {ρ(α, β, η,m)}).
Using (1)⇒(2) of Lemma 2.4 for the algebra A + f , we obtain that α centralizes
β modulo η in A + f .

The commutator operation is completely determined by the set of all triples
(α, β, η) ∈ (Con(A))3 such that α centralizes β modulo η. Therefore the commu-
tator operations for A and A + f are the same.

(1)⇒(2): Let α, β, η ∈ Con(A) be such that α centralizes β modulo η in A.
Hence [α, β]A ≤ η. By the assumption A and A + f have the same commutator
operation, and therefore [α, β]A+f ≤ η. Hence α centralizes β modulo η in A+ f
by Proposition 2.3. Now by (2)⇒(1) of Lemma 2.4 every polynomial function of
A + f preserves ρ(α, β, η,m), implying that f preserves ρ(α, β, η,m). �

We call an algebra V an expanded group if it has + among its binary operation
symbols, and 〈V, +〉 is a group. A normal subgroup I of 〈V, +〉 is called an ideal
of V if f(a + i) − f(a) ∈ I for all k ∈ N, all k-ary fundamental operations f of
V and all a ∈ V k, i ∈ Ik. A useful fact linking ideals with polynomial functions
is the following: a set I of V is an ideal of V if and only if for all i1, i2 ∈ I
and for all p ∈ Pol1(V) with p(0) = 0 we have i1 + i2 ∈ I and p(i1) ∈ I [18,
Theorem 7.123]. The set of all ideals of V is denoted by IdV. The mapping that
sends each congruence to the congruence class of 0 is a bijective correspondence
between congruences and ideals of V. Its inverse will be denoted by γ: for every
ideal I of V we have the congruence γ(I) on V defined by

γ(I) = {(v1, v2) ∈ V 2 ||| v1 − v2 ∈ I}.
It is easy to see that γ is a lattice isomorphism from 〈Id (V),∩, +〉 to
〈Con(V),∧,∨〉. Of course the commutator operation for universal algebras can
in particular be used for the congruences of expanded groups. However we want
to have a commutator operation for ideals and not only for congruences. The
commutator operation [[., .]]V on ideals should behave in a way that the mapping
γ is also a isomorphism from 〈Id (V),∩, +, [[., .]]V〉 to Con∗(V). This can be
accomplished with the following definition.

Definition 2.7. [19, p.77] Let V be an expanded group, and let A, B be ideals of
V. We define the commutator ideal [[A, B]]V as the ideal of V that is generated
by

{p(a, b) ||| a ∈ A, b ∈ B, p ∈ Pol2(V), p(x, 0) = p(0, x) = 0 for all x ∈ V }.
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In Lemma 2.9 we will see that this commutator, which was introduced by
S. D. Scott and used, e.g., in [5, 7], is essentially the same as the term condition
commutator of universal algebra. For proving this lemma, we need the following
easy observation.

Proposition 2.8. Let V be an expanded group, let A, B be ideals of V, let k ∈ N,
let c ∈ Polk+1(V) be such that c(x, 0) = c(0, y) = 0 for all x ∈ V , y ∈ V k, and
let a ∈ A, b ∈ Bk. Then c(a, b) is in [[A, B]]V.

Proof: We proceed by induction on k. The case k = 1 is obvious from the
definition. Now we assume k ≥ 2. Defining p(x, y) := c(x, b1, . . . , bk−1, y) −
c(x, b1, . . . , bk−1, 0), we see p(a, bk) ∈ [[A, B]]V. By the induction hypothesis
also c(a, b1, . . . , bk−1, 0) is in [[A, B]]V. So p(a, bk) + c(a, b1, . . . , bk−1, 0), which
is c(a, b1, . . . , bk), is contained in [[A, B]]V. �

Lemma 2.9. Let V be an expanded group, and let A, B be ideals of V. Let α :=
γ(A) and β := γ(B) be the congruences corresponding to A and B, respectively.
Then [α, β] = γ([[A, B]]V).

Proof: We first show [α, β] ≤ γ([[A, B]]V). By the definition of the commutator
it suffices to show that α centralizes β modulo γ([[A, B]]V). To this end we let
t ∈ Clok+1(V), let a, b ∈ V and c, d ∈ V k be such that a− b ∈ A and c− d ∈ Bk,
and we assume t(a, c)− t(a, d) ∈ [[A, B]]V. We define s ∈ Polk+1(V) by

s(x, y) := t(a + x, c + y)− t(a, c + y) + t(a, c)− t(a + x, c).

By Proposition 2.8 we have s(−a + b,−c + d) ∈ [[A, B]]V. (Note that −a + b =
−b− (a− b) + b, and the last expression is in A because A is a normal subgroup
of V). Hence t(b, d) − t(a, d) + t(a, c) − t(b, c) is in [[A, B]]V. This implies that
t(b, d)− t(b, c) ∈ [[A, B]]V, which concludes the proof that α centralizes β modulo
γ([[A, B]]V).

For proving γ([[A, B]]V) ≤ [α, β], we show that all generators of [[A, B]]V are
congruent to 0 modulo [α, β]. Let c ∈ Pol2(V) be such that c(x, 0) = c(0, x) = 0
for all x ∈ V , and let a ∈ A, b ∈ B. Then we have c(0, 0) ≡ c(0, b) (mod [α, β])
and therefore c(a, 0) ≡ c(a, b) (mod [α, β]) by [17, Exercise 4.156 (2)]. This
implies that c(a, b) lies in the ideal γ−1([α, β]). Since all generators of [[A, B]]V are
in γ−1([α, β]), we obtain [[A, B]]V ≤ γ−1([α, β]). Thus γ([[A, B]]V) ≤ [α, β]. �

3. Some facts about polynomial functions

Lemma 3.1. Let V be an expanded group such that 〈V, +〉 is a cyclic group and
V is abelian, i.e., [[V, V ]]V = 0. Then V is polynomially equivalent to 〈V, +〉.

Proof: Since V is abelian, the clone of polynomial functions of V is deter-
mined by its unary members. Furthermore each unary polynomial function on



8 ERHARD AICHINGER AND PETER MAYR

V is the sum of a constant function and an endomorphism of 〈V, +〉 (cf. [7,
Proposition 2.3]). Every endomorphism of the cyclic group 〈V, +〉 is some mul-
tiple of the identity function. Hence Pol1(V) ⊆ Pol1(〈V, +〉) and consequently
Pol(V) = Pol(〈V, +〉). �

Lemma 3.2. Let p be a prime, and let V be an expansion of 〈Zp, +〉. Then V
is either polynomially equivalent to 〈Zp, +〉 or polynomially complete.

Proof: If V is simple and not abelian, then it is polynomially complete by [12].
If it is abelian, Lemma 3.1 yields that V is polynomially equivalent to 〈Zp, +〉. �

For many expanded groups of squarefree order the results in [15] can be used to
obtain a description of the clone of polynomial functions. We will use the version
given in [10, p.61, Theorem 2]. To apply this result, we will need the following
lemma.

Lemma 3.3. Let V be a subdirectly irreducible expanded group, and let A be the
unique minimal ideal of V. We assume that |A| is a prime, that [[A, A]]V = 0, and
that there is an idempotent polynomial function e ∈ Pol1(V) such that e(V ) ⊆ A
and e(a) = a for all a ∈ A. Let α := γ(A), and let q := |A|. Then A is a
〈0, α〉-minimal set of V, and it is polynomially equivalent to the group 〈Zq, +〉.

Proof: Let a ∈ A be such that a 6= 0. Since e(a) = a, [13, Definition 2.5] yields
A ∈ UV(0, α). Hence there is a set U ∈ MV(0, α) such that U ⊆ A. By [13,
Theorem 2.8 (2)] there is an idempotent polynomial function f ∈ Pol1(V) such
that f(V ) = U . Since [[A, A]]V = 0, the fact that |A| is a prime number and [7,
Proposition 2.3] yield that there are u ∈ Z and b ∈ A such that f(a) = ua + b
for all a ∈ A, and q does not divide u. Then f(A) = A and therefore A ⊆ U .
Thus V|U (see [13, Definition 2.2]) is an expanded group of prime order. Since
[[A, A]]V = 0, there is no f ∈ Pol2(V) with f(0, 0) = f(a, 0) = f(0, a) = 0
and f(a, a) = a. Hence V|U is not polynomially complete, and therefore it is
polynomially equivalent to 〈Zq, +〉 by Lemma 3.2. �

4. Consequences of known results

In the following lemma we combine several already available results. We note
that all expansions of non-abelian groups of order pq are covered by its assump-
tions.

Lemma 4.1. Let p, q be primes with p 6= q, and let V be an expanded group with
|V | = pq. We assume that the following holds:

If Con(V) is isomorphic to a three element chain, then the mono-
lith µ of V is not central.

Then every commutator preserving function of V is in Pol(V).
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Proof: We let α := {(v1, v2) ∈ V 2 ||| v1 − v2 ∈ pV } and β := {(v1, v2) ∈
V 2 ||| v1 − v2 ∈ qV }. Since {0}, 0/α, 0/β and V are the only subgroups of 〈V, +〉,
we have Con(V) ⊆ {0, α, β, 1}. We will now distinguish several cases.

Con(V) = {0, 1}: If [1, 1] = 0, then 〈V, +〉 is a cyclic group. Now Lemma 3.1
yields that V is polynomially equivalent to 〈V, +〉 and therefore Con(V) =
{0, α, β, 1}, a contradiction. If [1, 1] = 1, then [12] (cf. [3, Proposition 5.2])
yields that V is polynomially complete.

Con(V) = {0, α, β, 1}: In this case all subdirectly irreducible homomorphic
images of V satisfy the condition (SC1) (see [15], [10, p.62]). Both subdirectly
irreducible quotients are expanded groups of prime order. Therefore Lemma 3.3
(with e equal to the identity function) implies that each subdirectly irreducible
quotient satisfies (GFp) (see [10, p.62]). Hence V is polynomially rich by [10,
Theorem 2]. Now let f be a commutator preserving function. For expanded
groups the type of each prime interval in the congruence lattice of V is determined
by the commutator operation. Therefore, by preserving commutators, f also
preserves the types of the prime intervals. Since V is polynomially rich, f is a
polynomial function. — We note that the structure of polynomial functions on
direct products of expanded groups can be determined from [4, Corollary 2.2].
This provides an alternative proof for the present case.

Con(V) = {0, β, 1}: By the assumption we know that [1, β] = β. This implies
that V satisfies the condition (SC1). Obviously V/β satisfies (GFp). To prove
that V satisfies (GFp), we let m ∈ Z be such that m ≡ 0 (mod q) and m ≡
1 (mod p). Applying Lemma 3.3 with e(x) := mx, we obtain that the 〈0, β〉-
minimal sets of V are polynomially equivalent to a one-dimensional vector space
over Zp. Hence V is polynomially rich by [10, Theorem 2]. Now the proof can
be concluded as it was done in the case Con(V) = {0, α, β, 1}.

The case Con(V) = {0, α, 1} is analogous to Con(V) = {0, β, 1}. �

5. Subdirectly irreducible expanded groups with central
monolith

In this section we will establish the fact that for a subdirectly irreducible ex-
panded group V of order pq with central monolith every commutator preserving
function is a polynomial function (see Lemma 5.5). We note that V certainly has
an abelian group reduct by the assumption that its monolith is central.

For the proof of Lemma 5.5 we will first show that every unary function from V
into its monolith A that is constant on all cosets of A is polynomial (Lemma 5.2)
by using a result on modules over group rings (Lemma 5.1). Next we construct
certain k-ary polynomial functions from V into A in Lemma 5.3. Then we
show that every commutator preserving function from V into A is polynomial
(Lemma 5.4). Finally we prove the general result in Lemma 5.5.
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We start with some module theory (see [1] for definitions and basic results).

Lemma 5.1. Let G := 〈G, ◦〉 be the group of affine transformations on K :=
GF(p) with p prime. Let F be a field whose characteristic is not p, let M be an
F[G]-module with basis {ek ||| k ∈ K} such that g ∗ ek = eg(k) for g ∈ G, k ∈ K.
Let s :=

∑
k∈K ek. Then M/Fs is a simple F[G]-module.

Proof: Let F̄ denote the algebraic closure of F, and let M̄ be the vector space
with basis {ek ||| k ∈ K} over F̄. Then M̄ forms an F̄[G]-module defined by the
action g ∗ ek = eg(k) for g ∈ G, k ∈ K. We note that M̄ also forms an F[G]-
module, that M is an F[G]-submodule of M̄ and that F̄M = M̄ . First we show
that

(5.1) V := M̄/F̄ s is a simple F̄[G]−module.

Let H := {g ∈ G ||| g(0) = 0}, and let N be the cyclic normal subgroup of order p
in G. Then G = NH. Since p and the characteristic of F̄ are relatively prime and
since F̄ is algebraically closed, all simple F̄[N]-modules have dimension 1 over F̄.
Furthermore the group N acts either faithfully or trivially on every simple F̄[N]-
module. By Maschke’s theorem resGN(V ), which is V viewed as F̄[N]-module, is a
sum of simple F̄[N]-modules. We note that N acts faithfully on resGN(V ). Hence
we have a simple F̄[N]-submodule L of resGN(V ) such that N acts faithfully on L.
For g ∈ G the conjugate modules L and g ∗ L both have dimension 1. We claim
that

(5.2) L and g ∗L are isomorphic F̄[N]−modules if and only if g centralizes N.

If g ∈ CG(N), then the map L → g∗L, x 7→ g∗x is an F̄[N]-module isomorphism.
Conversely we assume that ϕ : L → g ∗ L is an F̄[N]-module isomorphism. Let
l ∈ L such that l 6= 0. Since l spans L, we have r ∈ F̄ , r 6= 0, such that
ϕ(l) = g ∗ (rl). For n ∈ N we find

(5.3) ϕ(n ∗ l) = n ∗ ϕ(l) = (ng) ∗ (rl) = r((ng) ∗ l).

Let s ∈ F̄ be such that n ∗ l = sl. Then

(5.4) ϕ(n ∗ l) = ϕ(sl) = sϕ(l) = s(g ∗ (rl)) = r(g ∗ (sl)) = r((gn) ∗ l).

From (5.3) and (5.4) we obtain that n−1ng acts trivially on L. Since N acts
faithfully on L, this yields ng = n. Thus g is in CG(N) and (5.2) is proved.

By CG(N) = N the modules h∗L are pairwise non-isomorphic for every h ∈ H.
Hence

∑
h∈H h ∗ L is a direct sum and has dimension p− 1 over F̄. Thus

(5.5)
∑
h∈H

h ∗ L = V.

Let U be a simple F̄[G]-submodule of V , and let L′ be a simple F̄[N]-submodule
of resGN(U). As an F̄[N]-submodule of resGN(V ), L′ is isomorphic to h∗L for some
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h ∈ H by (5.5). As above it follows that U contains i ∗ L′ for all i ∈ H and that
U has dimension p− 1 over F̄. Hence U = V and V is a simple F̄[G]-module.

Now let W be an F[G]-module such that Fs ≤ W ≤ M . Then F̄W is an F̄[G]-
submodule of M̄ and dimF̄ F̄W = dimF W . By (5.1) we either have F̄W = F̄ s
or F̄W = M̄ . Hence dimF W is either 1 or p. Then W = Fs or W = M . �

Using Lemma 5.1, we can now show the existence of certain unary polynomial
functions.

Lemma 5.2. For primes p, q let V be an expanded group with group reduct
〈Zp × Zq, +〉, and let A := 0 × Zq. We assume that A is an ideal of V with
[[V, V ]]V ≥ A and [[V, A]]V = 0. Then we have

(5.6) {f ∈ AV ||| f(x + a) = f(x) for all x ∈ V, a ∈ A} ⊆ Pol1(V).

Proof: Let M := {f ∈ AV ||| f(x+ a) = f(x) for all x ∈ V, a ∈ A}. Since 〈A, +〉
and 〈Zq, +〉 are isomorphic, M forms a vector space for the field F := 〈Zq, +, ·〉.
For k ∈ Zp we define ek ∈ M by

ek((x, y)) =

{
(0, 1) if x = k,
(0, 0) otherwise.

Since all functions in M are constant on the cosets of A in V , we have that
〈ek ||| k ∈ Zp〉 is a basis for M over F. Let G := {ga,b : Zp → Zp, x 7→ ax + b ||| a ∈
Z∗

p, b ∈ Zp}. Then G := 〈G, ◦〉 is the group of affine transformations on the field
〈Zp, +, ·〉. We define a group action of G on the basis of M by g ∗ ek := eg(k) for
g ∈ G, k ∈ Zp. Now M forms a left F[G]-module of dimension p over F. We note
that for f ∈ M, g ∈ G we have

(5.7) (g ∗ f)((x, y)) = f((g−1(x), y)) for all x ∈ Zp, y ∈ Zq.

We claim that

(5.8) N := Pol1(V) ∩M is an F[G]-submodule of M.

Obviously N is an F-subspace of M . We note that G ⊆ Pol1(〈Zp, +〉) and that
the projections (x, y) 7→ (x, 0) and (x, y) 7→ (0, y) are polynomial functions on V.
Then the map V → V, (x, y) → (g−1(x), y) is in Pol1(V) for all g ∈ G. Hence,
by (5.7), we have g ∗ f ∈ Pol1(V) for all f ∈ N, g ∈ G. This proves (5.8).

Let s :=
∑

k∈Zp
ek. Then Fs is an F[G]-submodule of N . By Lemma 5.1

M/Fs is a simple F[G]-module. To obtain N = M , it then suffices to show that

(5.9) N 6≤ Fs.

To this end we let c ∈ Pol2(V) be such that c(x, 0) = c(0, x) = 0 for all x ∈ V , and
we let a, b ∈ V be such that p · c(a, b) 6= 0. Such c, a, b exist by the assumption
that [[V, V ]]V ≥ A. The function f : V → V, x 7→ p · c(x, b), is in Pol1(V)
and satisfies f(V \ A) 6= {0} and f(A) = {0} because of [[V, A]]V = 0. Hence



12 ERHARD AICHINGER AND PETER MAYR

we have f ∈ N \ Fs. This proves (5.9). Thus N = M by Lemma 5.1 and
M ⊆ Pol1(V). �

In the following we construct k-ary polynomial functions.

Lemma 5.3. For primes p, q let V be an expanded group with group reduct
〈Zp × Zq, +〉, and let A := 0 × Zq. Let k ∈ N, k > 1. We assume that there
exists f ∈ Polk−1(V) such that f(x) = (0, 1) for all x ∈ Ak−1 and f(x) = (0, 0)
for all x ∈ V k−1 \ Ak−1.

Then there exists a polynomial function g ∈ Polk(V) such that g(x) = (0, p)
for all x ∈ Ak and g(x) = (0, 0) for all x ∈ V k \ Ak.

Proof: We define g : V k → V by

g(x1, . . . , xk) :=
∑p−1

i=1 f(x1, . . . , xk−2, xk − ixk−1)

−
∑p−1

i=1 f(x1, . . . , xk−2, xk − (i, 0)) + f(x1, . . . , xk−2, xk−1).

Then g is in Polk(V).
First we assume that x1, . . . , xk ∈ A. By the definition of f we obtain

g(x1, . . . , xk) = (p − 1)(0, 1) − (p − 1)(0, 0) + (0, 1) = (0, p). Obviously we have
g(x1, . . . , xk) = (0, 0) if (x1, . . . , xk−2) 6∈ Ak−2. So for all of the following we
assume that x1, . . . , xk−2 ∈ A. We consider the case that xk−1 ∈ A, xk ∈ V \ A.
Then there is no i ∈ {1, . . . , p − 1} such that xk − ixk−1 ∈ A. Since we
have a unique element i ∈ {1, . . . , p − 1} such that xk − (i, 0) ∈ A, we find
g(x1, . . . , xk) = (0, 0)− (0, 1) + (0, 1) = (0, 0).

Next we consider xk−1 ∈ V \A, xk ∈ A. Then neither xk − ixk−1 nor xk − (i, 0)
are contained in A for any i ∈ {1, . . . , p−1}. Consequently g(x1, . . . , xk) = (0, 0).

Finally we let xk−1, xk ∈ V \ A. Then we have uniquely determined elements
i, j ∈ {1, . . . , p − 1} such that xk − ixk−1 ∈ A and xk − (j, 0) ∈ A. Hence
g(x1, . . . , xk) = (0, 1) − (0, 1) + (0, 0) = (0, 0). Thus g satisfies the assertions of
the lemma. �

Lemma 5.4. Let p, q be distinct primes, let V be an expanded group with cyclic
group reduct of order pq, and let A = pV . We assume that A is an ideal of V
and that [[V, V ]]V ≥ A and [[V, A]]V = 0.

Then we have
(5.10)

{f ∈ AV k ||| f(x + a) = f(x)− f(0) + f(a) for all x ∈ V k, a ∈ Ak} ⊆ Polk(V)

for all k ∈ N.

Proof: First we show that

(5.11) {f ∈ AV k ||| f(x + a) = f(x) for all x ∈ V k, a ∈ Ak} ⊆ Polk(V)

by induction on k. For k = 1 we have (5.11) by Lemma 5.2. We now assume that
k > 1. By the induction hypothesis the assumptions of Lemma 5.3 are satisfied.
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Hence we have g ∈ Polk(V) such that g(x) = (0, p) for x ∈ Ak and g(x) = (0, 0)
else. Since p 6= q, we find that all functions from V k to A that are constant on
Ak and map V k \Ak to 0 are polynomial functions. Hence all functions from V k

to A that are constant on one coset of Ak and 0 elsewhere are in Polk(V). This
yields (5.11).

We now let f ∈ AV k
such that f(x+a) = f(x)−f(0)+f(a) for all x ∈ V k, a ∈

Ak. Then the restriction of f to Ak is affine, that is, we have c1, . . . , ck ∈ Z such
that f((a1, . . . , ak)) =

∑k
i=1 ciai + f(0) for all a1, . . . , ak ∈ A. Since p 6= q, we

have some r ∈ Z such that r ≡ 0 (mod p) and r ≡ 1 (mod q). We consider

h : V k → A, (x1, . . . , xk) 7→ r · (
k∑

i=1

cixi + f(0)).

Then we have f(a) = h(a) for all a ∈ Ak. Further h is an affine function on
〈V k, +〉. For x ∈ V k, a ∈ Ak we obtain

(f − h)(x + a) = f(x + a)− h(x + a)

= f(x)− f(0) + f(a)− (h(x)− h(0) + h(a))

= (f − h)(x).

Thus f − h is in Polk(V) by (5.11). Since h is polynomial, we have f ∈ Polk(V).
�

Now we can prove the main result of this section.

Lemma 5.5. Let p, q be primes with p 6= q, and let V be an expanded group with
|V | = pq. We assume that Con(V) is isomorphic to a three element chain and
that the monolith µ of V is central. Then every commutator preserving function
of V is a polynomial function of V.

Proof: We note that V has a cyclic group reduct by the assumptions. Let
f : V k → V be a commutator preserving function of V. Then we may define
fµ : (V/µ)k → V/µ, x̄/µ 7→ f(x̄)/µ. Since V/µ is simple and has a cyclic group
reduct, fµ is in Polk(V/µ). Hence we have g ∈ Polk(V) such that fµ = gµ

on V/µ. Let A := γ−1(µ). Then f − g : V k → V, x 7→ f(x) − g(x), satisfies
(f − g)(V k) ⊆ A. Since f − g is commutator preserving, it preserves ρ(1, µ, 0, m)
with m(x, y, z) = x − y + z by Lemma 2.6. Hence (f − g)(x) − (f − g)(0) +
(f − g)(a) = (f − g)(x − 0 + a) for all x ∈ V k, a ∈ Ak. By Lemma 5.4 we have
f − g ∈ Polk(V). Since g ∈ Polk(V), we obtain f ∈ Polk(V). �

6. Clones of commutator preserving operations

By Lemmas 4.1 and 5.5 we have proved that each clone extending Pol(〈Zpq, +〉)
is the clone of commutator preserving operations of some expansion of the group
〈Zpq, +〉. In this section we determine the inclusions among these clones. Let A
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be an algebra, and let m be a Mal’cev polynomial of A. We abbreviate the set of
commutator preserving operations on A by CP(A). Then Lemma 2.6 tells that
we have CP(A) = Comp(A, Con(A) ∪ Cen(A, m)).

Lemma 6.1. Let A be an algebra that has a Mal’cev polynomial, and let A∗ be
the algebra 〈A, CP(A)〉. Then Con∗(A∗) = Con∗(A).

Proof: Every fundamental operation of A is in CP(A) and is therefore a funda-
mental operation of A∗. Hence A∗ is an expansion of A and Con(A∗) ⊆ Con(A).
In order to show Con(A) ⊆ Con(A∗), we let α be a congruence of A. By
the definition of A∗ every fundamental operation of A∗ preserves α. Therefore
α ∈ Con(A∗). Thus Con(A∗) = Con(A). Now we show that the commutators
are the same. To this end we show that for all α, β, η ∈ Con(A), α centralizes β
modulo η in A if and only if α centralizes β modulo η in A∗. The “if”-direction
follows immediately from the fact that A is a reduct of A∗. For the “only if”-
direction we let m be a Mal’cev polynomial of A. We assume that α centralizes β
modulo η in A. Then ρ(α, β, η,m) is in Cen(A, m). Since every fundamental op-
eration (and therefore every polynomial operation) of A∗ preserves the relations
in Cen(A, m), Lemma 2.4 yields that α centralizes β modulo η in A∗. �

Lemma 6.2. Let A be an algebra, and let m be a Mal’cev polynomial on A. Let
A1 and A2 be two expansions of A. Then the following are equivalent:

(1) CP(A1) ⊆ CP(A2);
(2) Con(A2) ⊆ Con(A1) and [α, β]A2 ≥ [α, β]A1 for all α, β ∈ Con(A2);
(3) Con(A2) ⊆ Con(A1) and Cen(A2, m) ⊆ Cen(A1, m).

Proof: (1)⇒(2): For i ∈ {1, 2} let Bi := 〈A, CP(Ai)〉. By Lemma 6.1 we have

(6.1) Con∗(Bi) = Con∗(Ai) for i = 1, 2.

Since B2 is an expansion of B1, we have Con(B2) ⊆ Con(B1). Next we fix
α, β ∈ Con(A2) and show

[α, β]B2 ≥ [α, β]B1 .

We know that α centralizes β modulo [α, β]B2 in B2. Since B1 is a reduct of B2,
α centralizes β modulo [α, β]B2 in B1. Hence we have [α, β]B1 ≤ [α, β]B2 .

(2)⇒(3): Let ρ be in Cen(A2, m). Then there are α, β, η ∈ Con(A2) such that
α centralizes β modulo η in A2 and ρ = ρ(α, β, η,m). We have [α, β]A2 ≤ η and
therefore [α, β]A1 ≤ η. By Proposition 2.3 we obtain that α centralizes β modulo
η in A1 and therefore ρ ∈ Cen(A1, m).

The implication (3)⇒(1) is immediate. �

7. Proofs for the results of section 1

We will now prove the main result of the present paper.
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Proof of Theorem 1.1: The implication (1)⇒(2) is obvious.
(2)⇒(3): It is known that the congruences of every algebra are determined by

its unary polynomial functions [17, Theorem 4.19]. By Lemma 2.9 the commu-
tator operation on every expanded group is determined by its binary polynomial
functions. Thus we have Con∗(V1) = Con∗(V2).

(3)⇒(1): Let m(x, y, z) := x − y + z for all x, y, z ∈ V . By Lemma 4.1 and
Lemma 5.5 we have

Pol(Vi) = CP(Vi) for i = 1, 2.

Now (2)⇒(1) of Lemma 6.2 yields CP(V1) = CP(V2). �

We will now show that for all primes p, q with p 6= q there are precisely 17
clones extending Pol(〈Zpq, +〉). From Theorem 1.1 we know that each such clone
C is determined by Con∗(〈Zpq, C〉). Some easy checking shows that Figure 1
actually exhibits all sublattices of Con(〈Zpq, +〉) with all conceivable commutator
operations. We notice that the commutator operation must be monotonous in
each argument, commutative, distributive with respect to joins, and that the
commutator of two congruences is always contained in their meet. Since the
clones of polynomial functions are exactly those of the commutator preserving
functions, we see from Lemma 6.2 that the inclusions are those indicated in
Figure 1. What we still need to prove is that for each lattice with commutator
operation L drawn in Figure 1 there really is a clone C that contains the addition
such that Con∗(〈Zpq, C〉) = L. We will produce generators for each of these
clones. The following lemma will help in building new clones from existing ones.

Lemma 7.1. Let A be an algebra with a Mal’cev polynomial m, let A1 = 〈A, F1〉
and A2 = 〈A, F2〉 be expansions of A, and let A1+A2 be the algebra 〈A, F1 ∪ F2〉.
Then we have:

(1) Con(A1 + A2) = Con(A1) ∩ Con(A2).
(2) For all α, β ∈ Con(A1 + A2) we have

(7.1) [α, β]A1+A2 = inf {η ∈ Con(A1 + A2) ||| [α, β]A1 ⊆ η and [α, β]A2 ⊆ η}.

Proof: Item (1) is obvious. For proving (2), we fix α, β ∈ Con(A1)∩Con(A2).
From the fact that A1 + A2 is an expansion of A1 we obtain [α, β]A1 ≤
[α, β]A1+A2 , and similarly [α, β]A2 ≤ [α, β]A1+A2 . Hence we have inf {η ∈
Con(A1 + A2) ||| [α, β]A1 ≤ η and [α, β]A2 ≤ η} ≤ [α, β]A1+A2 . For proving the
converse inclusion, let η ∈ Con(A1) ∩ Con(A2) be such that [α, β]A1 ≤ η and
[α, β]A2 ≤ η. Then every function f ∈ Pol(A1 + A2) preserves the relation
ρ(α, β, η,m). Therefore we have [α, β]A1+A2 ≤ η by Lemma 2.4. This establishes
≤ of equation (7.1). �

Proof of Corollary 1.2: Let V := 〈Zp × Zq, +〉, let α be the kernel of the first
projection mapping π1 : Zp × Zq → Zp, (

x
y ) 7→ x, let β be the kernel of the
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second projection mapping, and let m(x, y, z) := x− y + z. We will now produce
generators for clones C on V that have the following congruence lattices and
commutators.

(1) Con(〈V, C〉) = {0, α, β, 1}, [1, 1] = 0: We take C := Pol(〈V, +〉).
(2) Con(〈V, C〉) = {0, α, 1}, [1, 1] = α, [1, α] = 0: Let f be the function on

Zp × Zq defined by

f(( x
y )) =

{
( 0

1 ) if x = 0,
( 0

0 ) else.

We claim that C := Pol(〈V, +, f〉) has the required properties The function
f preserves α because it maps V into one coset of α. Since (( 0

0 ) , ( 1
0 )) ∈ β

and (( 0
1 ) , ( 0

0 )) 6∈ β, the function f does not preserve β. From the fact
that f maps V into one coset of α, we see that f preserves ρ(1, 1, α,m),
hence [1, 1] ≤ α. Brief calculations show that f preserves ρ(1, α, 0, m),
hence [1, α] = 0. By Lemma 3.1 the equation [1, 1] = 0 would lead to the
contradiction β ∈ Con(〈V, +, f〉). Hence [1, 1] = α.

(3) Con(〈V, C〉) = {0, α, β, 1}, [α, α] = 0, [β, β] = β: This lattice and its
commutators is realized by the direct product of the field of size p and
the zero-ring of size q. For p > 2 we may also use the function f :
Zp × Zq → Zp × Zq, (

x
y ) 7→

(
x2

0

)
and obtain that Pol(〈V, +, f〉) has the

required properties.
(4) Con(〈V, C〉) = {0, α, β, 1}, [α, α] = α, [β, β] = 0: This case is symmetric

to case (3).
(5) Con(〈V, C〉) = {0, β, 1}, [1, 1] = β, [1, β] = 0: This case is symmetric to

case (2).
(6) Con(〈V, C〉) = {0, α, 1}, [1, 1] = α, [1, α] = α, [α, α] = 0: Let f be the

function on Zp × Zq defined by

f(( x
y )) =

{ (
0
y

)
if x = 0,

( 0
0 ) else.

We consider 〈V, +, f〉. The function f preserves α because it maps V into
one coset of α. Since (( 0

1 ) , ( 1
1 )) ∈ β and (( 0

1 ) , ( 0
0 )) 6∈ β, the function

f does not preserve β. From the fact that f maps V into one coset of
α, we see that f preserves ρ(1, 1, α,m), hence [1, 1] ≤ α. Now we show
[1, α] 6= 0. To this end we show that f does not preserve ρ(1, α, 0, m).
We have (( 1

0 ) , ( 0
0 ) , ( 0

1 ) , ( 1
1 )) ∈ ρ(1, α, 0, m) but (( 0

0 ) , ( 0
0 ) , ( 0

1 ) , ( 0
0 )) 6∈

ρ(1, α, 0, m). For proving [α, α] = 0, one can check that f preserves
ρ(α, α, 0, m). Thus C := Pol(〈V, +, f〉) realizes this congruence lattice.

(7) Con(〈V, C〉) = {0, β, 1}, [1, 1] = β, [1, β] = β, [β, β] = 0: This case is
symmetric to case (6).
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All other lattices and commutator operations drawn in Figure 1 can be obtained
from the listed clones using Lemma 7.1. �

Since for p > 2, q > 2 the 17 indicated clones differ in their unary parts, we
obtain the following corollary.

Corollary 7.2. Let p, q be odd primes with p 6= q, let Maff(Zpq) := Pol1(〈Zpq, +〉),
and let M(Zpq) := {f ||| f : Zpq → Zpq}. Then there are exactly 17 subnear-rings
of 〈M(Zpq), +, ◦〉 that contain Maff(Zpq).

Proof: We map each clone C that extends Pol(〈Zpq, +〉) to the set C1 of all
unary functions in C. By [8, Lemma 1 (3)] this mapping is a surjection onto
the near-rings between Maff(Zpq) and M(Zpq). Now we have to show that all
17 clones produce different near-rings. Suppose that C and D are two clones
extending Pol(〈Zpq, +〉) that have the same set of unary operations. From the
construction of the 17 clones given in the proof of Corollary 1.2, we see that for
p ≥ 3, q ≥ 3 each of the 17 clones is generated by + and its set of unary functions.
Hence C = D. �

Using [6, Proposition 5.3], one obtains from this result that for odd primes p, q
with p 6= q there are exactly 17 nonisomorphic zerosymmetric near-rings N with
identity that have 〈Zpq, +〉 as a compatible and faithful N -group.

The proof of our final Corollary 1.3 is immediate from Theorem 1.1.

Proof of Corollary 1.3: There are only finitely many group operations on a
set with pq elements. By Theorem 1.1 each of those is contained in only finitely
many constantive clones. �
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