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Abstract. We determine the number of unary polynomial functions on all
Frobenius complements and on all finite solvable groups all of whose abelian
subgroups are cyclic.

1. Notation and results

Let (G, ·) be a group. A unary polynomial function p : G → G is a function
that can be written in the form

p(x) := a0x
e0a1x

e1 · · · an−1x
en−1an,

where n ∈ N0, a0, . . . , an are in G, and e0, . . . , en−1 are integers (see [11], [15,
Definition 4.4]). The set of all unary polynomial functions on G will be denoted
by P (G), the set of all functions from G into G by M(G). For f, g ∈ M(G), we
define the product f ·g by f ·g (x) = f(x) ·g(x) for all x ∈ G. Then (M(G), ·) is a
group which is isomorphic to the direct product (G|G|, ·). We note that (P (G), ·)
is the subgroup of (M(G), ·) that is generated by the identity function and the
constant functions on G.

Polynomial functions have been studied for several classes of groups, e.g. simple
groups [8], symmetric groups [6, 7], linear groups [3, 14], and certain semidirect
products of cyclic groups [13].

For a Frobenius group H with kernel A and complement G, E. Aichinger showed
that

(1.1) |P (H)| = |P (G)| · |{p|A | p ∈ P (H) and p(A) ⊆ A}||G|

(see [1, Theorem 1.1]). Thus the problem of determining |P (H)| is broken down
into considering P (G) and the restrictions of the polynomial functions to A.
In [14] we described the latter for certain classes of groups H. In the present
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paper we resume the investigation of polynomial functions on Frobenius groups
by determining |P (G)| for every Frobenius complement G. We will use that every
Frobenius complement G has a normal subgroup N such that all Sylow subgroups
of N are cyclic and G/N is isomorphic to one of the following 6 groups:

(1.2) 1, Z2 × Z2, A4, S4, A5, S5

(see [4, Theorem 1.4]). Moreover, all abelian subgroups of G are cyclic. The
formulae for |P (G)| according to the classification in (1.2) will be given in Corol-
lary 1.2, Theorem 1.3, and Theorem 1.5, respectively.

By [19, 6.1.11], every finite solvable group G all of whose abelian subgroups
are cyclic has a normal subgroup N such that all Sylow subgroups of N are cyclic
and G/N is isomorphic to one of the first 4 groups in (1.2). Hence Corollary 1.2
and Theorem 1.3 apply to those groups as well.

As a first step we determine the number of polynomial functions on coprime
extensions of groups all of whose Sylow subgroups are cyclic.

Theorem 1.1. Let G be a finite group, and let N be a normal subgroup of G
such that all Sylow subgroups of N are cyclic. We assume that |N | and |G : N |
are relatively prime. Let M1 denote the set of Sylow subgroups of N ′, and let M2

denote the set of Sylow subgroups of N/N ′. Then we have

|P (G)| = |P (G/N)| ·
∏

P∈M1

|P |2·|G:CG(P )| ·
∏

P∈M2

|P |2·|G/N ′:CG/N′ (P )|.

From Theorem 1.1 we obtain the number of polynomial functions on the groups
G all of whose Sylow subgroups are cyclic. By [10, p.420, Satz 2.11], these are
exactly the groups that satisfy the assumptions of the following Corollary 1.2.

Corollary 1.2. Let m, n, r ∈ N such that gcd(m, n(r−1)) = 1 and rn ≡ 1 mod m.
Let G be the group defined by

G := 〈a, b | am = bn = 1, ab = ar〉.

For a prime divisor p of m, let mp denote the maximal power of p that divides
m, and let tp denote the multiplicative order of r modulo p. Then we have

(1.3) |P (G)| = n2 ·
∏

p|m, p prime

mp
2tp .

In [13, Theorem 3.11], the size of P (G) for G as in Corollary 1.2 has been
determined using a different approach. There we find the formula

(1.4) |P (G)| = m2n2 ·
n∏

i=2

si
2

with si denoting the additive order of (r − 1)(r2 − 1) · · · (ri−1 − 1) modulo m.
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To see that (1.3) and (1.4) are equivalent, we show∏
p|m, p prime

mp
tp = m ·

n∏
i=2

si.

For a prime divisor p of m and an integer x, we write µp(x) for the maximal power
of p that divides x. Then µp(m) = mp. Since si divides m for all i ∈ {2, . . . , n},
it suffices to prove

(1.5) mp
tp = µp(m ·

n∏
i=2

si)

for all prime divisors p of m. We note that µp(si) is the additive order of (r −
1)(r2 − 1) · · · (ri−1 − 1) modulo mp. Since p and rj − 1 for j ∈ {1, . . . , tp − 1} are
relatively prime, we have µp(si) = mp for all i ∈ {2, . . . , tp−1}. As rtp ≡ 1 mod p,
there is some integer d such that rtp ≡ 1 + dp mod mp. By [10, p. 83, Hilfssatz
13.18], we have (1 + dp)mp ≡ 1 mod mp and hence rtpmp ≡ 1 mod mp. Since
rn ≡ 1 mod mp and gcd(mp, n) = 1 by the assumptions on m, n, and r given
in Corollary 1.2, we obtain rtp ≡ 1 mod mp. Consequently, for i > tp, we have
(r − 1)(r2 − 1) · · · (ri−1 − 1) ≡ 0 mod mp and µp(si) = 1. Hence

µp(m) ·
n∏

i=2

µp(si) = mp ·
tp∏

i=2

mp = mp
tp ,

and (1.5) is proved. Thus the formulae in (1.3) and (1.4) give the same number
indeed.

The following Theorem 1.3 in combination with Corollary 1.2 covers all solvable
Frobenius complements.

Theorem 1.3. Let G be a finite group all of whose abelian subgroups are cyclic,
and let N be a normal subgroup of G.

(1) We assume that G/N is isomorphic to Z2×Z2. Then we have a normal 2-
complement K in G such that all Sylow subgroups of K are cyclic. Let M1

and M2 denote the set of Sylow subgroups of K ′ and of K/K ′, respectively.
Then

|P (G)| = |G : K|4

25
·

∏
P∈M1

|P |2·|G:CG(P )| ·
∏

P∈M2

|P |2·|G/K′:CG/K′ (P )|.

(2) We assume that G/N is isomorphic to A4. Then G has a normal Sylow
2-subgroup Q which is isomorphic to the quaternion group of order 8 such
that all Sylow subgroups of G/Q are cyclic and

|P (G)| = |P (G/Q)| · 225.
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(3) We assume that G/N is isomorphic to S4. Then G has a normal subgroup
Q which is isomorphic to the quaternion group of order 8 such that all
Sylow subgroups of G/Q are cyclic and

|P (G)| = |P (G/Q)| · 260.

We recall that the binary octahedral group G has a center Z(G) of order 2 and
that G/Z(G) is isomorphic to S4. The techniques used in the proof of Theorem 1.3
yield the following result on the binary octahedral group and other extensions of
A4 or S4. We note that the numbers in Proposition 1.4 can be readily obtained
from the GAP-package Sonata [2, 9].

Proposition 1.4.

(1) |P (SL(2, 3))| = 32 · 225.
(2) |P (GL(2, 3))| = 34 · 262.
(3) Let G be the binary octahedral group. Then |P (G)| = 34 · 262.

Finally we consider the case that G is a non-solvable Frobenius complement.
By [16, Theorem 18.6], G has a normal subgroup S that is isomorphic to the
special linear group SL(2, 5) such that all Sylow subgroups of G/S are cyclic.
Hence |P (G)| can be obtained from the next result together with Corollary 1.2.

Theorem 1.5. Let G be a Frobenius complement with a normal subgroup S that
is isomorphic to SL(2, 5).

(1) If |G : S| is odd, then |P (G)| = |P (G/S)| · 12060 · 2.
(2) If |G : S| is even, then |P (G)| = |P (G/S)| · 120120.

2. An auxiliary result

For a finite group G with a normal subgroup N , we define

(N : G)P (G) := {f ∈ P (G) | f(G) ⊆ N}.

By the homomorphism theorem, we then have

(2.1) |P (G)| = |(N : G)P (G)| · |P (G/N)|.

Lemma 2.1. Let G be a finite group, and let M, N be normal subgroups of G.
We assume that M and N have relatively prime orders. Then we have

|P (G)| = |P (G/M)| · |P (G/N)|
|P (G/(MN))|

.

Proof: Let T := P (G). First we show that

(2.2) (MN : G)T = (M : G)T · (N : G)T .
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The inclusion “⊇” of (2.2) is obvious. In order to prove “⊆”, we let H := MN
and consider the projections πM : H → M and πN : H → N that are defined by

πM(xy) = x, πN(xy) = y for all x ∈ M, y ∈ N.

We show

(2.3) πM , πN ∈ P (H).

Let k be an integer such that k ≡ 1 mod |M | and k ≡ 0 mod |N |. For x ∈ M ,
y ∈ N , we then have (xy)k = x. Hence πM is a polynomial function on H. By
(xy)−kxy = y for all x ∈ M, y ∈ N , we find πN ∈ P (H). Hence we have (2.3).

Let f ∈ (H : G)T . By (2.3), the composed function πM ◦ f is in (M : G)T and
πN ◦ f is in (N : G)T . Together with f(x) = πM(f(x)) · πN(f(x)) for all x ∈ G,
this yields (2.2). By (M : G)T ∩ (N : G)T = (M ∩N : G)T and M ∩N = 1, the
product in (2.2) is direct.

By (2.1), we have |P (G)| = |(H : G)P (G)|·|P (G/H)|. Hence we obtain |P (G)| =
|(M : G)P (G)| · |(N : G)P (G)| · |P (G/H)|. Multiplying this equation by |P (G/M)| ·
|P (G/N)| yields

|P (G)| · |P (G/M)| · |P (G/N)| = |P (G)|2 · |P (G/H)|.
From this, the result follows. �

3. Extensions of metacyclic groups

For proving Theorem 1.1, we will need the following result.

Lemma 3.1. Let G be a finite group, and let P be a cyclic normal Sylow subgroup
of G. Then we have:

(1) CP (b) = 1 for all b ∈ G \ CG(P );
(2) |P (G)| = |P (G/P )| · |P |2·|G:CG(P )|.

Proof: For proving (1), we let b ∈ G such that CP (b) 6= 1. Then we have an
element a ∈ CP (b) of prime order p. Since P is cyclic, we have r ∈ N such that
xb = xr for all x ∈ P . Hence ab = a yields r ≡ 1 mod p. Let f ∈ N such that
|P | = pf . Since (1 + dp)pf−1 ≡ 1 mod pf for all d ∈ N by [10, p. 83, Hilfssatz

13.18], we have bpf−1 ∈ CG(P ). Then b is in CG(P ) because p does not divide
|G : CG(P )|. Thus (1) is proved.

Next we show (2). By a theorem by Burnside [17, 10.1.8], we have a charac-
teristic complement K for P in CG(P ). Then K is normal in G. By Lemma 2.1,
we have

(3.1) |P (G)| = |P (G/P )| · |P (G/K)|
|P (G/(PK))|

.

If PK = G, then |P (G/K)| = |P |2 and item (2) is immediate from (3.1). In
the following we assume that PK 6= G. Then, by (1), G/K is a Frobenius
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group with Frobenius kernel A := PK/K and a Frobenius complement that is
isomorphic to G/CG(P ). Since every element of G/K acts on A via conjugation
as an automorphism of the form x 7→ xr for some integer r, we have

|{q|A | q ∈ P (G/K) and q(A) ⊆ A}| = |A| · exp(A).

Then [1, Theorem 4.1] (see also (1.1) above) yields

(3.2) |P (G/K)| = |P (G/CG(P ))| · |P |2·|G:CG(P )|.

By CG(P ) = PK, item (2) follows from (3.1) and (3.2). The lemma is proved. �

Proof of Theorem 1.1: Let G and N satisfy the assumptions of the theorem.
First we consider the case that N is cyclic. We will use induction on the number
of prime divisors of |N |. For |N | = 1 the theorem is trivially true. Now we assume
|N | > 1. Let P be a non-trivial Sylow subgroup of N . For a subgroup U of G,
we write Ū := (UP )/P . By the homomorphism theorem, Ḡ and N̄ satisfy the
hypotheses of the theorem. Let M denote the set of Sylow subgroups of N . The
Sylow subgroups of N̄ are given by Q̄ for Q ∈ M . By the induction assumption,
we obtain

(3.3) |P (G/P )| = |P (G/N)| ·
∏

Q∈M\{P}

|Q|2·|G:CG(Q)|.

Here we have used that G/N is isomorphic to Ḡ/N̄ and that |Ḡ : CḠ(Q̄)| = |G :
CG(Q)| for Q ∈ M \ {P}. From Lemma 3.1 (2) and (3.3), we obtain

(3.4) |P (G)| = |P (G/N)| ·
∏

Q∈M

|Q|2·|G:CG(Q)|.

Hence the theorem is proved for the case that N is cyclic.
Next we assume that N is not cyclic. By [10, p.420, Satz 2.11], we have that

N ′ is cyclic and gcd(|N ′|, |N : N ′|) = 1. Hence G and N ′ satisfy the hypotheses
of the theorem. By (3.4), we have

(3.5) |P (G)| = |P (G/N ′)| ·
∏

Q∈M1

|Q|2·|G:CG(Q)|

with M1 the set of Sylow subgroups of N ′. Let M2 denote the set of Sylow
subgroups of the cyclic group N/N ′. Then (3.4) yields

(3.6) |P (G/N ′)| = |P (G/N)| ·
∏

Q∈M2

|Q|2·|G/N :CG/N (Q)|.

Now the result follows from (3.5) and (3.6). �

Proof of Corollary 1.2: Let N := 〈a〉. For every Sylow p-subgroup P of N ,
we have CG(P ) = CG({x ∈ P | xp = 1}) by Lemma 3.1 (1). For tp the smallest
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positive integer such that rtp ≡ 1 mod p, we then have |G : CG(P )| = tp. We note
that |P | = mp. From Theorem 1.1 we obtain

|P (G)| = |P (G/N)| ·
∏

p|m, p prime

mp
2tp .

Since G/N is cyclic of order n, we have |P (G/N)| = n2 and the result follows. �

4. Extensions of the quaternion group

We will need the concept of length of a polynomial that was introduced by
S. D. Scott in [18]. Let p be a polynomial (in the variety of all groups) in the
variable x over the finite group G (cf. [11, p. 27]). We write p in the form
a0x

e0a1x
e1 · · · an−1x

en−1an, and define its Scott length λ(p) (cf. [18, p. 251]) by

λ(p) :=
n−1∑
i=0

ei.

For a polynomial p over G, let p be the polynomial function induced by p on G.
The Scott length of the group G, denoted by λ(G), is the smallest positive integer
n such that there is a polynomial p with λ(p) = n and p(x) = 1 for all x ∈ G.

Let q be a polynomial with q(x) = 1 for all x ∈ G. Then by [18, Proposi-
tion 1.1], its Scott length is a multiple of λ(G). Hence the Scott length of a finite
group divides the exponent of the group. We have λ(G) = exp(G) for abelian
G. We note that for every normal subgroup N of G the length λ(G/N) divides
λ(G). In particular exp(G/G′) divides λ(G).

For the proof of Theorem 1.3 and Proposition 1.4, we will use the following
criterion to decide whether a given function is polynomial.

Lemma 4.1. Let G be a finite group, let Q be a normal subgroup of G such that
Q is a quaternion group of order 8, and let Z := Q′. We assume that G/Z is
isomorphic to Z2 × Z2, A4, or S4. Let λ := λ(G/Z) be the Scott length of G/Z.
Then the following are equivalent for each function f : G → Z:

(1) The function f is in P (G);
(2) There exists an integer µ such that

f(x · z) = f(x) · zλµ for all x ∈ G, z ∈ Z.

The assumptions of this lemma are satisfied for the quaternion group of order 8,
SL(2, 3), GL(2, 3), and the binary octahedral group. We note that λ(Z2×Z2) = 2,
λ(A4) = 3, and λ(S4) = 2 (see the proof of Lemma 4.2 below).

Proof of Lemma 4.1: Since Z is characteristic in Q, we have that Z is
normal in G. Together with |Z| = 2, this yields that Z is central in G. Hence
the implication (1) ⇒ (2) is immediate.
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It remains to prove (2) ⇒ (1). To this end, we will show the existence of certain
interpolation functions in (Z : G)P (G). By the definition of λ, we have a function
i ∈ P (G) such that

(4.1) i(G) ⊆ Z and i(z) = zλ for all z ∈ Z.

By assumption, Q = G or Q/Z is the unique minimal normal subgroup of G/Z
and CG/Z(Q/Z) = Q/Z. Hence, by [5, Theorem 4.1 (2)], we have e ∈ P (G) such
that

(4.2) e(q) ∈ qZ for all q ∈ Q and e(G \Q) ⊆ Z.

We choose a to be an element of order 4 in Q. Then c := a2 generates Z. We
define p ∈ P (Q) by

p(x) = x · xa for all x ∈ Q.

Then p satisfies

(4.3) p(aZ) = {c} and p(Q \ aZ) = {1}.
For t ∈ G, we define pt ∈ P (G) by

pt(x) = p(e(at−1x)) for all x ∈ G.

From (4.2) and (4.3), we obtain that

(4.4) pt(tZ) = {c} and pt(G \ tZ) = {1}.
We are ready for the interpolation argument. Let f : G → Z be a function that
satisfies (2) with µ ∈ Z. We consider the function g on G that is defined by

g(x) = f(x) · i(x)−µ for all x ∈ G.

Then g(G) ⊆ Z and g(xz) = g(x) for all x ∈ G, z ∈ Z by (4.1). Since g is
constant on each coset of Z in G, it is the product of certain functions pt for
t ∈ G by (4.4). Hence g ∈ P (G). By i ∈ P (G), this implies f ∈ P (G). The
lemma is proved. �

The number of polynomial functions on the quaternion group of order 8 follows
easily. For results on the generalized quaternion groups we have to refer to [12].

Lemma 4.2. Let G be a finite group, let Q be a normal subgroup of G such that
Q is a quaternion group of order 8, and let Z := Q′. Then we have:

(1) P (Q) = 27.
(2) If G/Z is isomorphic to A4, then P (G) = 32 · 225.
(3) If G/Z is isomorphic to S4, then P (G) = 34 · 262.

Proof: The group Q/Q′ is isomorphic to Z2 × Z2 and has Scott length 2. By
Lemma 4.1, a function f : Q → Q′ is in P (Q) if and only if f is constant on all
cosets of Q′ in Q. Hence

|(Q′ : Q)P (Q)| = 24.
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By |P (Q/Q′)| = 23 and (2.1), we obtain (1).
For proving (2), we first show

(4.5) λ(A4) = 3.

We define the polynomial q = x−3 · (x3)(1,2,3) · (x3)(1,3,2) over A4. Then q(x) = 1 for
all x ∈ A4. By [18, Proposition 1.1], λ(A4) divides the Scott length of q, which
is 3. Since exp(A4/A4

′) divides λ(A4), we have (4.5).
For G such that G/Z is isomorphic to A4, Lemma 4.1 yields

(4.6) |(Q′ : G)P (G)| = 212 · 2.

Together with |P (A4)| = 212 · 32 (see [14, Example 5.20] or [5, Example 2]), we
obtain (2).

For (3), we show

(4.7) λ(S4) = 2.

The polynomial q = (x2 · (x2)(1,2))2 · x6 · (x−6)(1,2,3) · (x−6)(1,3,2) over S4 satisfies
q(x) = 1 for all x ∈ S4. Since λ(q) = 2 and λ(S4) > 1, we have (4.7).

We assume that G/Z is isomorphic to S4. By Lemma 4.1, we obtain

|(Q′ : G)P (G)| = 224.

Together with |P (S4)| = 238 · 34 (see [5, Example 3]), this yields (3). �

Proof of Proposition 1.4: Since SL(2, 3) satisfies the assumptions of
Lemma 4.2 (2), we have assertion (1) of the proposition. Both GL(2, 3) and
the binary octahedral group satisfy the assumptions of Lemma 4.2 (3). Hence we
have (2) and (3). �

5. Frobenius complements

Proof of Theorem 1.3: Let G be a finite group, and let N be a normal
subgroup of G. We assume that all abelian subgroups of G are cyclic and that
G/N is isomorphic to Z2×Z2, A4, or S4. Then every non-trivial Sylow p-subgroup
of G has exactly one subgroup of order p. By [17, 5.3.6], the Sylow 2-subgroups
of G are generalized quaternion groups and the Sylow p-subgroups of G for p odd
are cyclic. We note that all Sylow subgroups of N are cyclic.

First we consider the case that G/N is isomorphic to Z2 ×Z2. By [17, 10.1.9],
N has a normal 2-complement K, that is, N has a normal subgroup K such that
|K| is odd and |N : K| is a power of 2. Then K is a normal 2-complement in G.
Let Q be a Sylow 2-subgroup of G. With M1 and M2 denoting the set of Sylow
subgroups of K ′ and of K/K ′, respectively, Theorem 1.1 yields

(5.1) |P (G)| = |P (Q)| ·
∏

P∈M1

|P |2·|G:CG(P )| ·
∏

P∈M2

|P |2·|G/N ′:CG/N′ (P )|.



10 PETER MAYR

In [12] (see also Lemma 4.2 (1) above) the number of polynomial functions on
the generalized quaternion group Q is given as

(5.2) |P (Q)| = 24t−5 for |Q| = 2t.

Now the formula given in Theorem 1.3 (1) follows from (5.1) and (5.2).
Next we assume that G/N is isomorphic to A4. Let Q be a Sylow 2-subgroup

of G. Since the non-trivial elements of (QN)/N are permuted transitively under
conjugation by elements in G/N , we have that

(5.3) Q is a quaternion group of order 8 and Q ⊆ G′.

We show that

(5.4) Q is the unique Sylow 2− subgroup in G.

For U ≤ G, we write Ū := (UN ′)/N ′. Since N̄ is a cyclic normal subgroup of Ḡ,
it is centralized by Ḡ′. Then Q̄ ⊆ CḠ(N̄) by (5.3). Hence

(5.5) QN ′ is normal in QN.

Because N ′ is cyclic, it is centralized by G′. Thus Q ⊆ CG(N ′) and, by (5.5), Q
is normal in QN . Since |G : QN | = 3, we then obtain (5.4). All Sylow subgroups
of G/Q are cyclic.

As in case (1), we note that N has a normal 2-complement K. Then QK = QN .
By Lemma 2.1, we have

|P (G)| = |P (G/Q)| · |P (G/K)|
|P (G/(QK))|

.

Since QK has index 3 in G, we find |P (G/(QK))| = 32. The quotient G/K
satisfies the assumptions of Lemma 4.2 (2). Hence we have |P (G/K)| = 32 · 225,
and the result in item (2) follows.

We now consider the case that G/N is isomorphic to S4. Then G has a normal
subgroup H of index 2 such that H/N is isomorphic to A4. By (2), we have a
unique Sylow 2-subgroup Q in H, and Q is isomorphic to the quaternion group
of order 8. Hence Q is normal in G, and all Sylow subgroups of G/Q are cyclic.

Let K be the normal 2-complement in N . Then K is normal in G. The quotient
G/K satisfies the assumptions of Lemma 4.2 (3). Hence we have P (G/K) =
34 · 262. Since G/(QK) is isomorphic to S3, Corollary 1.2 yields |P (G/(QK))| =
22 · 34. By Lemma 2.1, we obtain the formula given in (3). The proof of the
theorem is complete. �

Proof of Theorem 1.5: Let G be a Frobenius complement, and let S be a
normal subgroup of G such that S is isomorphic to SL(2, 5).

First we assume that G/S has odd order. Then S has a direct complement M
in G and gcd(|S|, |M |) = 1 by [16, Theorem 18.6]. Hence |P (G)| = |P (S)|·|P (M)|
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by Lemma 2.1. By [3, Corollary 2.2], we have |P (SL(2, 5))| = 12060 · 2. Thus
Theorem 1.5 (1) is proved.

Next we assume that G/S has even order. By [16, Theorem 18.6], we have
a normal subgroup M of G such that gcd(|S|, |M |) = 1 and |G : SM | = 2.
Lemma 2.1 yields

(5.6) |P (G)| = |P (G/S)| · |P (G/M)|
4

.

It remains to determine |P (G/M)|. We note that M has a complement H in
G with S ⊆ H by the Schur-Zassenhaus Theorem [17, 9.1.2]. We show that H
satisfies the assumptions of [3, Theorem 2.1]. To this end, we prove that S and
Z := Z(S) are the only non-trivial, proper normal subgroups of H.

Seeking a contradiction, we let N be a proper normal subgroup of H such that
N 6⊆ S. Then we have NS = H by |H : S| = 2. Thus

(5.7) H/N ∼= S/(N ∩ S).

Since S is quasisimple, we have N ∩ S ⊆ Z. Thus |N ∩ S| ≤ 2 and, by (5.7),
|N | ∈ {2, 4}. In any case, NZ has order 4 and H/(NZ) is isomorphic to S/Z,
that is to A5. Then NZ is a central subgroup of order 4 in H. This contradicts
the fact that the Sylow 2-subgroups of H are generalized quaternion groups of
order 16 by [17, 10.5.6 (ii)]. Thus all proper normal subgroups of H are contained
in S.

The normal subgroups of S are 1, Z, and S. By Z = Z(H) and S = H ′, all
of them are normal in H, and H has property (A) (see [3, p. 5629]). Then [3,
Theorem 2.1] yields

|P (H)| = |S||H:Z| · lcm(exp H/S, exp Z) · |H : S|.

Thus |P (H)| = 120120 ·4. Since G/M is isomorphic to H, Theorem 1.5 (2) follows
from (5.6). �
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