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We prove that, on a set of size n, the number of clones that contain a group operation
and all constant functions is finite if n is squarefree. This confirms a conjecture by Pawe l
Idziak from [5] where the converse implication was shown. Our result follows from the
observation that the polynomial clone of an expansion of a squarefree group is uniquely
determined by its binary functions. We also note that, in general, such a clone is not
determined by the congruence lattice and the commutator operation of the corresponding
algebra. This refutes a second conjecture from [5].
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1. Results

A clone [8, Definition 4.1] on a set A is a collection of finitary functions on A that
contains all projections and is closed under all compositions. The clone of polynomial
functions [8, Definition 4.4], Pol(A), on an algebra A := 〈A,F 〉 is the smallest clone
on A that contains all fundamental operations F of A and all constant functions
on A.

The following theorem is our main result. We will actually prove a slightly
stronger statement, Theorem 25, in Section 6.

Theorem 1. Let A be an expansion of a group of finite, squarefree order. Then
Pol(A) is the largest clone all of whose binary functions are in Pol2(A).

Hence, on a set of squarefree size, every clone that contains a group operation and
all constants is uniquely determined by its binary functions. Characterizing clones
by an (in the best case finite) set of invariants is a means of classifying the corre-
sponding algebras with respect to equivalence (Algebras A1 and A2 are polynomially
equivalent if Pol(A1) = Pol(A2)). Theorem 1 yields that expansions A1 and A2 of
squarefree groups are polynomially equivalent if and only if Pol2(A1) = Pol2(A2).

In general there is no reason why clones that have the same k-ary functions for
some k ∈ N should also have the same (k+1)-ary parts — even under the additional
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assumption that the clones contain a Mal’cev operation or a group operation. For
a prime p there is a wellknown family of expansions of 〈Zp2 , +〉,

Ak := 〈Zp2 , +, px1 . . . xk〉 for k ∈ N,

that satisfy Polk(Ak) = Polk(Ak+1) and Polk+1(Ak) ( Polk+1(Ak+1). Hence
Pol(〈Zp2 , +〉) has infinitely many extensions all of which have the same binary
part (see also Andrei Bulatov’s classification of expansions of 〈Zp2 , +〉 and 〈Zp, +〉2
in [2]). In [5] Pawe l Idziak observed the “only if” direction of the following.

Corollary 2. On a finite set A the number of clones that contain a group operation
and all constant functions is finite if and only if the size of A is squarefree.

Theorem 1 yields the “if” direction of Corollary 2 since on a set A of squarefree
size the pertinent clones are already determined by their binary parts and since
there are only finitely many binary functions on A. For clones that contain the
operations of an abelian group Corollary 2 was already conjectured to be true by
Idziak [5, Conjecture 8]. It would result immediately from the following.

[5, Conjecture 9] Let A be an expansion of 〈Zn, +〉 with n squarefree. Then Pol(A)
is uniquely determined by 〈Con(A),∧,∨, [., .]〉, the congruence lattice of A expanded
by the commutator operation.

We verified this conjecture for n a product of 2 primes together with Erhard
Aichinger in [1] and for n a product of 3 primes in [6]. However it is not true if n

has 4 prime divisors or more. We will present a counter-example in Section 7.

2. Outline of the proof of Theorem 1

Before we give the full proof of Theorem 1 in Section 6, we briefly sketch its main
elements. Any squarefree group is polynomially equivalent to an expansion of a
cyclic group by Lemma 10. Hence it suffices to prove Theorem 1 for algebras A
with cyclic group reduct. By standard induction arguments we obtain a further
reduction to the case that A is subdirectly irreducible (see Lemma 4). Then the
following description of polynomial functions into an abelian monolith, which we
will show in Section 5, is the crucial result for our proof of Theorem 1.

Lemma 3. Let A be a subdirectly irreducible expansion of the finite group 〈A, +〉,
and let M be the monolith of A. We assume that M is an abelian ideal of A, that
〈A/M, +〉 is squarefree and cyclic, and that gcd(|A : M |, |M |) = 1. Then there exist
l ∈ N and subgroups B1, . . . , Bl of 〈A, +〉 that contain M such that for all k ∈ N

Polk(A) ∩ {f ∈ MAk

: f(x + Mk) = f(x) for all x ∈ Ak}

=
l∑

i=1

{f ∈ MAk

: f(x + Bk
i ) = f(x) for all x ∈ Ak}.
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Here the sum of functions in MAk

is the pointwise sum in the abelian group
〈M, +〉Ak

. Let A,M be as in the assumptions of the lemma. For k ∈ N let

W(k) := {f ∈ MAk

: f(x + Mk) = f(x) for all x ∈ Ak}.

We endow W(k) with the structure of an F[G]-module for some finite field F and
the group G of bijective affine functions on 〈A/M, +〉k. The appropriate choice for
the action of F[G] on W(k) guarantees that Polk(A) ∩W(k) is an F[G]-submodule
of W(k). Applying techniques from module theory W(k) turns out to be the sum
of simple submodules. There is a natural bijection between these submodules and
the subgroups of the cyclic group 〈A/M, +〉. Now Polk(A)∩W(k) splits into simple
modules because W(k) does. From this we obtain that there exist certain subgroups
B1, . . . , Bl of 〈A, +〉 that contain M such that

Polk(A) ∩W(k) =
l∑

i=1

{f ∈ MAk

: f(x + Bk
i ) = f(x) for all x ∈ Ak}.

In the final step of the proof of the lemma we show that B1, . . . , Bl can be chosen
uniformly for all k ∈ N.

By Lemma 3 the k-ary polynomial functions into an abelian monolith M that
are constant on all cosets of Mk are uniquely determined by Pol1(A). Using the
existence of a specific idempotent polynomial function onto M and an interpolation
argument, we then obtain that Polk(A)∩MAk

is characterized by Pol2(A) regardless
of whether M is abelian or not.

By an induction argument we may assume that Polk(A/M) is determined by
Pol2(A). Finally Polk(A) can be reconstructed from the polynomial functions into
M together with the polynomial functions on A/M . So Pol2(A) determines Pol(A).

3. Notation and auxiliary results

We establish some notation and basic facts on ideals of expanded groups. We call
an algebra A an expanded group if it has a binary operation symbol +, a unary −,
and a constant 0 such that 〈A, +,−, 0〉 is a group. A normal subgroup I of 〈A, +〉
is called an ideal of A if f(a + i) − f(a) ∈ I for all k ∈ N, all k-ary fundamental
operations f of A and all a ∈ Ak, i ∈ Ik. Let P0(A) := {p ∈ Pol1(A) : p(0) = 0}.
We note that a subset I of A is an ideal of A if and only if I forms a subgroup of
〈A, +〉 and p(I) ⊆ I for all p ∈ P0(A) [9, Theorem 7.123].

By mapping each congruence of A to the congruence class of 0 we have a lattice
isomorphism between Con(A) and the lattice of ideals of A, 〈Id (A), +,∩〉. We call
c ∈ AA2

absorptive if c(x, 0) = c(0, x) = 0 for all x ∈ A. For ideals I, J of A we
define the commutator ideal [[I, J ]]A as the ideal of A that is generated by

{c(i, j) : i ∈ I, j ∈ J, c ∈ Pol2(A), c is absorptive}.

This commutator for ideals, which was introduced by Stuart Scott, corresponds to
the term condition commutator for congruences in universal algebra [1, Lemma 2.9].
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Let I be an ideal of A. The centralizer of I in A, denoted by CA(I), is the maximal
ideal C of A such that [[I, C]]A = 0. If [[I, I]]A = 0, then I is abelian.

A function f : Ak → A is congruence preserving on A if for all α ∈ Con(A)
and for all (x1, . . . , xk), (y1, . . . , yk) ∈ Ak with x1 ≡ y1 mod α, . . . , xk ≡ yk mod α

we have f(x1, . . . , xk) ≡ f(y1, . . . , yk) mod α. For a k-ary congruence preserving
function f on A and an ideal I of A, we define

fI : (A/I)k → A/I, x + Ik 7→ f(x) + I.

Lemma 4. Let A be an expanded group with ideals I and J such that I ∩ J = 0.
Assume that there exists π ∈ Pol1(A) such that

π(i + j) = i for all i ∈ I, j ∈ J.

Let f be a congruence preserving function on A. If fI ∈ Pol(A/I) and fJ ∈
Pol(A/J), then f ∈ Pol(A).

As a consequence of Lemma 4 a congruence preserving function on a squarefree
expanded group is polynomial if and only if it is polynomial on all subdirectly
irreducible quotients.

Proof. By fI ∈ Pol(A/I) we have p ∈ Pol(A) such that fI = pI . Then g := f − p

is congruence preserving and g(A) ⊆ I. By gJ = fJ − pJ ∈ Pol(A/J) we have
q ∈ Pol(A) such that gJ = qJ . We claim that

g = πq. (3.4)

Assume that f is k-ary for k ∈ N. For x ∈ Ak we have q(x) = g(x) + j for some
j ∈ J . As g(x) ∈ I, we obtain π(q(x)) = g(x). This proves (3.4). Thus g ∈ Pol(A)
and consequently f ∈ Pol(A).

Lemma 5. [4] Let A be a finite subdirectly irreducible expanded group with non-
abelian monolith M , and let k ∈ N. Then every function from Ak into M is poly-
nomial.

We state a straightforward consequence of Lemma 2.4 in [1] for expanded groups.

Lemma 6. [1, cf. Lemma 2.4] Let A be an expanded group with ideal M , let k ∈ N,
and let f ∈ Polk(A). Then

f(m + x)− f(x) + f(c + x) = f(m + c + x) for all m ∈ Mk, c ∈ CA(M)k, x ∈ Ak.

Lemma 7. [8, cf. Theorem 4.155] Let A be an expanded group with finite abelian
minimal ideal M . Then 〈M, {+} ∪ P0(A)|M 〉 is polynomially equivalent to a module
over a full matrix ring over some finite field.

Proof. By Lemma 6 R := 〈P0(A)|M , +, ◦〉 is a ring of additive functions on M .
So 〈M, {+} ∪ P0(A)|M 〉 is polynomially equivalent to a module over R (see also [8,
Theorem 4.155]). Since M is a minimal ideal in A, it is a faithful simple R-module.
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By Jacobson’s density theorem [11, Theorem 2.1.6], R is dense in the ring of en-
domorphisms of M as a module over some division ring. If M is finite, this yields
that R is isomorphic to a full matrix ring over some finite field.

Lemma 8. Let A be an expanded group with finite abelian minimal ideal M . Let
f ∈ P0(A) be such that f(M) 6= 0. Then there exist n ∈ N and pi, qi ∈ P0(A) for
i ∈ {1, . . . , n} such that (

∑n
i=1 pifqi)|M = idM .

Proof. Straightforward from Lemma 7 and Linear Algebra.

We will need certain polynomial functions into the monolith that are related to
idempotents.

Lemma 9. Let A be a finite subdirectly irreducible expanded group with monolith
M , and let C := CA(M). We assume that M ≤ C and that there exists e1 ∈ Pol1(A)
such that e1(A) ⊆ M and e1|M = idM .

Let k ∈ N. Then there exists e ∈ Polk(A) such that e(Ak) ⊆ M , e(x1, . . . , xk) =
x1 for all x1, . . . , xk ∈ M , and e(Ak \ Ck) = 0.

Proof. We show that

∀Z ⊆ Ak \ Ck ∃f ∈ Polk(A) : f(Ak) ⊆ M,f(M × 0k−1) 6= 0,

f(0×Mk−1) = 0, f(Z) = 0
(3.6)

by induction on the size of Z.
For the base case Z = ∅, the function f ∈ Polk(A) that is defined by

f(x1, . . . , xk) := e1(x1) for all x1, . . . , xk ∈ A proves the assertion. Next we as-
sume that Z 6= ∅. Let z := (z1, . . . , zk) be in Z. Then we have some i ∈ {1, . . . , k}
such that zi 6∈ C. By the induction hypothesis we have h ∈ Polk(A) and m ∈ M\{0}
such that h(Ak) ⊆ M , h(m, 0, . . . , 0) 6= 0, h(0 × Mk−1) = 0, and h(Z \ {z}) = 0.
Since the ideals of A that are generated by h(m, 0, . . . , 0) and by zi, respec-
tively, do not commute, there exists an absorptive function c ∈ Pol2(A) such that
c(zi, h(m, 0, . . . , 0)) 6= 0. Since −zi is contained in the ideal generated by zi − m,
there exists q ∈ P0(A) such that q(zi−m) = −zi. For p(x1, . . . , xk) := q(xi−m)+zi

we then have p(m, . . . ,m) = zi and p(z) = 0. We now define f(x) := c(p(x), h(x))
for x ∈ A. Then

f(z) = c(0, h(z)) = 0,

f(Z \ {z}) = c(p(Z \ {z}), 0) = 0,

f(0×Mk−1) = c(p(0×Mk−1), 0) = 0,

f(m, . . . ,m) = c(zi, h(m, 0, . . . , 0) + h(0,m, . . . , m)) = c(zi, h(m, 0, . . . , 0)) 6= 0.

For the last equation we used that, since M is abelian, h|Mk is additive by Lemma 6.
Likewise f |Mk is additive. So f(0×Mk−1) = 0 and f(Mk) 6= 0 yield f(M×0k−1) 6=
0. Thus (3.6) is proved.

By (3.6) we have f ∈ Polk(A) such that f(Ak) ⊆ M , f(M × 0k−1) 6= 0, f(0 ×
Mk−1) = 0, and f(Ak \ Ck) = 0. Since M is abelian, by Lemma 7 there exist
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endomorphisms l1, . . . , lk of 〈M, +〉 such that f(x1, . . . , xk) =
∑k

i=1 li(xi) for all
x1, . . . , xk ∈ M . Now f(0 ×Mk−1) = 0 yields l2(M) = · · · = lk(M) = 0 and hence
f(x1, . . . , xk) = l1(x1) for all x1, . . . , xk ∈ M . Since l1(M) 6= 0, by Lemma 8 we
have n ∈ N and pi, qi ∈ P0(A) for i ∈ {1, . . . , n} such that (

∑n
i=1 pil1qi)|M = idM .

Hence e : Ak → A, (x1, . . . , xk) 7→
∑n

i=1 pi(f(qi(x1), x2, . . . , xk)), is a poly-
nomial function on A that satisfies e(Ak) ⊆ M , e(x1, . . . , xk) = x1 for all
x1, . . . , xk ∈ M , and e(Ak \ Ck) = 0.

Finally we show that every group with cyclic Sylow subgroups is polynomially
equivalent to an expansion of a cyclic group.

Lemma 10. Let G := 〈G, ·〉 be a finite group with cyclic Sylow subgroups. Then
there exists a function + in Pol2(G) such that 〈G, +〉 is a cyclic group.

Proof. By [10, 10.1.10] there exist a cyclic normal subgroup N and a cyclic sub-
group H of G such that G = HN and gcd(|N |, |H|) = 1. We define

(h1n1) + (h2n2) := h1h2n1n2 for all h1, h2 ∈ H,n1, n2 ∈ N.

Obviously 〈G, +〉 is a cyclic group. To show that + is in Pol2(G) we consider the
function f : G → G such that f(hn) = n for all h ∈ H,n ∈ N . We show

f ∈ Pol1(G) (3.9)

by induction on |G|. Let P be a non-trivial Sylow subgroup of 〈N, ·〉. Then P is a
normal Sylow subgroup of G. By [10, 10.1.8] we have a characteristic complement
K for P in its centralizer CG(P ). In particular K is normal in G. First we consider
the case that K is non-trivial. Then fP ∈ Pol1(G/P ) and fK ∈ Pol1(G/K) by
the induction hypothesis. Since P and K commute and their orders are relatively
prime, there obviously exists π ∈ Pol1(G) such that π(pk) = p for all p ∈ P, k ∈ K.
Hence f ∈ Pol1(G) by Lemma 4.

Next we assume that K = 1. Then, by [7, Lemma 3.1(1)], G is a Frobenius
group with Frobenius complement H and kernel N = P . Let l ∈ Z be such that
l ≡ 1 mod |N | and l ≡ 0 mod |H|. Let h ∈ H,h 6= 1, and let n ∈ N . We consider

(hn)l = hlnhl−1
· · ·nhn.

Since h acts as a fixed-point-free automorphism on N and since the order of h

divides l, [10, 10.5.1(iv)] yields nhl−1 · · ·nhn = 1. Hence we have

(hn)l = 1 and nl = n.

Thus f(x) =
∏

t∈H(t−1x)l for all x ∈ G, and (3.9) is proved. Since x + y =
xf(x)−1yf(y)−1f(x)f(y) for all x, y ∈ G, we obtain that + is in Pol2(G).
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4. Modules

We establish some results in module theory (see [3] for definitions and basic facts)
that we will need for our proof of Theorem 1. Let G be a group of permutations on
a set Ω, and let F be a field. Then F [Ω] forms a vector space over F with basis Ω.
Furthermore F [Ω] is an F[G]-module by the action g ∗ ω := g(ω) for g ∈ G, ω ∈ Ω.

We say that G is sharply 2-transitive on Ω if for all α1, α2, β1, β2 ∈ Ω with α1 6=
α2, β1 6= β2 there exists a unique element g ∈ G such that g(α1) = β1, g(α2) = β2.

Lemma 11. Let G be a sharply 2-transitive permutation group on a finite set Ω,
let α ∈ Ω, and let F be a field whose characteristic does not divide |Ω|.

(1) Then F [Ω] is the direct sum of the simple F[G]-submodules W0 :=
spanF (

∑
ω∈Ω ω) and W1 := spanF (α− ω : ω ∈ Ω, ω 6= α).

(2) EndF[G](W0) ∼= F and EndF[G](W1) ∼= F.

Proof. By straightforward calculations W0 and W1 are F[G]-submodules of F [Ω]
of dimension 1 and |Ω| − 1 over F, respectively. Since |Ω| 6= 0 in F, we have the
direct decomposition F [Ω] = W0 uW1. As 1-dimensional vector space W0 is simple.
To show that W1 is a simple F[G]-module we let U be a non-trivial submodule of
W1, and let β ∈ Ω \ {α}. We will prove that

α− β ∈ U. (4.1)

Since G is transitive on Ω, we have u :=
∑

ω∈Ω fωω in U with fω ∈ F for ω ∈ Ω
and fα 6= 0. Let Gα := {g ∈ G : g(α) = α} be the stabilizer of α in G. Since G is
sharply 2-transitive on Ω, Gα is transitive on Ω \ {α}. Furthermore the identity is
the only element in Gα that fixes any ω ∈ Ω\{α}. Let v :=

∑
g∈Gα

g ∗u. We obtain

v = |Gα|fαα +
∑

ϕ∈Ω\{α}

(fϕ

∑
ω∈Ω\{α}

ω).

As u ∈ W1, we have fα +
∑

ϕ∈Ω\{α} fϕ = 0. So

v = |Gα|fαα− fα

∑
ω∈Ω\{α}

ω.

Now let h ∈ G be such that h(α) = β, h(β) = α. Then

v − h ∗ v = (|Gα|+ 1)fα(α− β).

Since |Gα| + 1 = |Ω| and fα 6= 0, we have (|Gα| + 1)fα 6= 0 in F. So v − h ∗ v ∈ U

yields (4.1). Thus U = W1 and W1 is simple. (1) is proved.
To show (2) we note that

EndF[G](F [Ω]) ∼= EndF[G](W0)× EndF[G](W1) (4.5)

by (1). Let r ∈ EndF[G](F [Ω]). Since G is transitive on the basis Ω of F [Ω], r is
uniquely determined by r(α). We have fω ∈ F for ω ∈ Ω such that

r(α) =
∑
ω∈Ω

fωω.
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Let h ∈ Gα. Then

r(α) =
∑
ω∈Ω

fωh(ω).

By comparing coordinates we obtain that fh−1(ω) = fω for all ω ∈ Ω. Since Gα is
transitive on Ω\{α}, there exists f ∈ F such that fω = f for all ω ∈ Ω\{α}. Hence

r(α) = fαα + f
∑

ω∈Ω\{α}

ω

and consequently EndF[G](F [Ω]) has dimension at most 2 over F. Together
with (4.5) this yields F ∼= EndF[G](W0) ∼= EndF[G](W1).

We state some facts about modules for direct products of groups.

Lemma 12. Let F be a field, let G,H be groups, let M be an F[G]-module, let N

be an F[H]-module.

(1) Then M ⊗F N is an F[G×H]-module defined by

(g, h) ∗ (m⊗ n) := (g ∗M m)⊗ (h ∗N n)

for all g ∈ G, h ∈ H,m ∈ M,n ∈ N .
(2) Assume that M1,M2 are F[G]-submodules for M such that M = M1 u M2 is a

direct sum and that N1, N2 are F[H]-submodules for N such that N = N1 uN2.
Then

M ⊗F N = M1 ⊗F N1 u M1 ⊗F N2 u M2 ⊗F N1 u M2 ⊗F N2.

(3) If M is a simple F[G]-module and N is a simple F[H]-module and
EndF[G](M) ⊗F EndF[H](N) is a division algebra, then M ⊗F N is a simple
F[G×H]-module.

Proof. Item (1) is immediate, (2) follows from [3, (2.17)] and (3) from [3, Theorem
10.38 (i)].

Let K be a field, let k ∈ N, and let AGL(k, K) denote the group of bijective
K-affine functions on the K-vector space Kk.

Lemma 13. Let k, m ∈ N, let K1, . . . ,Km be finite fields, and let F be a field
whose characteristic is distinct from the characteristic of Ki for all i ∈ {1, . . . ,m}.

(1) Then W := F [Kk
1 ]⊗F · · · ⊗F F [Kk

m] is an F[AGL(k, K1)× · · · ×AGL(k, Km)]-
module defined by

(g1, . . . , gm) ∗ (x1 ⊗ · · · ⊗ xm) := g1(x1)⊗ · · · ⊗ gm(xm)

for gi ∈ AGL(k, Ki), xi ∈ Kk
i for all i ∈ {1, . . . ,m}.
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(2) Furthermore W is the sum of simple F[AGL(k, K1) × · · · × AGL(k, Km)]-
submodules U1 ⊗F · · · ⊗F Um with

Ui ∈ {spanF (
∑

x∈Kk
i

x), spanF (0− x : x ∈ Kk
i , x 6= 0)}

for all i ∈ {1, . . . ,m}.

Proof. Item (1) is immediate from Lemma 12. For (2) we let K be a finite field.
Then W0 := spanF (

∑
x∈Kk x) and W1 := spanF (0 − x : x ∈ Kk, x 6= 0)

are obviously F[AGL(k, K)]-submodules of F [Kk]. For the field extension E of
K of degree k, there is a natural embedding α : AGL(1, E) → AGL(k, K) with
α(AGL(1, E)) acting sharply 2-transitively on Kk. Then W0 and W1 are simple
F[α(AGL(1, E))]-modules by Lemma 11. Hence they are simple F[AGL(k, K)]-
modules with EndF[AGL(k,K)](W0) ∼= F and EndF[AGL(k,K)](W1) ∼= F. Now (2)
follows from Lemma 12.

5. Piecewise constant functions into the monolith

This section consists only of the proof of Lemma 3. We use the following conventions
and notation. Let A be a subdirectly irreducible expanded group, and let M be the
monolith of A. We assume that M is an abelian ideal of A, that 〈A/M, +〉 is
squarefree and cyclic, and that gcd(|A : M |, |M |) = 1. For k ∈ N let

W(k) := {f ∈ MAk

: f(x + Mk) = f(x) for all x ∈ Ak}

and

U(k) := Polk(A) ∩W(k).

First we will endow W(k) with the structure of a module with submodule U(k).
Then we apply Lemma 13 to obtain a precise description of the k-ary polynomial
functions into M that are constant on the cosets of Mk. Finally we show that this
description does not depend on the arity k. This will conclude the proof of Lemma 3.

Claim 14. |M | is a prime power.

Proof. Follows from Lemma 7 since M is an abelian minimal ideal of A.

Claim 15. Let F := GF(|M |), let m ∈ N, let q1, . . . , qm be the prime divisors of
|A : M |, and let G := AGL(k, Zq1) × · · · × AGL(k, Zqm

). Then W(k) forms an
F[G]-module with submodule U(k).

Proof. Since 〈M, +〉 is an abelian group, 〈W(k), +〉 is an abelian group with respect
to pointwise addition of functions and U(k) is a subgroup of 〈W(k), +〉. We let F
and G act on 〈W(k), +〉 by composition with polynomial functions. By Lemma 7 we
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have an embedding ϕ of F into 〈P0(A)|M , +, ◦〉. Then W(k) forms a vector space
over F by

af := ϕ(a)f for a ∈ F and f ∈ W(k). (5.3)

Also FU(k) ⊆ U(k) which makes U(k) an F-subspace of W(k).
By the assumption of the lemma the group reduct of A/M is isomorphic to

Zq1 × · · · × Zqm . So we have a group isomorphism

α : Zk
q1
× · · · × Zk

qm
→ (A/M)k.

Let m1 ∈ M,m1 6= 0. For r ∈ Zk
q1
× · · · × Zk

qm
we define

er : Ak → M, (x1, . . . , xk) 7→
{

m1 if (x1 + M, . . . , xk + M) = α(r),
0 else.

The functions (er : r ∈ Zk
q1
× · · · ×Zk

qm
) are a basis for W(k) over F. We let G act

on this basis by (g1, . . . , gm) ∗ e(r1,...,rm) := e(g1(r1),...,gm(rm)) for (g1, . . . , gm) ∈ G

and (r1, . . . , rm) ∈ Zk
q1
×· · ·×Zk

qm
. Then W(k) forms an F[G]-module. We note that

for all f ∈ W(k), g ∈ G, and x ∈ (A/M)k

(g ∗ f)(x) = fαg−1α−1(x).

Hence, for showing that U(k) is closed under the action of G, it suffices to prove

αGα−1 ⊆ (Polk(A/M))k. (5.7)

By the definition of G, αGα−1 forms the group of bijective affine functions on
〈A/M, +〉k. Let g ∈ αGα−1. Since 〈A/M, +〉 is cyclic, there exist aij ∈ Z for
i, j ∈ {1, . . . , k} and b ∈ (A/M)k such that for all x1, . . . , xk ∈ A/M

g(x1, . . . , xk) = (
k∑

j=1

a1jxj , . . . ,

k∑
j=1

akjxj) + b.

Hence we have g ∈ (Polk(〈A/M, +〉))k and consequently (5.7). Thus G∗U(k) ⊆ U(k),
and U(k) is an F[G]-submodule of W(k).

Claim 16. The F-linear function β : F [Zk
q1

] ⊗F · · · ⊗F F [Zk
qm

] → W(k) that is
defined by

β(r1 ⊗ · · · ⊗ rm) := e(r1,...,rm) for r1 ∈ Zk
q1

, . . . , rm ∈ Zk
qm

is an F[G]-isomorphism.

Proof. Immediate from the definitions.

For I ⊆ {1, . . . ,m} we define

WI := β(U1 ⊗F · · · ⊗F Um) with Ui :=

{
spanF (0− x : x ∈ Zk

qi
, x 6= 0) if i ∈ I,

spanF (
∑

x∈Zk
qi

x) else.
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By Claim 16 and Lemma 13 we can thus index the simple summands of W(k) by
the subsets of {1, . . . ,m} and obtain the following.

Claim 17. There exist l ∈ N and subsets I1, . . . , Il of {1, . . . ,m} such that U(k) =
WI1 + · · ·+ WIl

.

Claim 18. Let i ∈ {1, . . . ,m}. Assume that W{1,...,i} ≤ U(k). Then W{1,...,i−1} ≤
U(k).

Proof. For j ∈ {1, . . . , i}, let rj ∈ Zk
qj

, rj 6= 0, and let

f := β(0− r1 ⊗ · · · ⊗ 0− ri ⊗
∑

xi+1∈Zk
qi+1

xi+1 ⊗ · · · ⊗
∑

xm∈Zk
qm

xm).

Then f is in U(k). To determine f explicitly we use the multilinearity of the tensor
product and obtain

f = β([0⊗ · · · ⊗ 0

−(r1 ⊗ 0⊗ · · · ⊗ 0 + · · ·+ 0⊗ · · · ⊗ 0⊗ ri)

+ · · ·
+(−1)i r1 ⊗ · · · ⊗ ri]⊗ [

∑
xi+1∈Zk

qi+1
,...,xm∈Zk

qm

xi+1 ⊗ · · · ⊗ xm])

=
∑

xi+1∈Zk
qi+1

,...,xm∈Zk
qm

[e(0,...,0,xi+1,...,xm)

−(e(r1,0,...,0,xi+1,...,xm) + · · ·+ e(0,...,0,ri,xi+1,...,xm))

+ · · ·
+(−1)i e(r1,...,ri,xi+1,...,xm)].

Let t ∈ N be such that t ≡ 0 mod qi and t ≡ 1 mod qj for all j ∈ {1, . . . ,m}, j 6= i.
Let (s1, . . . , sm) ∈ Zk

q1
× · · · × Zk

qm
, and let x ∈ Ak. If si 6= 0, then

e(s1,...,sm)(tx) = 0.

If si = 0, then

e(s1,...,sm)(tx) =
{

m1 if x ∈ α(s1, . . . , si−1, Zk
qi

, si+1, . . . , sm),
0 else.

Hence

e(s1,...,si−1,0,si+1,...sm)(tx) =
∑

yi∈Zk
qi

e(s1,...,si−1,yi,si+1,...sm)(x).
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Consequently the function g : Ak → A, x 7→ f(tx), satisfies

g =
∑

xi∈Zk
qi

,xi+1∈Zk
qi+1

,...,xm∈Zk
qm

[e(0,...,xi,xi+1,...,xm)

−(e(r1,0,...,0,xi,xi+1,...,xm) + · · ·+ e(0,...,0,ri−1,xi,xi+1,...,xm))

+ · · ·
+(−1)i−1 e(r1,...,ri−1,xi,xi+1,...,xm)]

= β(0− r1 ⊗ · · · ⊗ 0− ri−1 ⊗
∑

xi∈Zk
qi

xi ⊗ · · · ⊗
∑

xm∈Zk
qm

xm).

Thus g is in W{1,...,i−1}. Since g is a polynomial function by its definition, we have
g ∈ U(k). Hence

β(0− r1 ⊗ · · · ⊗ 0− ri−1 ⊗
∑

xi∈Zk
qi

xi ⊗ · · · ⊗
∑

xm∈Zk
qm

xm) ∈ U(k)

for all r1 ∈ Zk
q1

, . . . , ri−1 ∈ Zk
qi−1

. Thus U(k) contains a basis for W{1,...,i−1} and
W{1,...,i−1} ≤ U(k).

Since the proof of Claim 18 does not depend on the chosen ordering of the primes
q1, . . . , qm, we actually have the following result.

Claim 19. Let I ⊆ {1, . . . ,m}. If WI ≤ U(k), then
∑

J⊆I WJ ≤ U(k).

For a subgroup B of 〈A, +〉 that contains M we define

FixBk(W(k)) := {f ∈ W(k) : f(x + Bk) = f(x) for all x ∈ Ak}.

Claim 20. Let I ⊆ {1, . . . ,m}, let d :=
∏

i∈I qi, and let B be the unique subgroup
of index d in 〈A, +〉. Then

∑
J⊆I WJ = FixBk(W(k)).

Proof. We note that the basis vectors of WJ for J ⊆ I are fixed under translations
by all elements in α−1((B/M)k). Hence∑

J⊆I

WJ ≤ FixBk(W(k)). (5.17)

Further

dimF

∑
J⊆I

WJ =
∑
J⊆I

dimF WJ

=
∑
J⊆I

∏
j∈J

(qk
j − 1)

=
∑
J⊆I

|{x ∈ Zk
d : ordx =

∏
j∈J

qj}|

= |Zk
d|

= dimF FixBk(W(k)).
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Hence we have equality in (5.17).

Claim 21. There exist l ∈ N and subgroups B1, . . . , Bl of 〈A, +〉 that contain M

such that

U(k) = FixBk
1
(W(k)) + · · ·+ FixBk

l
(W(k)).

Proof. Follows from Claims 17, 19, and 20.

Claim 22. Let l ∈ N, and let B,B1, . . . , Bl be subgroups of 〈A, +〉 that contain M .
Assume that FixBk(W(k)) ≤ FixBk

1
(W(k)) + · · · + FixBk

l
(W(k)). Then Bi ≤ B for

some i ∈ {1, . . . , l}.

Proof. Let I ⊆ {1, . . . ,m} be such that |A : B| =
∏

i∈I qi. Then WI is a submodule
of FixBk(W(k)) and hence of FixBk

1
(W(k)) + · · ·+ FixBk

l
(W(k)). Since WI is simple

and not isomorphic to any other submodule of W(k), there exists i ∈ {1, . . . , l} such
that WI ≤ FixBk

i
(W(k)). Then FixBk(W(k)) ≤ FixBk

i
(W(k)) by Claim 20. Thus

Bi ≤ B.

Claim 23. Let B be a subgroup of 〈A, +〉 that contains M . Then the following are
equivalent:

(1) FixB(W (1)) ⊆ Pol1(A).
(2) FixBk(W(k)) ⊆ Polk(A).

Proof. Let i : A → Ak, x 7→ (x, 0, . . . , 0). The mapping

ρ : W(k) → W (1), f → fi,

is onto and satisfies ρ(U(k)) = U (1) and ρ(FixBk(W(k))) = FixB(W (1)).
(2)⇒(1): If FixBk(W(k)) ⊆ Polk(A), then FixB(W (1)) = ρ(FixBk(W(k))) ⊆

Pol1(A).
(1)⇒(2): We assume FixB(W (1)) ⊆ Pol1(A). By Claim 21 we have l ∈ N and

subgroups B1, . . . , Bl of 〈A, +〉 that contain M such that

FixBk
1
(W(k)) + · · ·+ FixBk

l
(W(k)) = U(k).

For f ∈ FixB(W (1)) the function

f ′ : Ak → M, (x1, . . . , xk) 7→ f(x1),

is in U(k). Now f ′ ∈ FixBk
1
(W(k)) + · · ·+ FixBk

l
(W(k)) yields that

f = ρ(f ′) ∈ ρ(FixBk
1
(W(k))+· · ·+FixBk

l
(W(k))) = FixB1(W (1))+· · ·+FixBl

(W (1)).

Hence FixB(W (1)) ≤ FixB1(W (1)) + · · · + FixBl
(W (1)). By Claim 22 there exist

i ∈ {1, . . . , l} such that Bi ≤ B. Then FixBk(W(k)) ≤ FixBk
i
(W(k)) ≤ U(k).
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Proof of Lemma 3. By Claim 21 we have l ∈ N and subgroups B1, . . . , Bl of
〈A, +〉 that contain M such that

Pol1(A) ∩W (1) = FixB1(W (1)) + · · ·+ FixBl
(W (1)). (5.23)

Claim 23, (1)⇒(2), yields

Polk(A) ∩W (k) ≥ FixBk
1
(W (k)) + · · ·+ FixBk

l
(W (k)). (5.24)

Seeking a contradiction we suppose that the inequality in (5.24) is strict. By
Claims 21 and 22 there exists a subgroup B of 〈A, +〉 such that M ≤ B,
Bi 6≤ B for any i ∈ {1, . . . , l} and FixBk(W (k)) ≤ Polk(A) ∩ W (k). Then
FixB(W (1)) ≤ Pol1(A)∩W (1) by Claim 23, (2)⇒(1). But by Claim 22 FixB(W (1)) 6≤
FixB1(W (1)) + · · · + FixBl

(W (1)) because Bi 6≤ B for any i ∈ {1, . . . , l}. This con-
tradicts (5.23). Hence we have equality in (5.24). �

6. The proof of Theorem 1

For an algebra A := 〈A,F 〉 and k, r ∈ N let

Compk(A, Polr(A)) := {f ∈ AAk

: f(g1, . . . , gk) ∈ Polr(A) for all g1, . . . , gk ∈ Polr(A)}

and

Comp(A, Polr(A)) :=
⋃
k∈N

Compk(A, Polr(A)).

So Comp(A, Polr(A)) is the set of finitary functions that preserve (the graphs of)
the r-ary polynomial functions on A.

Lemma 24. Let A be an algebra, let k, r ∈ N, and let Ā := 〈A, Comp(A, Polr(A))〉.
Then we have:

(1) Comp(A, Polr(A)) is the largest clone C on A such that the set of r-ary func-
tions in C is equal to Polr(A).

(2) Pol(Ā) = Comp(A, Polr(A)).
(3) Con(Ā) = Con(A).

Proof. Items (1) and (2) are immediate from the definitions. Since Pol1(A) =
Pol1(Ā) and since the unary polynomial functions determine the congruences of an
algebra [8, Theorem 4.18], we have (3).

We are now ready to prove the following stronger version of Theorem 1.

Theorem 25. Let A be an expansion of a group of squarefree order n.

(1) If n is odd, then Pol(A) = Comp(A, Pol1(A)).
(2) If n is even, then Pol(A) = Comp(A, Pol2(A)).
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Proof. By Lemma 10 there exists a binary polynomial function + on the group
reduct of A such that 〈A, +〉 is a cyclic group. Since Pol(A) = Pol(〈A, Pol(A)〉),
we may assume that A is an expansion of 〈A, +〉.

Let r := 1 if n is odd and r := 2 if n is even. Let Ā := 〈A, Comp(A, Polr(A))〉,
and let k ∈ N. By Lemma 24 we only need to show that

Polk(Ā) ⊆ Polk(A). (6.3)

We use induction on |A|. First we assume that there exist non-trivial ideals I, J ∈
Id (A) such that I ∩ J = 0. Let f ∈ Polk(Ā). Since f is congruence preserving on
A by Lemma 24 (3), we may consider fI and fJ on the quotients A/I and A/J ,
respectively. Now fI ∈ Polk(Ā/I), fJ ∈ Polk(Ā/J) yield fI ∈ Polk(A/I), fJ ∈
Polk(A/J) by the induction assumption. Since the orders of I and J are relatively
prime, there exists π ∈ Pol1(〈A, +〉) such that π(i + j) = i for all i ∈ I, j ∈ J . So,
by Lemma 4, we obtain f ∈ Polk(A).

For the following we assume that A is subdirectly irreducible with monolith M .
By Lemma 24 (3) the same is true for Ā. We claim that

Polk(Ā) ∩MAk

⊆ Polk(A) ∩MAk

. (6.4)

If M is non-abelian in A, then MAk ⊆ Polk(A) by Lemma 5 and (6.4) follows triv-
ially. We assume that M is an abelian ideal in A. Then 〈M, Pol(A)|M 〉 is polynomi-
ally equivalent to a vector space by Lemma 7. If |M | > 2, this yields MA 6⊆ Pol1(A).
If |M | = 2, we still obtain MA2 6⊆ Pol2(A). Since Polr(A) = Polr(Ā) by Lemma 24,
Lemma 5 implies that M is abelian in Ā in both cases. Let

C := min{H ≤ 〈A, +〉 : ∃e ∈ Pol1(A) with e(A) ⊆ M, e|M = idM , e(A \H) = 0}.

Then C is the centralizer of M in A and in Ā by Lemmas 6 and 9. Let T be a
transversal for the cosets of C in A, and let f ∈ Polk(Ā) ∩MAk

. Then

f(m + c + t) = f(m + t)− f(t) + f(c + t) for all m ∈ Mk, c ∈ Ck, t ∈ T k

by Lemma 6. Since M is abelian and n is squarefree, 〈M, Pol(Ā)|M 〉 is polynomially
equivalent to a vector space over F := GF(|M |) by Lemma 7. Let s ∈ T k be fixed.
The function g ∈ MMk

that is defined by g(m) := f(m + s) − f(s) for m ∈ Mk is
F-linear. Since M has prime order, there exist cs,1, . . . , cs,k ∈ Z such that

f((m1, . . . ,mk) + s) =
k∑

i=1

cs,imi + f(s) for all m1, . . . ,mk ∈ M.

Since |M | and |A : M | are relatively prime, there exists an idempotent polyno-
mial function on 〈A, +〉 that maps A onto M . By Lemma 9 we have functions
ei ∈ Polk(A) for i ∈ {1, . . . , k} such that ei(Ak) ⊆ M , ei(x1, . . . , xk) = xi for all
x1, . . . , xk ∈ M , and ei(Ak \ Ck) = 0. We consider

hs : Ak → M, x 7→
k∑

i=1

cs,iei(x− s) + f(s).
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By its definition hs is in Polk(A). We have hs(x) = f(x) for all x ∈ Mk + s

and hs(x) = f(s) for all x ∈ Ak \ (Ck + s). As a polynomial function hs satisfies
hs(m + c + x) = hs(m + x)− hs(x) + hs(c + x) for all m ∈ Mk, c ∈ Ck, x ∈ Ak by
Lemma 6. For m ∈ Mk and c ∈ Ck we then obtain

(f −
∑
t∈T k

ht)(m + c + s) = f(m + c + s)− hs(m + c + s)−
∑

t∈T k\{s}

f(t)

= f(m + s)− f(s) + f(c + s)

−(hs(m + s)− hs(s) + hs(c + s))−
∑

t∈T k\{s}

f(t)

= f(c + s)− hs(c + s)−
∑

t∈T k\{s}

f(t).

Thus f −
∑

t∈T k ht is constant on all cosets of Mk in Ak.
Since the functions into M that are constant on the cosets of M in A are the

same in Pol1(Ā) and in Pol1(A), Lemma 3 yields that every k-ary polynomial
function on Ā that maps into M and is constant on all cosets of Mk in Ak is in
Polk(A). In particular f −

∑
t∈T k ht ∈ Polk(A). As

∑
t∈T k ht ∈ Polk(A), we finally

obtain f ∈ Polk(A). Thus (6.4) is proved.
We are now ready to show (6.3). By the Homomorphism Theorem for subalge-

bras of AAk

and ĀAk

, respectively, we have

|Polk(A)| = |Polk(A/M)| · |Polk(A) ∩MAk

|,

|Polk(Ā)| = |Polk(Ā/M)| · |Polk(Ā) ∩MAk

|.

By the induction hypothesis, Pol(Ā/M) ⊆ Pol(A/M), and by (6.4) we obtain

|Polk(Ā)| ≤ |Polk(A)|.

Since Polk(Ā) ⊇ Polk(A) by Lemma 24, this yields (6.3).

In the proof of Theorem 25 knowledge about Pol2(A) is required only for prov-
ing (6.4) for the case of an abelian 2-element section in Con(A). If there are no
such sections in Con(A) (in particular, if |A| is odd), then Pol1(A) determines
Pol(A). However not all polynomial clones of squarefree expanded groups are de-
termined by their unary functions. Consider Pol1(〈Z2, +〉) = Pol1(〈Z2, +, ·〉) but
Pol2(〈Z2, +〉) 6= Pol2(〈Z2, +, ·〉).

Theorem 1 follows immediately from Lemma 24 and Theorem 25. We also obtain
the equivalence of (1) and (2) of Theorem 1.1 in [1] but not that (3) implies (1).

[1, Theorem 1.1] Let p, q be primes with p 6= q, let G be a group of order pq, and let
A1 and A2 be two expansions of G. Then the following are equivalent:

(1) Pol(A1) = Pol(A2).
(2) Pol2(A1) = Pol2(A2).
(3) 〈Con(A1),∧,∨, [., .]〉 = 〈Con(A2),∧,∨, [., .]〉.
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7. Congruences and commutators do not determine polynomial
functions

In [1] and [6] we verified Idziak’s conjecture [5, Conjecture 9] for expanded groups
whose order is the product of at most 3 distinct primes by showing that every
function on such an algebra that preserves congruences and binary commutators is
polynomial. In this section we show that this is not true for expansions of groups
whose order is the product of more than 3 primes.

To simplify notation we present 2 concrete expansions of 〈Z210, +〉 with the same
congruences and commutator relations but distinct clones. These examples can be
easily generalized to the case of Zn with n the product of at least 4 primes.

Let V := Z210. For X ⊆ V 2 we define gX : V 2 → V by

gX(x) :=
{

30 if x ∈ X,

0 otherwise.

Let A := 6V,B := 10V,C := 15V,M := 30V . We define

V1 := 〈V, +, gA2 , gB2 , gC2〉 and V2 := 〈V, +, gM2〉.

Claim 26. Pol(V1) ⊆ Pol(V2).

Proof. Obvious since M is a subgroup of A,B, and C.

Claim 27. Let i ∈ {1, 2}. Then Vi is subdirectly irreducible with monolith M , and
Vi/M is term equivalent to the cyclic group of order 30. In particular Id (V1) =
Id (V2).

Proof. Let u ∈ V, u 6= 0. We show that the ideal U of Vi that is generated by u

contains M . If u ∈ A ∩ B ∩ C, then u ∈ M \ 0 and U = M . Assume u 6∈ A. Since
gA2 is in Pol(Vi), U contains gA2(0, 0) − gA2(u, 0) = 30 and consequently M ⊆ U .
The cases u 6∈ B and u 6∈ C, respectively, are dealt with in the same way.

Claim 28. Let i ∈ {1, 2}. Then [[V,M ]]Vi = 0 and [[X, Y ]]Vi = M for all X, Y ∈
{A,B, C}.

Proof. Since gA2 , gB2 , gC2 , gM2 are constant on the cosets of M2 in V 2, we have

f(x)−f(x+m)+f(z) = f(−m+z) for all x, z ∈ V 2,m ∈ M2, f ∈ {gA2 , gB2 , gC2 , gM2}.

Hence [[V,M ]]Vi = 0 by [1, Lemma 2.4]. Since g(6,10)+C2 ∈ Pol2(Vi) is absorptive
and g(6,10)+C2(A×B) = {0, 30}, we obtain M ⊆ [[A,B]]Vi . By [[A,B]]Vi ⊆ A∩B =
M , we have [[A,B]]Vi = M . Similarly [[B,C]]Vi = [[A,C]]Vi = M .

Since Vi/M is term equivalent to an abelian group, we have [[A,A]]Vi ⊆ M .
From g(6,6)+C2(A,A) = {0, 30} we obtain M ⊆ [[A,A]]Vi . Thus [[A,A]]Vi = M , and
similarly [[B,B]]Vi = [[C,C]]Vi = M .
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By the previous claim the commutator operations on V1 and V2 are equal on
all pairs of join irreducible ideals. Thus we have the following.

Claim 29. [[X, Y ]]V1 = [[X, Y ]]V2 for all ideals X, Y of V1.

A straighforward application of our description of polynomial functions in Sec-
tion 5 yields that Pol(V1) 6= Pol(V2). Instead we will show this inequality directly
by presenting an 8-ary relation that is preserved by the fundamental operations of
V1 but not by those of V2. Let

S := {(x1, . . . , x8) ∈ V 8 : {x2 − x1, x5 − x3, x7 − x4, x8 − x6} ⊆ A,

{x3 − x1, x5 − x2, x6 − x4, x8 − x7} ⊆ B,

{x4 − x1, x6 − x3, x7 − x2, x8 − x5} ⊆ C,

x1 − (x2 + x3 + x4) + x5 + x6 + x7 = x8}.

Claim 30. S is a subalgebra of V1
8.

Proof. Clearly S forms a subgroup of 〈V, +〉8. Let x, y ∈ S, g := gA2 . We show
that (g(x1, y1), . . . , g(x8, y8)) ∈ S. Since g preserves the congruences induced by
A,B, C, it suffices to show

g(x1, y1)−(g(x2, y2)+g(x3, y3)+g(x4, y4))+g(x5, y5)+g(x6, y6)+g(x7, y7) = g(x8, y8).(7.4)

Since g is constant on the cosets of A2 in V 2, we have g(x1, y1) = g(x2, y2),
g(x3, y3) = g(x5, y5), g(x4, y4) = g(x7, y7), g(x6, y6) = g(x8, y8), which proves (7.4).
Similarly gB2 and gC2 preserve S.

Claim 31. gM2 does not preserve S.

Proof. Note that x := (0, 6, 10, 15, 6 + 10, 10 + 15, 6 + 15, 6 + 10 + 15) is in S but
gM2(x, x) = (30, 0, . . . , 0) is not in S.

Hence gM2 6∈ Pol(V1) which yields our final result. We recall that the clone of
term functions [8, Definition 4.2], Clo(A), on an algebra A := 〈A,F 〉 is the smallest
clone on A that contains all fundamental operations F of A.

Claim 32. Clo(V1) 6= Clo(V2) and Pol(V1) 6= Pol(V2).
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