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Abstract

A function from the group GL(2, R) to itself is called polynomial if
it can be written as some product of constant functions, the identity
function, and the function that maps every element to its inverse. We
give a necessary topological condition for a function to be polynomial. As
a consequence we prove that transposition is not polynomial.
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Introduction

Polynomial functions (see Section 1 for definitions) have been studied for several
classes of finite groups. An overview of existing results and references can be
found in [2]. From the paper [1] we obtain a characterization of the so-called
locally polynomial functions on the group GL(n, K). These are the functions
that can be interpolated by a polynomial function on any given finite set of
points. By the algebraic criteria given in [1] a function f : GL(n, K) → SL(n, K)
is locally polynomial if and only if

f(kx) = f(x) for all x ∈ GL(n, K) and for all k ∈ K∗. (1)

Consequently transposition on any general linear group over any field turns out
to be a locally polynomial function, and transposition is polynomial on any
general linear group over any finite field.

The second author raised the question whether transposition on infinite gen-
eral linear groups is polynomial in an interdisciplinary seminar, where the third
author proposed to bring in topological ideas. Finally we could answer the
question negatively for the case GL(2, R) by a method involving topology and
algebra. It should be noted that the topological arguments even resisted sub-
sequent trials to eliminate them. We still have no idea for a purely algebraic
proof.

The structure of the paper is the following. In Section 2 we give the structure
of the homotopy class group of GL(2, R). In our main result Theorem 2 we
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determine the polynomial functions modulo homotopy. From this description
we then obtain that transposition is not equivalent to a polynomial function
modulo homotopy. Hence transposition is not polynomial on GL(2, R). The
negative answer for R also implies the negative answer for all subfields of R.
More generally, the negative result can be transferred to arbitrary ordered fields
(see Section 4).

1 Notation

Let (G, ·) be a group. A unary polynomial function p : G → G is a function
that can be written in the form

p(x) := a1x
e1a2x

e2 · · · anxenan+1,

where n ∈ N, a1, . . . , an+1 are in G, and e1, . . . , en are integers (see [5], [6,
Definition 4.4]). The set of all unary polynomial functions on G will be denoted
by P(G), the set of all functions from G into G by GG. For f, g ∈ GG we
define the product fg ∈ GG by fg (x) = f(x) · g(x) for all x ∈ G. By this
multiplication of functions, (GG, ·) is a group, and (P(G), ·) is the subgroup of
(GG, ·) that is generated by the identity function and the constant functions on
G. Inner automorphisms of the group G are particular examples of polynomial
functions. We will denote the multiplicative inverse of f ∈ GG by f−1, which
is not to be mistaken for the inverse function with respect to composition. For
the usual composition of functions f, g with appropriate source and range we
will write f ◦ g.

Now assume that G is a topological group. Recall that two continuous
functions f, g : G → G are homotopic if there exists a continuous function h :
G×[0, 1] → G such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ G. For any
continuous function f on G we let [f ] denote the homotopy class of f . We write
[G, G] := {[f ] | f is continuous on G}. Since the multiplication of functions is
well-defined modulo homotopy, we have a group ([G, G], ·). Polynomial functions
are continuous. Hence their classes form a subgroup. This group of polynomial
functions modulo homotopy is generated by the class of the identity and the
classes of all constant functions (it suffices to choose one constant from each
connected component of G).

2 Computation of Homotopy Class Groups

We recall that two spaces X, Y are homotopy equivalent if there are two contin-
uous maps u : X → Y and v : Y → X such that the composed function u ◦ v
is homotopic to idY and v ◦ u is homotopic to idX . If X and Y are homotopy
equivalent, then

α : [X, X] → [Y, Y ], [f ] 7→ [u ◦ f ◦ v],

is well-defined and an isomorphism.
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For the rest of the paper we will use the following notation. We write G :=
GL(2, R), O := O(2, R), O+ := {x ∈ O | det x = 1}, O− := {x ∈ O | det x =
−1}, and S1 := {(x, y) ∈ R2 | x2 + y2 = 1}.

It is well-known that the topological groups G and O are homotopy equiv-
alent by the following argument (cf. [4], p. 293). The Gram-Schmidt orthogo-
nalization process applied to the rows of matrices in G provides a continuous
function

u : G → O,

(
a1

a2

)
7→

(
a1/|a1|

(a2 − a2·a1
a1·a1

a1)/|a2 − a2·a1
a1·a1

a1|

)
. (2)

Here x · y denotes the standard scalar product of row vectors x, y ∈ R2 and
|x| :=

√
x · x. For v := idO we then have that u ◦ v = idO and that v ◦ u = u is

homotopic to idG. Thus G and O are homotopy equivalent.
By the bijections

o+ : S1 7→ O+, (cos ϕ, sinϕ) 7→
(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)
,

o− : S1 7→ O−, (cos ϕ, sinϕ) 7→
(

cos ϕ sin ϕ
sin ϕ − cos ϕ

)
,

both O+ and O− are homotopy equivalent to S1.
For a ∈ O we define ca : O → O, x 7→ a. For f : O+ → O and g : O− → O

we define the function f ] g : O → O by (f ] g)|O+ = f and (f ] g)|O− = g. We
denote diag(1,−1) by r and diag(1, 1) by 1. Let

i+ := idO+ ] c1|O− ,
s+ := cr|O+ ] c1|O− ,
i− := c1|O+ ] idO− ,
s− := c1|O+ ] cr|O− .

Then i+i− = idO and s+s− = cr.
We are now able to give an explicit description of the homotopy class group

[O, O] and hence of the isomorphic group [G, G].

Theorem 1. Let A be the subgroup of (OO, ·) that is generated by i+ and s+,
and let B be the subgroup of (OO, ·) that is generated by s−i− and s−.

1. Then i+ generates a subgroup of index 2 in A, and s−i− generates a
subgroup of index 2 in B. The groups A and B are isomorphic to the
infinite dihedral group. Further AB is a group, and the product AB is
direct.

2. For each continuous function f on O there exist uniquely determined a, b ∈
{0, 1} and c, d ∈ Z such that f is homotopic to s+

ai+
cs−

b(s−i−)d.

3. The group [O, O] is isomorphic to AB.

Proof. First we show (1). We note that c1 is the identity element of the group
(OO, ·). From the definition of the functions it is straightforward that the mul-
tiplicative order of i+ is infinite, that s+ has order 2, and that s+i+s+ = i+

−1.
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Hence i+, s+ generate a copy of the infinite dihedral group. Similarly i− and
s− have order 2, s−i− has infinite order, and s−(s−i−)s− = (s−i−)−1. Hence
〈s−i−, s−〉 is isomorphic to the infinite dihedral group. Since i+, s+ commute
with i−, s−, we have that AB is a group. As A ∩B = {c1}, the product AB is
direct.

Next we prove (2). Let f : O → O be a continuous function. For f+ := f |O+

and f− := f |O− we have f = f+]f−. Since f+ is continuous, its image is either
contained in O+ or in O−. In the latter case the product function (cr|O+)f+

maps x to the element rf+(x), which is in O+ for all x ∈ O+. Hence we
have a ∈ {0, 1} such that (cr|O+)af+(O+) ⊆ O+. Let o+

−1 denote the inverse
function of o+ with respect to composition. Then

β : [S1, S1] → [O+, O+], [g] 7→ [o+ ◦ g ◦ o+
−1]

is well-defined and an isomorphism. The group [S1, S1] is an infinite cyclic
group that is generated by the class of idS1 . Hence [O+, O+] is infinite cyclic
and generated by β([idS1 ]) = [idO+ ]. In particular [(cr|O+)af+] is in the cyclic
group 〈[idO+ ]〉. Thus there exists a uniquely determined integer c such that
(cr|O+)af+ is homotopic to (idO+)c.

Similarly we have b ∈ {0, 1} such that (cr|O−)bf−(O−) ⊆ O+. With o−
−1

denoting the inverse function of o− with respect to composition, we have a group
isomorphism

γ : [S1, S1] → [O−, O+], [g] 7→ [o+ ◦ g ◦ o−
−1].

Then γ([idS1 ]) = [cr|O− idO− ] since o+(idS1(o−−1(x))) = rx for all x ∈ O−.
Hence [cr|O− idO− ] generates the group [O−, O+]. There exists a uniquely de-
termined integer d such that (cr|O−)bf− is homotopic to (cr|O− idO−)d. Hence
f+]f− is homotopic to (cr|O+)a(idO+)c] (cr|O−)b(cr|O− idO−)d, which is equal
to s+

ai+
cs−

b(s−i−)d. Thus (2) is proved. Now (3) follows from (1) and (2).

We note that, by Theorem 1, the group of continuous functions on O actually
splits into a semidirect product of AB and the normal subgroup of functions that
are homotopic to c1. The group [O,O] is isomorphic to a semidirect product
Z2 o V4 where V4 is the Klein four-group.

3 Homotopy Classes of Polynomial Functions

Next we compute the subgroup of polynomial classes.

Theorem 2. Let S := SL(2, R), let N := {[f ] | f ∈ P(G) and f(G) ⊆ S}, and
let i := i+i−, s := s+s−. For u as in (2) let

α : [G, G] → [O,O], [f ] 7→ [u ◦ f |O].

Then the group α(N ) is a direct product of the group generated by [i4] and the
group generated by [i2(si)2].
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We recall that, by the definitions that precede Theorem 1, the product i =
i+i− is the identity map idO and that s = s+s− is the constant function cr for
r = diag(1,−1) on O. Further α is an isomorphism between [G, G] and [O,O].

Proof. Let N be the subgroup of (GG, ·) that is generated by all functions
x 7→ [a, xl] for l ∈ Z, a ∈ G, and x 7→ b for b ∈ S. First we show that

N = {f ∈ P(G) | f(G) ⊆ S}. (3)

The inclusion ⊆ is obvious. For the converse, we let f ∈ P(G) with f(G) ⊆ S.
We assume that

f(x) = a1x
e1a2x

e2 · · · anxenan+1,

where n ∈ N, a1, . . . , an+1 ∈ G, and e1, . . . , en ∈ Z. We use induction on n
to show that f can be written as product of commutators and constants. For
n = 1 the assumption det f(x) = 1 yields e1 = 0 and f(x) = a1a2 ∈ S for all
x ∈ G. Hence f ∈ N . Next we assume that n ≥ 2. Then we find

f(x) = (
n−2∏
i=1

aix
ei) · an−1x

en−1+enanan+1 · [anan+1, x
en ] · [an+1, x

en ]−1.

By the induction assumption g : G → G, x 7→ (
∏n−2

i=1 aix
ei)an−1x

en−1+enanan+1,
is in N . Hence we obtain f ∈ N and (3) is proved.

On G all constant functions x 7→ a for a ∈ G with det a > 0 are homotopic to
x 7→ 1. Here 1 denotes the identity matrix in G. The functions x 7→ a for a ∈ G
with det a < 0 are all homotopic to x 7→ diag(1,−1). Further α([idG]) = [i] by
the definition of α. Hence the group homomorphism α maps the homotopy class
of x 7→ [a, xl] to [[c1], [i]l] = [c1] if det a > 0 and to [[s], [i]l] otherwise. By (3)
we then have

α(N ) = 〈{[[s], [i]l] | l ∈ Z}〉.

We proceed to show that α(N ) is generated by the classes of i4 and of i2(si)2.
We claim that

[s, i2k] = i+
4k,

[s, i2k+1] = i+
4k+2(s−i−)2

(4)

for all k ∈ Z. Let l ∈ Z. We have [s, il] = [s+, i+
l] [s−, i−

l] by Theorem 1.
Since i−

2 = c1, we note that [s−, i−
l] = c1 for l even and [s−, i−

l] = (s−i−)2

for l odd. Together with [s+, i+
l] = s+

−1i+
−ls+i+

l = i+
2l, this yields (4).

Hence α(N ) ⊆ 〈[i+4], [i+2(s−i−)2]〉. The converse inclusion follows trivially. By
definition i+

4 and i+
2(s−i−)2 commute. Hence α(N ) is abelian. By Theorem 1

we have 〈i+4〉 ∩ 〈i+2(s−i−)2〉 = {c1}. Since i+
2 = i2 and (s−i−)2 = (si)2,

we finally obtain that α(N ) is the direct product of 〈[i4]〉 and 〈[i2(si)2]〉. The
theorem is proved.

Theorem 2 yields a necessary condition for a function to be polynomial. We
give two consequences for concrete functions.

Corollary 3. Transposition on G is not a polynomial function.
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Proof. We consider the function f : G → G, x 7→ x−1xt. We note that f is
continuous and f(G) ⊆ SL(2, R). Since α([f ]) = [i−1] [i−1] = [i]−2, we obtain
that f is not polynomial by Theorem 2. Hence x 7→ xt is not polynomial.

Corollary 4. Let 1 denote the identity matrix in G. Then d : G → G, x 7→
det(x)1, is not polynomial.

Proof. This follows from Corollary 3 and the fact that

xt = det(x)
(

0 −1
1 0

)−1 · x−1 ·
(

0 −1
1 0

)
for all x ∈ G.

From (1) we obtain that both transposition and the determinant function
d can be interpolated by some polynomial function on any finite set of points.
We also note that we cannot decide whether the function G → G, x 7→ (x2)t, is
polynomial by Theorem 2.

4 Consequences for Other Fields

The field R is not easy to describe within the algebraic language without topo-
logical concepts. Therefore one could say that the results in the previous section
are not entirely algebraic results. But here is the proof that the results are also
true for arbitrary ordered fields (for instance the field of rational numbers).

Theorem 5. Let K be an ordered field. Then transposition is not a polynomial
function on the group GL(2,K).

Proof. It is well-known that any ordered field can be embedded in a real closed
field, its real closure (see [3]). Let R be the real closure of K. We claim that K4

is dense in R4 with respect to the Zariski topology. It suffices to show that the
complement of an arbitrary hypersurface {(r1, . . . , r4) ∈ R4 | f(r1, . . . , r4) = 0},
where f is a nonconstant polynomial in R[x1, . . . , x4], contains some point from
K4. If not, then the polynomial f would vanish on K4. Since K is an infinite
set, we would have the contradiction that f = 0. It follows that the set of
regular matrices GL(2,K) is Zariski dense in GL(2, R).

Assume, indirectly, that we have integers n, e1, . . . , en such that the first
order formula

∃(a1, . . . , an+1)∀x : a1x
e1a2x

e2 · · · anxenan+1 = xt

is true over the domain GL(2,K). Because GL(2,K) is Zariski dense in GL(2, R),
the formula is also true over the domain GL(2, R). Because R is elementary
equivalent to R, it follows that the same formula is also true over the domain
GL(2, R). This contradicts Corollary 3.
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[5] H. Lausch and W. Nöbauer. Algebra of polynomials. North-Holland, Ams-
terdam, London; American Elsevier Publishing Company, New York, 1973.

[6] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, lattices, va-
rieties, Volume I. Wadsworth & Brooks/Cole Advanced Books & Software,
Monterey, California, 1987.

Günter Landsmann
RISC
Universität Linz
4040 Linz
Austria
E-mail: landsmann@risc.uni-linz.ac.at

Peter Mayr
Institut für Algebra
Universität Linz
4040 Linz
Austria
E-mail: peter.mayr@jku.at

Josef Schicho
Johann Radon Institute
Austrian Academy of Sciences
4040 Linz
Austria
E-mail: josef.schicho@oeaw.ac.at

7


