Polynomial Clones on Squarefree Groups

Peter Mayr
University of Colorado at Boulder
Johannes Kepler Universität, Linz, Austria
peter.mayr@jku.at

Nashville, June 15, 2007

Clones

Definition. A set of finitary functions C on a set A is a clone if

- C contains all projections $p_{i}^{(k)}: A^{k} \rightarrow A,\left(x_{1}, \ldots, x_{k}\right) \mapsto x_{i}$,
- C is closed under composition, $\forall f \in C_{k}, g_{1}, \ldots, g_{k} \in C_{n}$:

$$
f\left(g_{1}, \ldots, g_{k}\right): A^{n} \rightarrow A, \bar{x} \mapsto f\left(g_{1}(\bar{x}), \ldots, g_{k}(\bar{x})\right) \text { is in } C_{n} .
$$

Clones

Definition. A set of finitary functions C on a set A is a clone if

- C contains all projections $p_{i}^{(k)}: A^{k} \rightarrow A,\left(x_{1}, \ldots, x_{k}\right) \mapsto x_{i}$,
- C is closed under composition, $\forall f \in C_{k}, g_{1}, \ldots, g_{k} \in C_{n}$:

$$
f\left(g_{1}, \ldots, g_{k}\right): A^{n} \rightarrow A, \bar{x} \mapsto f\left(g_{1}(\bar{x}), \ldots, g_{k}(\bar{x})\right) \text { is in } C_{n} .
$$

Some classical results.

clones on a finite set A :
clones containing all constants: constants and a Mal'cev operation:
\aleph_{0} if $|A|=2, c$ else
7 if $|A|=2, c$ else
finite iff $|A| \leq 3$ (Idziak, 1999)

Polynomial clones on groups

$\operatorname{Pol}(\mathbf{A}) \ldots$ smallest clone that contains all constant functions and all operations F of an algebra $\mathbf{A}:=\langle A, F\rangle$.

Examples.

- $\operatorname{Pol}\left(\mathbb{Z}_{2},+\right) \ldots$ e.g. $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}+1$. $\operatorname{Pol}\left(\mathbb{Z}_{2},+, \cdot\right) \ldots$ all (polynomial) functions.

Polynomial clones on groups

$\operatorname{Pol}(\mathbf{A}) \ldots$ smallest clone that contains all constant functions and all operations F of an algebra $\mathbf{A}:=\langle A, F\rangle$.

Examples.

- $\operatorname{Pol}\left(\mathbb{Z}_{2},+\right) \ldots$ e.g. $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}+1$. $\operatorname{Pol}\left(\mathbb{Z}_{2},+, \cdot\right) \ldots$ all (polynomial) functions.
- Let $\mathbf{A}_{k}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} \ldots x_{k}\right\rangle$.

$$
\operatorname{Pol}\left(\mathbb{Z}_{4},+\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{3}\right) \subsetneq \ldots
$$

Polynomial clones on groups

$\operatorname{Pol}(\mathbf{A}) \ldots$ smallest clone that contains all constant functions and all operations F of an algebra $\mathbf{A}:=\langle A, F\rangle$.

Examples.

- $\operatorname{Pol}\left(\mathbb{Z}_{2},+\right) \ldots$ e.g. $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}+1$. $\operatorname{Pol}\left(\mathbb{Z}_{2},+, \cdot\right) \ldots$ all (polynomial) functions.
- Let $\mathbf{A}_{k}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} \ldots x_{k}\right\rangle$.

$$
\operatorname{Pol}\left(\mathbb{Z}_{4},+\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{3}\right) \subsetneq \ldots
$$

Conjectures. (Idziak, 1999) Let n be squarefree.
(1) Only finitely many clones contain $\operatorname{Pol}\left(\mathbb{Z}_{n},+\right)$.
(2) For $\mathbf{A}:=\left\langle\mathbb{Z}_{n},\{+\} \cup F\right\rangle, \operatorname{Pol}(\mathbf{A})$ is uniquely determined by $\operatorname{Con}(\mathbf{A}, \wedge, \vee,[.,]$.$) .$

Polynomial clones on groups

$\operatorname{Pol}(\mathbf{A}) \ldots$ smallest clone that contains all constant functions and all operations F of an algebra $\mathbf{A}:=\langle A, F\rangle$.

Examples.

- $\operatorname{Pol}\left(\mathbb{Z}_{2},+\right) \ldots$ e.g. $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}+1$. $\operatorname{Pol}\left(\mathbb{Z}_{2},+, \cdot\right) \ldots$ all (polynomial) functions.
- Let $\mathbf{A}_{k}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} \ldots x_{k}\right\rangle$.

$$
\operatorname{Pol}\left(\mathbb{Z}_{4},+\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{3}\right) \subsetneq \ldots
$$

Conjectures. (Idziak, 1999) Let n be squarefree.
(1) Only finitely many clones contain $\operatorname{Pol}\left(\mathbb{Z}_{n},+\right)$.
(2) For $\mathbf{A}:=\left\langle\mathbb{Z}_{n},\{+\} \cup F\right\rangle, \operatorname{Pol}(\mathbf{A})$ is uniquely determined by $\operatorname{Con}(\mathbf{A}, \wedge, \vee,[.,]$.$) . False if 4$ primes divide n.

Polynomial clones on groups

$\operatorname{Pol}(\mathbf{A}) \ldots$ smallest clone that contains all constant functions and all operations F of an algebra $\mathbf{A}:=\langle A, F\rangle$.

Examples.

- $\operatorname{Pol}\left(\mathbb{Z}_{2},+\right) \ldots$ e.g. $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}+1$.
$\operatorname{Pol}\left(\mathbb{Z}_{2},+, \cdot\right) \ldots$ all (polynomial) functions.
- Let $\mathbf{A}_{k}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} \ldots x_{k}\right\rangle$.

$$
\operatorname{Pol}\left(\mathbb{Z}_{4},+\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{3}\right) \subsetneq \ldots
$$

Conjectures. (Idziak, 1999) Let n be squarefree.
(1) Only finitely many clones contain $\operatorname{Pol}\left(\mathbb{Z}_{n},+\right)$. True.
(2) For $\mathbf{A}:=\left\langle\mathbb{Z}_{n},\{+\} \cup F\right\rangle, \operatorname{Pol}(\mathbf{A})$ is uniquely determined by $\operatorname{Con}(\mathbf{A}, \wedge, \vee,[.,]$.$) . False if 4$ primes divide n.

Results

Theorem. (PM, submitted 2007)
For an algebra \mathbf{A} with squarefree group reduct, $\operatorname{Pol}(\mathbf{A})$ is determined by $\mathrm{Pol}_{2}(\mathbf{A})$.

Corollary. (PM, submitted 2007)
There are only finitely many clones on A that contain a group operation and all constants iff $|A|$ is squarefree.

Polynomial clones on $\left\langle\mathbb{Z}_{p q},+\right\rangle$ (Aichinger, PM, 2007)

Outline of the proof of the Theorem.

Let \mathbf{A} have a squarefree group reduct. Show

$$
\begin{aligned}
\operatorname{Pol}(\mathbf{A})=\left\{f: A^{k} \rightarrow A \quad \mid \quad\right. & k \in \mathbb{N} \text { and } f\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Pol}_{2}(\mathbf{A}) \\
& \left.\forall g_{1}, \ldots, g_{k} \in \operatorname{Pol}_{2}(\mathbf{A})\right\} .
\end{aligned}
$$

Outline of the proof of the Theorem.

Let \mathbf{A} have a squarefree group reduct. Show

$$
\begin{aligned}
\operatorname{Pol}(\mathbf{A})=\left\{f: A^{k} \rightarrow A \quad \mid \quad\right. & k \in \mathbb{N} \text { and } f\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Pol}_{2}(\mathbf{A}) \\
& \left.\forall g_{1}, \ldots, g_{k} \in \operatorname{Pol}_{2}(\mathbf{A})\right\} .
\end{aligned}
$$

(1) Reduce to A with cyclic group reduct.
[Lemma. For a group $\langle A, \cdot\rangle$ with cyclic Sylow subgroups there is + in $\operatorname{Pol}_{2}(A, \cdot)$ such that $\langle A,+\rangle$ is a cyclic group.]

Outline of the proof of the Theorem.

Let \mathbf{A} have a squarefree group reduct. Show

$$
\begin{aligned}
\operatorname{Pol}(\mathbf{A})=\left\{f: A^{k} \rightarrow A \quad \mid \quad\right. & k \in \mathbb{N} \text { and } f\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Pol}_{2}(\mathbf{A}) \\
& \left.\forall g_{1}, \ldots, g_{k} \in \operatorname{Pol}_{2}(\mathbf{A})\right\} .
\end{aligned}
$$

(1) Reduce to A with cyclic group reduct.
[Lemma. For a group $\langle A, \cdot\rangle$ with cyclic Sylow subgroups there is + in $\operatorname{Pol}_{2}(A, \cdot)$ such that $\langle A,+\rangle$ is a cyclic group.]
(2) Reduce to subdirectly irreducible \mathbf{A} with monolith μ.

Outline of the proof of the Theorem.

Let \mathbf{A} have a squarefree group reduct. Show

$$
\begin{aligned}
\operatorname{Pol}(\mathbf{A})=\left\{f: A^{k} \rightarrow A \quad \mid \quad\right. & k \in \mathbb{N} \text { and } f\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Pol}_{2}(\mathbf{A}) \\
& \left.\forall g_{1}, \ldots, g_{k} \in \operatorname{Pol}_{2}(\mathbf{A})\right\} .
\end{aligned}
$$

(1) Reduce to A with cyclic group reduct. [Lemma. For a group $\langle A, \cdot\rangle$ with cyclic Sylow subgroups there is + in $\operatorname{Pol}_{2}(A, \cdot)$ such that $\langle A,+\rangle$ is a cyclic group.]
(2) Reduce to subdirectly irreducible \mathbf{A} with monolith μ.
(3) Determine the polynomial functions $A^{k} \rightarrow 0 / \mu$.

Outline of the proof of the Theorem.

Let \mathbf{A} have a squarefree group reduct. Show

$$
\begin{array}{cl}
\operatorname{Pol}(\mathbf{A})=\left\{f: A^{k} \rightarrow A \quad \mid\right. & k \in \mathbb{N} \text { and } f\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Pol}_{2}(\mathbf{A}) \\
& \left.\forall g_{1}, \ldots, g_{k} \in \operatorname{Pol}_{2}(\mathbf{A})\right\} .
\end{array}
$$

(1) Reduce to A with cyclic group reduct.
[Lemma. For a group $\langle A, \cdot\rangle$ with cyclic Sylow subgroups there is + in $\operatorname{Pol}_{2}(A, \cdot)$ such that $\langle A,+\rangle$ is a cyclic group.]
(2) Reduce to subdirectly irreducible \mathbf{A} with monolith μ.
(3) Determine the polynomial functions $A^{k} \rightarrow 0 / \mu$.
(4) Reconstruct $\operatorname{Pol}_{k}(\mathbf{A})$ from $\operatorname{Pol}_{k}(\mathbf{A} / \mu)$ and $\operatorname{Pol}_{k}(\mathbf{A}) \cap(0 / \mu)^{A^{k}}$.

Piecewise constant functions into $0 / \mu$

Assume $\mathbf{A}:=\left\langle\mathbb{Z}_{42},\{+\} \cup F\right\rangle$ has an abelian monolith μ with $M:=0 / \mu,|M|=3$.
$W:=\left\{f: \mathbb{Z}_{42} \rightarrow M \mid f(x+M)=f(x) \forall x \in \mathbb{Z}_{42}\right\}$.
$f(x)$

Piecewise constant functions into $0 / \mu$

Assume $\mathbf{A}:=\left\langle\mathbb{Z}_{42},\{+\} \cup F\right\rangle$ has an abelian monolith μ with $M:=0 / \mu,|M|=3$.
$W:=\left\{f: \mathbb{Z}_{42} \rightarrow M \mid f(x+M)=f(x) \forall x \in \mathbb{Z}_{42}\right\}$.
$f(x)$

- Let $F:=\mathrm{GF}(3)$. Then $W \cong F^{14}$.

Piecewise constant functions into $0 / \mu$

Assume $\mathbf{A}:=\left\langle\mathbb{Z}_{42},\{+\} \cup F\right\rangle$ has an abelian monolith μ with $M:=0 / \mu,|M|=3$.
$W:=\left\{f: \mathbb{Z}_{42} \rightarrow M \mid f(x+M)=f(x) \forall x \in \mathbb{Z}_{42}\right\}$.
$f(x)$

- Let $F:=\mathrm{GF}(3)$. Then $W \cong F^{14}$.
- Let $G:=\left\{\mathbb{Z}_{14} \rightarrow \mathbb{Z}_{14}, x \mapsto a x+b \mid \operatorname{gcd}(a, 14)=1, b \in \mathbb{Z}_{14}\right\}$. W is an $F[G]$-module that is the sum of simple $F[G]$-modules.

Interlude: Representation theory

Lemma.

Let F, K be finite fields with distinct characteristics, let $k \in \mathbb{N}$. Then $F\left[K^{k}\right]$ splits into 2 simple $F[\operatorname{AGL}(k, K)]$-modules whose endomorphism algebras are F.

- $\operatorname{Pol}_{1}(\mathbf{A}) \cap W$ is an $F[G]$-submodule of W.
- $\operatorname{Pol}_{1}(\mathbf{A}) \cap W$ is an $F[G]$-submodule of W.
- There exist $B_{1}, \ldots, B_{I} \leq\langle A,+\rangle$ such that
$\operatorname{Pol}_{1}(\mathbf{A}) \cap W$

$$
=\sum_{i=1}^{\prime}\left\{f: A \rightarrow M \mid f\left(x+B_{i}\right)=f(x) \quad \forall x \in A\right\} .
$$

- $\operatorname{Pol}_{1}(\mathbf{A}) \cap W$ is an $F[G]$-submodule of W.
- There exist $B_{1}, \ldots, B_{I} \leq\langle A,+\rangle$ such that
$\operatorname{Pol}_{1}(\mathbf{A}) \cap W$

$$
=\sum_{i=1}^{\prime}\left\{f: A \rightarrow M \mid f\left(x+B_{i}\right)=f(x) \quad \forall x \in A\right\} .
$$

- Similarly there exist $C_{1}, \ldots, C_{n} \leq\langle A,+\rangle$ such that

$$
\begin{aligned}
\operatorname{Pol}_{k}(\mathbf{A}) & \cap\left\{f: A^{k} \rightarrow M \mid f\left(x+M^{k}\right)=f(x) \forall x \in A^{k}\right\} \\
& =\sum_{j=1}^{n}\left\{f: A^{k} \rightarrow M \mid f\left(x+C_{j}^{k}\right)=f(x) \forall x \in A^{k}\right\}
\end{aligned}
$$

- $\operatorname{Pol}_{1}(\mathbf{A}) \cap W$ is an $F[G]$-submodule of W.
- There exist $B_{1}, \ldots, B_{I} \leq\langle A,+\rangle$ such that
$\operatorname{Pol}_{1}(\mathbf{A}) \cap W$

$$
=\sum_{i=1}^{\prime}\left\{f: A \rightarrow M \mid f\left(x+B_{i}\right)=f(x) \quad \forall x \in A\right\} .
$$

- Similarly there exist $C_{1}, \ldots, C_{n} \leq\langle A,+\rangle$ such that

$$
\begin{aligned}
\operatorname{Pol}_{k}(\mathbf{A}) & \cap\left\{f: A^{k} \rightarrow M \mid f\left(x+M^{k}\right)=f(x) \forall x \in A^{k}\right\} \\
& =\sum_{j=1}^{n}\left\{f: A^{k} \rightarrow M \mid f\left(x+C_{j}^{k}\right)=f(x) \forall x \in A^{k}\right\}
\end{aligned}
$$

- $\left\{B_{1}, \ldots, B_{l}\right\}=\left\{C_{1}, \ldots, C_{n}\right\}$.

Congruences and commutators are not enough

Let $A:=\mathbb{Z}_{210}$,

$$
\mathbf{A}_{1}:=\left\langle A,+, g_{6}, g_{10}, g_{15}\right\rangle \text { and } \mathbf{A}_{2}:=\left\langle A,+, g_{30}\right\rangle
$$

with $g_{r}(r A)=30$ and $g_{r}(A \backslash r A)=0$.

Congruences and commutators are not enough

Let $A:=\mathbb{Z}_{210}$,

$$
\mathbf{A}_{1}:=\left\langle A,+, g_{6}, g_{10}, g_{15}\right\rangle \text { and } \mathbf{A}_{2}:=\left\langle A,+, g_{30}\right\rangle
$$

with $g_{r}(r A)=30$ and $g_{r}(A \backslash r A)=0$.
Then $\operatorname{Con}\left(\mathbf{A}_{1}, \wedge, \vee,[.,].\right)=\operatorname{Con}\left(\mathbf{A}_{2}, \wedge, \vee,[.,].\right)$ but $\operatorname{Pol}\left(\mathbf{A}_{1}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right)$.

Congruences and commutators are not enough

Let $A:=\mathbb{Z}_{210}$,

$$
\mathbf{A}_{1}:=\left\langle A,+, g_{6}, g_{10}, g_{15}\right\rangle \text { and } \mathbf{A}_{2}:=\left\langle A,+, g_{30}\right\rangle
$$

with $g_{r}(r A)=30$ and $g_{r}(A \backslash r A)=0$.
Then $\operatorname{Con}\left(\mathbf{A}_{1}, \wedge, \vee,[.,].\right)=\operatorname{Con}\left(\mathbf{A}_{2}, \wedge, \vee,[.,].\right)$ but $\operatorname{Pol}\left(\mathbf{A}_{1}\right) \subsetneq \operatorname{Pol}\left(\mathbf{A}_{2}\right)$.

$$
\begin{aligned}
R:=\left\{\left(x_{1}, \ldots, x_{8}\right) \in A^{8} \quad \mid\right. & \left\{x_{2}-x_{1}, x_{5}-x_{3}, x_{7}-x_{4}, x_{8}-x_{6}\right\} \subseteq 6 A, \\
& \left\{x_{3}-x_{1}, x_{5}-x_{2}, x_{6}-x_{4}, x_{8}-x_{7}\right\} \subseteq 10 A, \\
& \left\{x_{4}-x_{1}, x_{6}-x_{3}, x_{7}-x_{2}, x_{8}-x_{5}\right\} \subseteq 15 A, \\
& \left.x_{1}-\left(x_{2}+x_{3}+x_{4}\right)+x_{5}+x_{6}+x_{7}=x_{8}\right\}
\end{aligned}
$$

is preserved by $+, g_{6}, g_{10}, g_{15}$ but not by g_{30}.

