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Polynomial functions on classical groups and Frobenius groups

1 Introduction

Polynomial functions can be defined on arbitrary
algebras. We will describe and count the unary
polynomial functions for some classes of finite
oToups.

1.1 Definitions

Let (G, -) be a group. A unary polynomial func-
tion p : G — G is a tunction that can be written
in the form

. e e e,
p(x) = apr®a1x - - - a1 ay,

where n > 1, agp,...,a, are In G, and
€y, . . ., Ep_1 are Integers.

Let P(G) denote the set of all polynomial func-
tions on G. Then P(G) forms a subgroup of
(GY, ), the group of all functions from G to G.
Further, P(G) is generated by the identity func-

tion on (G and all constant functions.

1.5 Some known results

Polynomial functions have been investigated for
several classes of groups. Still, a general theory
for all groups seems to be out of reach.

o [Fr658]: Let |G| > 2. Then P(G) = GY iff G

is a finite simple non-abelian group.

e Mel78]: All endomorphisms of S, are polyno-
mial functions.

e LP95]: For a semidirect product G = AB
of groups A and B of relatively prime or-

der, all endomorphisms of G are in P(G) if
End(A) C P(A) and End(B) C P(B).

Theorem 2.2 ([AMO3]). For G as 1n
Lemma 2.1, we have

[P(G)| =
G152 em(exp(G/G), exp(Z(G))-|G = G

1.2 Examples

Inner automorphisms are polynomial functions.
For g € G, the function G — G,z — [x,g], is
polynomial.

1.3 Simple facts

Since P(G) is closed under composition of func-
tions, P(G) forms a near-ring |Pil83].

If G is abelian, then {f € P(G) | f(1) =1} is a
ring and | P(G)| = exp(G) - |G].

Let N < G. Then f € P(G) is compatible
with N, that is: If N = yN for z,y € G,
then f(x)N = f(y)N. Hence we have a natural
homomorphism from P(G) onto P(G/N) with
kernel

{f € P(G) | f(G) € N}.

1.4 Problems

Given a group (G, we consider the following:

e [s a given function f : G — G a polynomial?
e Determine the size of P(G).

e Are all automorphisms of G in P(G)?

e Are all endomorphisms of G in P(G)?

2 Linear groups

2.1 A criterion for non-solvable groups

Lemma 2.1 ([AMO3]). Let G be a finite non-
solvable group such that every normal sub-
group of G 1is central or contains the derived
subgroup G'. For a function f : G — G, the
following are equivalent:

(1) The function f is in P(G);
(2) There exists an integer u such that

flgz) = f(g)zoE/

forall g € G,z € Z(G).

Sketch of the proof. The implication (1) = (2)
15 iImmediate. For the converse, we use induc-
tion and commutators, to show the existence of
“Lagrange interpolation functions”:

Fort € G, n € G, we have p;,, € P(G) such
that

pen(tZ(G)) = {n} and pyn(G — tZ(G)) = {1}.

Then every function satisfying (2) is equal to a
product of e(z) = x**PE/%) and some func-

tions py . [ ]

By Lemma 2.1, the polynomial functions from G
to G’ are precisely those functions that are linear

on the cosets of the center Z(G) in G. From this
characterization we obtain the next formula:

2.2 Classical linear groups

The finite linear, unitary, symplectic, and orthog-
onal groups (with the exception of certain groups
acting on vector spaces of low dimension) satisfy
the assumptions of Lemma 2.1.

Theorem 2.3 ([May04]). Let V be a finite

vector space over the field F', and let G be a
non-solvable group satisfying one of the fol-

lowing:

o SL(V,F) <G < GL(V, F),
oSUV. ) <GS UWV,F) - F*,
oG =Sp(V, F),

eV, F) <G < O(V, F) where dimpV > 5.
Then we have:

(1) All automorphisms of G are in P(G).

(2) All endomorphisms of G are in P(G) iff
G € {SL(V, F), SU(V, F),Sp(V, F),Q(V, F)}
or UV, F) <G <OV, F)and Z(G)=1).

For G as in Theorem 2.3, the size of P(G) is given

by Theorem 2.2. By (2), we have End(G) C

PG)ift G=G or Z(G) =1.

In [May04], there are similar results for the non-

solvable quotients of linear groups (e.g. the pro-

jective linear groups). For groups of semilinear
transformations the number of polynomial func-
tions 1s not known.

3 Semidirect products

3.1 A criterion for Frobenius groups

A function on a Frobenius group is polynomial
if it 1s “locally polynomial” on each coset of the
Frobenius kernel.

Theorem 3.1 ([Aic02]). Let G = AB be a
Frobenius group with kernel A and comple-
ment B. For a function f : G — A, the fol-
lowing are equivalent:

(1) The function f is in P(G);

(2) For every b € B there is p, € P(G) such
that

f(ab) = pp(a) for all a € A.

3.3 Further applications

From Theorem 3.4 we obtain (see [May04]):

o | P(G)| for all solvable groups all of whose
abelian subgroups are cyclic;

e | P(G)| for all Frobenius complements.

Theorem 3.5 ([May04]). For a non-solvable
Frobenius complement, all endomorphisms are
polynomial.
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The computer algebra system SONATA
ABE™99] under GAP4 provides algorithms
to investigate polynomial functions on small
oTOUpS.

Theorem 3.2 ([Aic02]). Let G = AB be a

Frobenius group with kernel A and comple-
ment B, and let

R:={fl1| f € P(G), f(A) C A}.

Then we have
|P(G)| = |P(B)| - |R|'".

If Ais abelian, then {f € R| f(1) =1} is aring
of endomorphisms on A.
Corollary 3.3 ([May04]). Let G be a Frobe-

nius group with kernel A and a complement B

that is isomorphic to the quaternion group of
order 8 or to SL(2,3). Then

P(G)] = |P(B)] - (|A] - exp(V))7!
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2.3 Determinant and transposition

Let G = GL(n, q) for a natural number n and a
prime power q. The functions

d:G— G, v det(x)-1,

and
7:G =G, x— 1.

are in P(G) [May04].

3.2 Extensions of cyclic groups

Theorem 3.4 ([MayO04]). Let G be a finite
group, and let A be a cyclic normal subgroup
of G such that |A| and |G : A| are relatively

prime. Let M be the set of Sylow subgroups of
A. Then we have

P(G) = |P(G/A)|- T [PPeee®),

PeM

and all endomorphisms of G are in P(G) iff
all endomorphisms of G/A are in P(G/A).
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