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Abstract. We show that every group of exponent 2m · 3n (m,n ∈ N, n ≤ 2)
that acts freely on some abelian group is finite.

1. Results

Let V be a group, and let G be a group of automorphisms of V . We say that G
acts freely on V if vg 6= v for all v ∈ V \ {1} and g ∈ G \ {1}. In the literature
this concept is also often called regular or fixed-point-free action of G on V .

We consider free actions of groups of finite exponent. In [1] the first author
proved that groups of exponent 5 that act freely on abelian groups are finite. In
the present note we show the following.

Theorem 1.1. Let V be an abelian group, and let G be a group of automorphisms
of V . If G has exponent 2m · 3n for 0 ≤ m and 0 ≤ n ≤ 2 and G acts freely on
V , then G is finite.

Every finite group that acts freely on an abelian group is isomorphic to a
Frobenius complement in some finite Frobenius group (see Lemma 2.6). Let
G be as in Theorem 1.1. By the classification of finite Frobenius complements
(see [6]) the factor of G by its maximal normal 3-subgroup is isomorphic to a
cyclic 2-group, a generalized quaternion group, SL(2, 3), or the binary octahedral
group of size 48.

Corollary 1.2. Let F be a near-field whose multiplicative group has exponent
2m · 3n for 0 ≤ m and 0 ≤ n ≤ 2. Then either |F | ∈ {22, 32, 52, 72, 172} or F is a
finite field of prime order.

We note that there exist near-fields of orders 32, 52, 72, 172 that are not fields.
Every zero-symmetric near-ring with 1, whose elements satisfy xk = x for a
fixed integer k > 1, is a subdirect product of near-fields satisfying the same
equation (see [4] or the corresponding result for rings by Jacobson [2]). Hence, by
Corollary 1.2, every zero-symmetric near-ring with 1 that satisfies x2m·9+1 = x for
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some natural number m is a subdirect product of finite near-fields. In particular
addition is commutative for such a near-ring. We note that there exists a near-
field N of size 9 whose multiplicative group is isomorphic to the quaternion group
and consequently has exponent 4. Hence N is an example of a near-ring that
satisfies x4k+1 = x (for each natural number k) and whose multiplication is not
commutative. However, by Corollary 1.2, every zero-symmetric near-ring with
1 that satisfies x19 = x is a subdirect product of finite fields, and hence both
addition and multiplication are commutative. This generalizes a result from [5].

2. Proofs

For the proof of Theorem 1.1 we will use the following results.

Fact 2.1. [8, Theorem 1] Let V be an abelian group, and let G be a periodic
group of automorphisms of V . If G is generated by elements of order 3 and G
acts freely on V , then G is either cyclic or isomorphic to SL(2, 3) or SL(2, 5).

Fact 2.2. [7, 12.3.5, 12.3.6] Every group of exponent 3 is nilpotent.

Fact 2.3. [3, Theorem 2.1.b] Let G be a periodic infinite group. If G contains
an involution whose centralizer in G is finite, then G contains an infinite abelian
subgroup.

Lemma 2.4. Let G be a {2, 3}-group all of whose 2-subgroups are finite and all
of whose finite 3-subgroups have order at most 3. Then G is finite.

Proof: Let S be a maximal 2-subgroup of minimal order of G. We use induction
on the size of S. If |S| = 1, then G has exponent 3 by assumption. By Fact 2.2
and the assumption that all finite subgroups of G have size at most 3, we obtain
that G has size at most 3.

Next we assume that |S| > 1. Let h be a central involution in S. We first show
that CG(h) is finite. We claim that C̄ := CG(h)/〈h〉 satisfies the assumptions of
the lemma. Certainly C̄ is a {2, 3}-group, all its 2-subgroups are finite, and all
its finite 3-subgroups have size at most 3. Since S/〈h〉 is a maximal 2-subgroup
of C̄ and |S/〈h〉| < |S|, the group C̄ is finite by the induction hypothesis. Hence
CG(h) is finite. By the assumptions G is a periodic group all of whose abelian
subgroups are finite. Thus G is not infinite by Fact 2.3. �

Fact 2.5. [3, Corollary 2.5] Every infinite 2-group contains an infinite abelian
subgroup.

Lemma 2.6. Let G be a finite group acting freely on an abelian group V . Then
G is isomorphic to a Frobenius complement in some finite Frobenius group.

Proof: First we assume that there exists v ∈ V \ {0} of finite order. Then
W := 〈vg | g ∈ G〉 is a finitely generated abelian group of finite exponent. Hence
W is finite and W o G is a finite Frobenius group with complement G.
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In the following we assume that V is torsionfree. Let v ∈ V \ {0}, and let
W := 〈vg | g ∈ G〉. Then W forms a torsionfree Z[G]-module of finite rank, say r.
In particular W determines a representation ϕ of G over Q. We note that 1 is not
an eigenvalue for any ϕ(g) with g ∈ G \ {1} since G acts freely on W . Now let p
be a prime that does not divide the order of G. By [6, Theorem 15.11] there exists
a finite field F of characteristic p and an F -representation ϕ∗ corresponding to ϕ
such that ϕ∗(g) does not have eigenvalue 1 for any g ∈ G \ {1}. Thus F r oϕ∗ G
is a finite Frobenius group with complement G. �

Proof of Theorem 1.1: Let V and G satisfy the assumptions of the theorem.
Let T := 〈x ∈ G | x3 = 1〉. By Fact 2.1 the group T is finite with Sylow 3-
subgroups of order at most 3. By its definition T is normal in G. We show that
G/T satisfies the assumptions of Lemma 2.4. All finite 3-subgroups of G have
exponent dividing 9 and are cyclic by Lemma 2.6 and [7, 10.5.6]. Hence the finite
3-subgroups of G/T have order at most 3.

Let S be a finite 2-subgroup of G. Then S is cyclic or a generalized quaternion
group by Lemma 2.6 and [7, 10.5.6]. Since the exponent of S divides 2m, we have
|S| ≤ 2m+1. In particular all finite 2-subgroups of G/T have order at most 2m+1.
Hence G/T has no infinite abelian 2-subgroup. By Fact 2.5 all 2-subgroups of G
are finite. Hence G/T satisfies the assumptions of Lemma 2.4 and therefore G/T
is finite. So G is finite. �

For the proof of Corollary 1.2 we will use the following lemma.

Lemma 2.7. Let p be a prime, let k,m, n be natural numbers with n ≤ 2. If
pk − 1 = 2m · 3n, then pk ∈ {22, 32, 52, 72, 172} or k = 1.

Proof: If m = 0, then we obtain pk = 22. For the following we assume m > 0.
Then p is odd. First we suppose that k is even. Since gcd(pk/2 − 1, pk/2 + 1) = 2,
either pk/2−1 or pk/2+1 is a power of 2. In the former case we have pk/2+1 = 2·3n

with 0 ≤ n ≤ 2. Thus p ∈ {5, 17} and k = 2. In the latter case pk/2 − 1 = 2 · 3n

with 0 ≤ n ≤ 2 yields p ∈ {3, 7} and k = 2.

Next we assume that k is odd. Then pk−1
p−1

=
∑k−1

i=0 pi is odd and divides 9.

This yields k = 1. �

Proof of Corollary 1.2: Let F be a near-field whose multiplicative group F ∗

has exponent 2m · 3n for 0 ≤ m, 0 ≤ n ≤ 2. Since F ∗ acts freely on the additive
group of F by multiplication, F ∗ is finite by Theorem 1.1. The Sylow 2-subgroup
of F ∗ is cyclic or generalized quaternion, and the Sylow 3-subgroup of F ∗ is cyclic
by [7, 10.5.6]. Hence we have |F ∗| ∈ {2m · 3n, 2m+1 · 3n}. Since the order of F is
a prime power, F has prime order or |F | ∈ {22, 32, 52, 72, 172} by Lemma 2.7. If
|F | is a prime or |F | = 4, then F ∗ is cyclic and hence F is a field. �
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