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Abstract. The irreducible representations over prime fields of characteristic p for those
solvable groups which occur as groups of fixed-point-free automorphisms on finite groups
are determined.

1. Introduction

A group of automorphisms Φ is said to act fixed-point-free on a finite group G iff |Φ| > 1
and no automorphism in Φ except the identity mapping fixes an element of G distinct
from the group identity. Fixed-point-freeness poses strong conditions on both groups Φ
and G. In particular, G has to be nilpotent. All subgroups of Φ of order pq with primes
p and q are cyclic (see [Rob96], [Wol67], and others.)

The classification of the groups that occur as fixed-point-free automorphism groups
is initially due to Zassenhaus, [Zas36] and [Zas85]. Nevertheless, while Zassenhaus de-
termined presentations of these group, the question, in which way such a group acts on
another was not treated. In particular, up to now only few results are known concerning,
given a nilpotent group G, what are the actual subgroups of the automorphism group of
G, which act fixed-point-free on G (see [KK95].)

The search for pairs of groups G and Φ such that Φ is fixed-point-free on G, has appli-
cations in the construction of certain geometries and designs, [Cla92], for the classification
of Frobenius-groups and for the classification of finite simple nearrings. As a first attempt
we will describe the groups acting fixed-point-free on elementary abelian groups, i.e., act-
ing fixed-point-free on vectorspaces over GF (p). Representation theory is the natural tool
for this task.

Definition 1. If π is a representation of a group Φ, and if π(ϕ) does not have 1 as an
eigenvalue for all ϕ ∈ Φ \ {idΦ}, then π is said to be fixed-point-free.

Let π be a fixed-point-free representation of degree e over a field F . Let V be the e-
dimensional vectorspace over F with some fixed basis B. Then π(Φ) acts fixed-point-free
on V , by identifying π(ϕ) for ϕ ∈ Φ with the V -isomorphism x 7→ π(ϕ) · x with respect
to this basis B.

Some simple facts on fixed-point-free representations are stated without proof: Each
fixed-point-free representation is faithful. By Maschke, each fixed-point-free representa-
tion is a sum of irreducible fixed-point-free representations. Conversely, a sum of fixed-
point-free representations is again fixed-point-free.

This work has been supported by the Austrian National Science Foundation (Fonds zur Förderung der
wiss. Forschung) under Grant P12911-INF.
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For this note let F denote the prime field of characteristic p, i.e. GF (p), and let F̄
denote the algebraic closure of F .

The determination of fixed-point-free representations over an algebraic closed field re-
sembles closely the construction of fixed-point-free representations over the complex num-
bers as in [Wol67]. The fixed-point-free representations over F can then be obtained from
those over F̄ by methods as explained in [Isa94].

Let FpfE(Φ) denote the set of irreducible fixed-point-free representations of Φ over the
field E.

We follow the classification of the finite solvable fixed-point-free groups as given in
[Wol67] and [Wäh87] and stick to the notation of groups of type I, II, III or IV as used
there.

Functions for the computation of the GF (p)-representations given in this note are
implemented as part of SONATA, [Tea00]. Moreover, functions for the computation of
fixed-point-free automorphism groups on a given nilpotent group are available there.

Throughout this note, let the subgroup of the multiplicative group of prime residues
modulo m generated by the integer x be denoted as 〈x〉m.

If ρ is a representation of H a subrgoup of G, then the by ρ induced representation on
G is denoted by IndGH ρ.

2. Cyclic Groups

The most simple fixed-point-free representations are those of cyclic groups.

Proposition 1. Let 〈α〉 be a cyclic group of order m coprime to p. Then the irreducible,
faithful representations of 〈α〉 over F̄ are of degree 1 and given by

σi(α) = (ai)

with a a primitive m-th root of unity and gcd(i,m) = 1. There are φ(m) nonequivalent
representations and each of them is fixed-point-free.

Proof. Straightforward.

Proposition 2. Let 〈α〉 be a cyclic group of orderm coprime to p. Let σ be an irreducible,
faithful representations of 〈α〉 over F . Let e be the multiplicative order of p modulo m.
Then

(a) σ = σi ⊕ σip ⊕ · · · ⊕ σipe−1 over F̄ for some i where σi is defined as in 1.
(b) There are φ(m)/e representations in FpfF (〈α〉) and all of them have degree e.

Proof. Suppose that σi for some i is an irreducible constituent of σ over F̄ . The Galois con-
jugacy class over F for the character of σi is given by the characters of {σi, σip, . . . , σipe−1}.
Now by [Isa94] (9.21) σ splits over F̄ as in (a) and the assertions on the degree of σ and
the size of FpfF (〈α〉) in (b) follow.

3. Metacyclic Groups

Let Φ be a metacyclic group, i.e., Φ has a cyclic normal subgroup with cyclic factor,
admitting a fixed-point-free representation. Then by [Wol67] (5.5.1) Φ has generators
α, β with relations αm = 1, βn = αm

′
, β−1αβ = αr where n is the multiplicative order of

r in Z∗m, the group of prime residues modulo m. Additionally, m′ divides m, each prime
divisor of n divides m/m′ and r = 1 mod (m/m′).
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Let the group 〈α, β〉 with the above presentation be denoted as Φmc(m, r). Then the
size of Φmc(m, r) equals mn.

This presentation is not exactly the same but equivalent to the usual one given by
Zassenhaus, Wolf, etc, for the groups having cyclic p-Sylow subgroups and admitting
a fixed-point-free representation. The representations of Φmc(m, r) are more easily ex-
pressed using this presentation and parameters m and r than in terms of the original
one.

We only state that the derived subgroup of Φmc(m, r) is Φmc(m, r)
′ = 〈αm/m′〉 and

the center is C(Φmc(m, r)) = 〈βn〉 = 〈αm′〉. Thus 〈α〉 = 〈Φmc(m, r)
′, C(Φmc(m, r))〉 is

certainly fully invariant and the unique maximal cyclic subgroup of Φmc(m, r).
Not only groups with cyclic p-Sylow subgroups can be expressed in the form Φmc(m, r)

but for feasible choice of the parameters m, r also certain groups with the 2-Sylow sub-
group being a quaternion group can be described in that way. In the diction of [Wol67]
and [Wäh87] these groups are of type II.

Proposition 3. Let Φmc(m, r) = 〈α, β〉 and H = 〈α〉.
(a) The irreducible, fixed-point-free representations of Φ = Φmc(m, r) over F̄ have degree

[Φmc(m, r) : 〈α〉] = n and are given by the induced representations

πi := IndΦ
Hσi

with σi an irreducible fixed-point-free representation of H as defined in Proposition
1.

(b) Two representations πi and πj are equivalent iff ij−1 ∈ 〈r〉m, i.e., iff there exists an
integer f such that i = jrf mod m.

(c) There are φ(m)/n representations in Fpf F̄ (Φmc(m, r)).

Proof. (a) The restriction of an irreducible fixed-point-free representation π of Φ to H is
a sum of irreducible fixed-point-free representations of the cyclic group H as determined
in Proposition 2.

Let σi be one constituent of π|H and let σ′i : x 7→ σi(β
−1xβ) denote the representation

conjugate by β. Then σ′i is equivalent to σri but not to σi if r 6= 1 mod m. Thus, by
[AW92] (8.5.11) σi induces an irreducible representation. Moreover, π = IndΦ

H σi is fixed-
point-free: each prime dividing n also divides ord β/n and thus the elements of 〈α, β〉 of
prime order are elements of 〈αβ. Suppose that for some ϕ = αkβl ∈ Φ \ H the matrix
π(αkβl) has eigenvalue 1. Then all powers of αkβl are represented as matrices with 1 as
eigenvalue in contradiction to the fact that the powers of prime order are in H and that
π|H = σi ⊕ σir ⊕ · · · ⊕ σirn−1 is fixed-point-free.

(b) and (c) follow from the fact that two induced representations πi = IndΦ
H σi and

πj = IndΦ
H σj are equivalent if and only if σi and σj are conjugate by some element in

Φ.

Inducing the irreducible fixed-point-free representations of 〈α〉 ≤ Φmc(m, r) over F as
given in Proposition 2 will in general not give an irreducible representation of Φmc(m, r)
over F , because for σ ∈ FpfF (〈α〉) a conjugate by some power of β may actually be
equivalent to σ again.

Nevertheless, it is possible to determine the constituents of σ ∈ FpfF (Φmc(m, r)) over
F̄ .
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Proposition 4. Let π be an irreducible, fixed-point-free representation of Φmc(m, r) over
F . Let t := [〈r, p〉m : 〈p〉m].

(a) Then π = πi⊕πip⊕· · ·⊕πipt−1 over F̄ for some i where πi is defined as in Proposition
3.

(b) Two irreducible fixed-point-free F -representations π and π′ with F̄ -constituents πi
and πj, respectively, are equivalent iff ij−1 ∈ 〈r, p〉m.

(c) There are φ(m)/(nt) representations in FpfF (Φmc(m, r)) and all of them have degree
nt.

Proof. Following the same ideas as the proof of Proposition 2.

4. Groups of type II

A group Φ admitting a fixed-point-free representation is said to be of type II if the
2-Sylow subgroups of Φ are generalized quaternion groups and Φ has a subgroup H of
index 2 such that all the p-Sylow subgroups of H are cyclic. Presentations of groups of
type II are given in [Wol67], 6.1.11.

Φ has generators α, β, q with H = 〈α, β〉 fulfilling the relations as given for the meta-
cyclic group in the previous section. Additionally, q4 = 1, q2 ∈ H∩C(Φ) and q normalizes
〈α〉 and 〈β〉, that is, there are integers l, k such that q−1αq = αk and q−1βq = βl. Since
β−1q−1βq = βl−1 is an element of the cyclic derived subgroup Φ′ of Φ, βl−1 commutes
with α. Thus, βl−1 ∈ 〈α〉 and n divides l − 1. In particular, for p an odd prime divisor
of n and t maximal such that pt divides ordβ = nm/m′, it holds that l = 1 mod pt. On
the other hand, with s maximal such that 2s divides ord β, we have that l = −1 mod 2s.
Otherwise β and q commute, Φ has cyclic 2-Sylow subgroups and is metacyclic of type I.
Thus the parameter l is completely determined by the pair of congruences l = −1 mod 2s

and l = 1 mod (nm)/(2sm′).
We note that because βn = αm

′
also k = l mod (m/m′), posing a condition on k.

Let β−1αβ = αr and ordα = m. Assume that k ∈ 〈r〉m. Note that k is of multiplicative
order 2 since q2 ∈ C(Φ) and r has order n. This implies that n is even and k = rn/2

mod m. Now βn/2q−1 centralizes α. Therefore G = 〈α, βn/2q−1〉 is a cyclic subgroup of
index n in Φ. Moreover, G is normal in Φ and the factor Φ/G is generated by βG, hence
cyclic.

Thus, if k ∈ 〈r〉m, then Φ is actually metacyclic and the representations of Φ are
determined in the previous section.

We restrict ourselves to the remaining case that k 6∈ 〈r〉m.
With feasible choice of the parameters m, r, k the presentation of Φ of type II is already

determined. We introduce the notation Φ2(m, r, k) for the group 〈α, β, q〉, not metacyclic,
with αm = 1, βn = αm

′
, β−1αβ = αr where n is the multiplicative order of r in Z∗m

and q−1αq = αk, q−1βq = βl with k2 = 1 mod (mn) and l = −1 mod 2s and l = 1
mod (nm)/(2sm′) where s is maximal such that 2s−1 divides m.

Additionally, m′ divides m and gcd(m/m′,m′) = 1, each prime divisor of n divides
m/m′ and r = 1 mod (m/m′). We have that k = l mod (m/m′), k 6∈ 〈r〉m and n is
2 times an odd integer. The size of Φ2(m, r, k) equals 2mn. 〈α〉 is the unique maximal
cyclic normal subgroup in Φ2(m, r, k) and includes both centre and the derived subgroup.

Let µ be an irreducible representation of Φ with πi ∈ Fpf F̄ (〈α, β〉) as determined in
Proposition 3 an irreducible constituent of the restriction of µ to 〈α, β〉. Now the conjugate
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representation π′i : x 7→ π(q−1xq) is equivalent to πik but not to πi. Thus the restriction
of µ to 〈α, β〉 is not isotypic and by [AW92], (5.13), µ is induced by πi.

Hence we may state:

Proposition 5. Let Φ2(m, r, k) = 〈α, β, q〉 be of type II.

(a) The irreducible, fixed-point-free representations of Φ = Φ2(m, r, k) over F̄ have
degree [Φ : 〈α〉] = 2n and are given by the induced representations

µi := IndΦ
〈α,β〉πi

with πi an irreducible fixed-point-free representation of 〈α, β〉 as defined in Proposi-
tion 3.

(b) Two representations µi and µj are equivalent iff ij−1 ∈ 〈k, r〉m.
(c) There are φ(m)/2n representations in Fpf F̄ (Φ2(m, r, k)).

Once again the F -representations are a bit more complicated to determine. If k 6∈
〈p, r〉m, then the same argument as above gives the elements of FpfF (Φ2(m, r, k)) as
inductions of the representations in FpfF (〈α, β〉).

For k ∈ 〈p, r〉m, i.e., k = pe/2 or k = pe/2rn/2 with e the multiplicative order of p in
Z
∗
m, the restriction of an irreducible fixed-point-free F -representation to 〈α, β〉 is again

irreducible.

Proposition 6. Let µ be an irreducible, fixed-point-free representation of Φ2(m, r, k) =
〈α, β, q〉 of type II, not metacyclic, over F . Let s := [〈r, k, p〉m : 〈r, p〉m].

(a) Then µ = µi⊕µip⊕· · ·⊕µips−1 over F̄ for some i where µi is defined as in Proposition
5.

(b) Two irreducible fixed-point-free F -representations µ and µ′ with F̄ -constituents µi
and µj, respectively, are equivalent iff ij−1 ∈ 〈r, k, p〉m.

(c) There are φ(m)/(ns) representations in FpfF (Φ2(m, r, k)) and all of them have degree
ns.

Proof. Similar to the proof of Proposition 2.

5. Groups of type III

A group Φ admitting a fixed-point-free representation is said to be of type III if Φ has
a normal subgroup isomorphic to some binary tetrahedral group Tν = 〈p, q, r〉 (〈p, q〉 is
the quaternion of size 8 and r−1pr = q, r−1qr = pq, r3ν = 1). Additionally, 16 must not
divide |Φ|.

Hence, Φ is isomomorphic to a semidirect product of a binary tetrahedral group of size
8 ∗ 3ν with ν > 0 and a metacyclic group H of type I of order coprime to 2 and 3.

Let the group 〈p, q, α, β〉 of type III with the above presentation be denoted as Φ3(m, r).
The size of Φ3(m, r) equals 8mn.

For the characterization of the fixed-point-free representations of groups of type III, the
fixed-point-free representations of the binary tetrahedral groups are of importance.

First of all we consider the fixed-point-free representations of Q8, the quaternion group
of order 8 over F . There is at least one irreducible representation of Q8 over GF (p) with
odd p of degree greater than 1, since Q8 is not abelian. By cardinality reasons there is
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only one such representation and its degree equals 2. Now, for integers u, v such that
u2 + v2 = −1 mod p

ρ(p) =

(
u v
v −u

)
, ρ(q) =

(
0 −1
1 0

)
defines this up to equivalence unique representation of Q8 and ρ is fixed-point-free for all
p odd (see [May], Proposition 5.19). Let in the following the matrix ρ(p) be denoted by
P and ρ(q) =: Q.

Let T := T1 denote the binary tetrahedral group of size 24 and let τ be a fixed-point-
free F̄ -representation of T . Clearly, the reduction of τ to 〈p, q〉 ≤ T is a multiple of ρ. In
particular τ has even degree. The factor T/C(T ) is isomorphic to the alternating group
A4 of size 12. The squares of the degrees of the F̄ -representations of T which do not map
C(T ) to the identity matrix I sum up to 12. Thus by cardinality reasons there are 3 such
representations, each of degree 2.

With τi|〈p,q〉 = ρ and

τi(r) =
1

2

(
−1 + u+ v −1− u+ v
1− u+ v −1− u− v

)
∗ bi

with b a primitive third root of identity over F̄ we have found these three nonequivalent
faithful irreducible representations of T as τi where 0 ≤ i ≤ 2. Let the matrix τ0(r) be
denoted by R. The determinant of R equals 1 and its order is 3. Thus R has eigenvalues
b, b2. Consequently, the representations τ1 and τ2 are not fixed-point-free, while τ0 is
fixed-point-free and even an F -representation.

We note that τ0 is the unique irreducible fixed-point-free F -representation of the binary
tetrahedral group T .

The nonequivalent irreducible fixed-point-free F̄ -representations of Tν are given by

τi(p) = P, τi(q) = Q, τi(r) = R ∗ bi

for 1 ≤ i ≤ 3ν , gcd(i, 3ν) = 1 and b a primitive (3ν)-th root of identity over F̄ . These
2 ∗ 3ν−1 representations are also F -representations if and only if b ∈ F , that is, 3ν divides
p− 1. In general, an irreducible fixed-point-free F -representation has the F̄ -constituents
τi, τip, . . . , τipe−1 where e = |〈p〉3ν |, see Proposition 1. Thus an arbitrary irreducible fixed-
point-free F -representation τ is of the form

τ(p) = P ⊗ σ(1), τ(q) = Q⊗ σ(1), τ(r) = R⊗ σ(r)

with σ ∈ FpfF (〈r〉) an irreducible fixed-point-free F -representation of 〈r〉 of size 3ν

as determined in Proposition 1. Clearly, deg τ = 2e and |FpfF (Tν)| for ν > 1 equals
|FpfF (C3ν )| = 2 ∗ 3ν−1/e.

Proposition 7. Let Φ = Φ3(m, r) = 〈p, q, α, β〉.
(a) If 3 6 |n and ν = 1, then Φ = T × 〈α3, β〉 and the irreducible, fixed-point-free

representations of Φ over F̄ are of the form

νi := τ0 ⊗ πi
with τ0 the unique irreducible fixed-point-free representation of T and πi ∈ Fpf F̄ (〈α3, β〉).

There are φ(m)/2n nonequivalent representations in Fpf F̄ (Φ3(m, r)) and each has
degree 2n.
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(b) If 3 6 |n and ν > 1, then Φ = Tν × 〈α3ν , β〉 and the irreducible, fixed-point-free
representations of Φ over F̄ are of the form

νj,i := τj ⊗ πi
with τj ∈ Fpf F̄ (Tν) and πi ∈ Fpf F̄ (〈α3ν , β〉).

There are φ(m)/n nonequivalent representations in Fpf F̄ (Φ3(m, r)) and each has
degree 2n.

(c) If 3|n, then H = 〈p, q〉×〈α〉 is a normal subgroup of Φ of index n and the irreducible,
fixed-point-free representations of Φ over F̄ are of the form

νi := IndΦ
H(ρ⊗ σi)

with ρ the irreducible fixed-point-free representation of Q8 and σi ∈ Fpf F̄ (〈α〉).
There are φ(m)/n nonequivalent representations in Fpf F̄ (Φ3(m, r)) and each has

degree 2n.

Proof. If 3 6 |n, then Φ3(m, r) is the direct product of a binary tetrahedral group Tν
and a metacyclic group of order coprime to 6. Thus the irreducible F̄ -representations
are tensor products of the irreducible F̄ -representations of the factors Tν and 〈α3ν , β〉
and the tensor product of two representations is fixed-point-free if and only if both factor
representations are fixed-point-free. This proves the form of the representations in (a) and
(b). The assertions on the size of Fpf F̄ (Φ3) follow from Proposition 3 and the numbers
of fixed-point-free representations of the binary tetrahedral groups as determined above.

If 3 divides n, then α centralizes 〈p, q〉 and the irreducible fixed-point-free representa-
tions of H = 〈p, q, α〉 are the tensor products of ρ and some σi as in Proposition 1. To
show that the irreducible fixed-point-free representations of Φ are induced by ρ ⊗ σi for
some i one follows the same argumentation as for the proof of Proposition 3.

Similarily to the idea of characterizing the fixed-point-free F -representations of the
binary tetrahedral group T ν3 in terms of the fixed-point-free F -representations of the
cyclic group of size 3ν , we can determine the irreducible F -representations of an arbitrary
group of type III in terms of the irreducible F -representation of the complements of Q8.

Let I2 denote the 2x2 identity matrix over F .

Proposition 8. Let Φ3(m, r) = 〈p, q, α, β〉.
(a) If 3 6 |n and ν = 1, then the irreducible, fixed-point-free representations of Φ3(m, r)

over F are of the form

ν := τ0 ⊗ π
with τ0 the unique irreducible fixed-point-free representation of T and π ∈ FpfF (〈α3, β〉).

(b) If 3 6 |n and ν > 1, then the irreducible, fixed-point-free representations of Φ3(m, r)
over F are given by

ν(p) := P ⊗ π(1), ν(q) := Q⊗ π(1), ν(α) := R⊗ π(α), ν(β) := I2 ⊗ π(β)

with π ∈ FpfF (〈α, β〉).
(c) If 3|n, then the irreducible, fixed-point-free representations of Φ3(m, r) over F are

given by

ν(p) := P ⊗ π(1), ν(q) := Q⊗ π(1), ν(α) := I2 ⊗ π(α), ν(β) := R⊗ π(β)

with π ∈ FpfF (〈α, β〉).
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6. Groups of type IV

A group Φ = 〈p, q, α, β, z〉 admitting a fixed-point-free representation is said to be of
type IV, iff it has a normal subgroup H = 〈p, q, α, β〉 of type III and index 2. Furthermore,
the relations z2 = p2, z−1pz = qp, z−1qz = q−1 are fulfilled and z normalizes both 〈α〉 and
〈β〉. Let k, l be integers such that z−1αz = αk and z−1βz = βl, respectively. Using

βn = αm
′

we have that αrk = z−1αrz = z−1β−1αβz = β−lαkβl = αr
lk. Thus m divides

rl−1 − 1 and n divides l − 1 implying furthermore that l = 1 mod ord β.
Hence, z−1αz = αk and z−1βz = β with the condition that k = 1 mod (m/m′), k = −1

mod 3ν where ν is maximal such that 3ν divides m and k2 = 1 mod m. In particular, 3
does not divide n, a fact that is omitted in [Wol67].

We introduce the notation Φ4(m, r, k) for the group 〈p, q, α, β, z〉 with relations as above,
determined by the parameters (m, r, k).

The minimal examples of groups of type IV are the binary octahedral groups Oν =
Φ4(3ν , 1,−1) generated by p, q, r, z where 〈p, q, r〉 = Tν of size 8 ∗ 3ν and z2 = p2, z−1pz =
qp, z−1qz = q−1, z−1rz = r−1.

Let O := O1 denote the binary octahedral group of size 48. O has 8 conjugacy classes.
The factor O/C(O) is isomorphic to the symmetric group S4 of size 24, which has 5
conjugacy classes. The squares of the degrees of the 3 nonequivalent F̄ -representations of
O which do not annihilate C(O) sum up to 24. Thus there are 2 such representations of
degree 2 and one of degree 4.

The faithful irreducible representation of degree 4 is given by the induction of one of
the non fixed-point-free faithful representations of T as determined in the previous section
and is certainly not fixed-point-free.

The reduction of a fixed-point-free F̄ -representation to 〈p, q, r〉 is a multiple of τ0, the
unique irreducible fixed-point-free F -representation of the binary tetrahedral group T .
With oi|〈p,q,r〉 = τ0 and for i = ±1

oi(z) = i
1√
2

(
u− v u+ v
u+ v −u+ v

)
we have found the 2 nonequivalent faithful irreducible representations of O and both are
fixed-point-free. For further use let the matrix

√
2 ∗ o+1(z) be denoted by Z. o+1, o−1

are F -representations iff 2 is a square in F . This holds iff 16 divides p2 − 1 where p is
the prime characteristic of F . If 16 does not divide p2 − 1, then O of size 48 cannot act
fixed-point-free on a vectorspace of dimension 2 over F anyway. In this case there is one
fixed-point-free F -representation of degree 4 with F̄ -constituents o+1, o−1, equivalent to
IndOT (τ0).

The irreducible fixed-point-free F̄ -representations of Oν with ν > 1 are of the form

oj = IndOνTν τj

with τj ∈ Fpf F̄ (Tν). The degree of oj equals 4. Since IndOνTν τj = IndOνTν τ−j, there are in
total 3ν−1 = |Fpf F̄ (Tν)|/2 non equivalent representations in Fpf F̄ (Qν).

Proposition 9. Let Φ = Φ4(m, r, k) = 〈p, q, α, β〉.
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(a) If k = 1 mod (m/3ν), then Φ = Oν × 〈α3ν , β〉 and the irreducible, fixed-point-free
representations of Φ4(m, r, k) over F̄ are of the form

ψj,i := oj ⊗ πi
with oj ∈ Fpf F̄ (Oν) and πi ∈ Fpf F̄ (〈α3ν , β〉).

If 9 6 |m, then there are φ(m)/n nonequivalent representations in Fpf F̄ (Φ4(m, r, k))
and each has degree 2n.

If 9|m, then there are φ(m)/2n nonequivalent representations in Fpf F̄ (Φ4(m, r, k))
and each has degree 4n.

(b) If k 6= 1 mod (m/3ν), then H = Tν×〈α3ν , β〉 is of type III and the irreducible, fixed-
point-free representations of Φ over F̄ are induced by the irreducible, fixed-point-free
representations νj,i of H.

If 9 6 |m, then there are φ(m)/4n nonequivalent representations

ψi := IndΦ
H(νi)

in Fpf F̄ (Φ4(m, r, k)) with νi ∈ Fpf F̄ (T × 〈α3, β〉) and each has degree 4n.
If 9|m, then there are φ(m)/2n nonequivalent representations in

ψj,i := IndΦ
H(νj,i)

in Fpf F̄ (Φ4(m, r, k)) with νj,i ∈ Fpf F̄ (Tν × 〈α3ν , β〉) and each has degree 4n.

Proof. (a) is straightforward.
(b) As shown above Φ4(m, r, k) has a subgroup of type III of index 2 and this subgroup

is isomorphic to the direct product H = Tν × 〈α3ν , β〉. The restriction of an irreducible
fixed-point-free representation of Φ4 to H has to be a sum of representations in Fpf F̄ (H),
which was given in Proposition 7 (a) and (b) respectively.

The conjugate of νi,j by z is equivalent to ν−i,kj but not equivalent to νi,j, since k 6=
1 mod (m/3ν). Thus by [AW92], (8.5.13), νi,j induces an irreducible representation.
The number of nonequivalent inductions equals half the number of representations in
Fpf F̄ (H).

Proposition 10. Let Φ4(m, r, k) = 〈p, q, α, β, z〉 and let H = 〈p, q, αm/3ν 〉 × 〈α3ν , β〉.
Then the irreducible, fixed-point-free representations of Φ4(m, r, k) over F are those in-
duced by the irreducible, fixed-point-free representations of H over F except in the fol-
lowing cases:

(a) If m mod 9 6= 0 and k = 1 mod (m/3) and 16|p2 − 1, then the irreducible, fixed-
point-free representations of Φ4(m, r, k) over F are given by the tensor products

oj ⊗ πi
for o+1, o−1 ∈ FpfF (O) and πi ∈ FpfF (〈α3, β〉).

(b) If m mod 9 6= 0 and k = 1 mod (m/3) and 16 6 |p2 − 1 but 2|e, the degree of
the fixed-point-free representations of Zm/3, then the irreducible, fixed-point-free
representations of Φ4(m, r, k) over F are given by

ψ(p) := P ⊗ πi(1), ψ(q) := Q⊗ πi(1),

ψ(α) := R⊗ πi(α3), ψ(β) := I2 ⊗ πi(β), ψ(z) := Z ⊗ C
where πi ∈ FpfF (〈α3, β〉) and C commutes with πi(α

3) and πi(β), C2 = 1
2
πi(1).
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(c) If m mod 9 6= 0 and 2|e and k = pe/2 mod (m/3), then the irreducible, fixed-point-
free representations of Φ4 over F are given by

ψ(p) := P ⊗ πi(1), ψ(q) := Q⊗ πi(1),

ψ(α) := R⊗ πi(α3), ψ(β) := I2 ⊗ πi(β), ψ(z) := Z ⊗ C

where πi ∈ FpfF (〈α3, β〉). C−1πi(α
3)C = πi(α

3)p
e/2

and C commutes with πi(β),
C2 = 1

2
πi(1).

(d) If m mod 9 = 0 and 2|e and k = pe/2 mod m, then the irreducible, fixed-point-free
representations of Φ4 over F are given by

ψ(p) := P ⊗ πi(1), ψ(q) := Q⊗ πi(1),

ψ(α) := R⊗ πi(α), ψ(β) := I2 ⊗ πi(β), ψ(z) := Z ⊗ C

where πi ∈ FpfF (〈α, β〉). C−1πi(α)C = πi(α)p
e/2

and C commutes with πi(β),
C2 = 1

2
πi(1).

Proof. By Proposition 8 the irreducible fixed-point-free representations of H ≤ Φ are of
the form

νi(p) = P ⊗ πi(1), νi(q) = Q⊗ πi(1), νi(β) = I2 ⊗ πi(β)

and ν(α) = R ⊗ πi(α
3) with πi ∈ FpfF (〈α3, β〉) for ν = 1 and ν(α) = R ⊗ πi(α) with

πi ∈ FpfF (〈α, β〉) for ν > 1.
Let ν ′i : x 7→ ν(z−1xz) denote the conjugate representation. Then νi is equivalent to ν ′i

iff πi is equivalent to πki, that is, iff k ∈ 〈r, p〉m/3 or k ∈ 〈r, p〉m, respectively. This holds

for k = 1 mod m/3 or k = pe/2 mod m/3 if ν = 1 and for k = pe/2 mod m if ν > 1. For
all other cases the induction of an irreducible fixed-point-free F -representation of H is
again irreducible and all irreducible fixed-point-free F -representation of Φ are obtained in
this way by [AW92] (8.5.13). Note that νi and νik give the same induced representation.

The exceptional cases have to be checked each one on its own to obtain the assertions
given in the proposition.
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