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ABSTRACT

In this note we present some algorithms to deal with near-
rings, the appropriate algebraic structure to study non-linear
functions. This is similar the role of rings in the theory of
linear functions or that of groups for permutations. In par-
ticular, we give efficient algorithms that deal with big near-
rings that are given by a small set of generators. In this
context, generating involves composition as well as point-
wise addition. In the extreme case, one transformation of a
group of order n can generate a set of up to n" transforma-
tions.

Categoriesand Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; 1.1.2 [Symbolic and Alge-
braic Manipulation]: Algorithms—algebraic algorithms;
G.2 [Mathematics and Computing]: Discrete Mathe-
matics

General Terms
Algorithms
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1. INTRODUCTION

Important examples of rings are matrix-rings; these arise as
linear mappings on vector spaces. In the present note, we
compute with algebraic structures appropriate for dealing
with non-linear mappings, namely near-rings [7, 6, 5].

Definition 1. A set N together with two binary opera-
tions + and - is called a near-ring if
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1. (IV,+) is a (not necessarily abelian) group.
2. (I, -) is a semigroup.
3.

- is right distributive over +, i.e.,
Va,b,ce N: (a+b)-c=a-c+b-c

Let ' be a group, and let M(T') be the set of all mappings
(transformations) from I into I'. We define + and - on M(T")
by (f +9)(7) :== f(v)+g(y) and (f-g)(7) := f(g(7)). Then
(M(T"), +, -) is a near-ring, the full transformation near-ring.
A subset N of M(T') is a sub-near-ring of (M(T'),+,-) if it
is closed under +, —, and functional composition. We then
write N < M(T") and call it a transformation near-ring. In
fact, every near-ring can be represented as a transformation
near-ring on some group I', but we are primarily interested
in the case where I' is small and N (very) big.

If we are given transformations fi,..., fr on I', we would
like to know how big the generated near-ring F' = (f1,..., fr)
is and whether a given transformation g: I' — I' lies in F.
We notice that g € F' whenever it can be “built up” from
fi,-.., fr. Of course, because N is intended to be big, no
straightforward enumeration is applicable. In fact, near-
ring theory tells us that a single transformation might on
a group of size n might generate a near-ring as large as n"
([8] contains many impressive examples). We note that a
corresponding problem in group theory is solved via Sim’s
stabilizing chains [10]. We have no comparable tool yet, but
we can solve the membership problem in important special
cases, thereby extending the cases solved by [3]. And we can
solve satisfactorily a variety of related problems.

Definition 2. Let N be a near-ring. Then I" together with
an endomorphism ® : N — M(T') is called an N-group. N
operates on I' by ny := ®(n)(). It operates faithfully if the
endomorphism is injective.

Thus, N-groups correspond to modules in ring theory. Of
course, if IV operates faithfully on I, it can be identified with
a sub-near-ring of M(I") and, conversely, every sub-near-ring
of M(T") operates faithfully on I" by function application.

A main endeavor of this note is to find methods to establish
properties of near-rings just from a small set E of genera-
tors and to avoid the usually unfeasible task of enumerating
all near-ring elements. Concretely this means that a near-
ring N operating on I' might be very large, (up to |1“||F|)



but is given by a small set of generators E. We are looking
for algorithms polynomial in |I'| and |E)|.

We can also interpret this situation in the language of sys-
tems theory: If we are given a set E C I'" of some building
blocks, we consider all systems N that can be built from
these using serial (composition) and parallel (addition) con-
nections, i.e., N = (E). Typical questions in this context
are:

Membership Can f be built from the blocks in E, i.e., is
feN?

Realizability Can we realize all transformations using these
building blocks, i.e., is (E) = M(T")? If so, how can we
do this?

Reachability Which states can be reached using such sys-
tems, i.e., what is N+, for any v € I'?

Linearity Does the system happen to be linear, i.e., is N
a ring?

The last two questions will turn out to be quite easy to an-
swer the second one gets a satisfactory solution using results
from near-ring theory, whereas the first question, which at
first might seem to be easier, turns out to be the hardest,
and we can give only a partial solution for it.

In very contrast to ring theory, no attempt on an algorithmic
treatment of near-ring theory has been done so far. There-
fore, in a project funded by the Austrian Science Fonds,
the share package SONATA for GAP 4 has been developed
(www.algebra.uni-linz.ac.at). This article contains a se-
lection of those algorithms developed as part of that project
that are most interesting for transformation near-rings on
finite groups.

2. ORBITS AND INTERPOLATION

First, let us attack the reachability problem. Its solution,
though rather simple, is the basis of all other problems
solved in this note.

Problem 1. (Reachability) Let N be a near-ring given by
a set E of generators, I' an N-group, and v € T.

1. Compute the orbit Ny :={ny|n € N }.
2. For each ) € N, find f € N such that n = f~.

The key result for an efficient solution of this basic problem
is easy to establish. Note that a subgroup H of I" is an N-
subgroup via the restriction of the operation of N on I' iff
NH C H.

THEOREM 1. Let N be a near-ring generated by a set E
and operating on a group I'. Then a subgroup H of T is an
N-subgroup iff EH C H.

PRrROOF. Because E C N, necessity is trivial. To prove suf-
ficiency, call f € N good if fH C H. By the assump-
tion, all elements in E are good. If f,g are good, then
(f —9)y= fy—gy € H for all v € T, because H was as-
sumed to be a subgroup. Thus f — g is also good. Similarly,
fg is good, and so all elements in N are good. [l
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This leads to an easy completion algorithm. Note that N+~
is the smallest /N-subgroup of I' containing E+y.

Algorithm 1 Computing Orbits
Let N be a near-ring operating on the group I'.

Require: A set E generating N; vy € I.
Ensure: H = Ny
H :=(Ev)
while EH ¢ H do
H := (HU EH) (generated subgroup)
end while

PROPOSITION 1. Algorithm 1 correctly computes N~y within
O(|E||Nv| < O(|E||T'|) operations in T'. In particular, the
size of N does mot matter.

ProOOF. Correctness is immediate from the theorem. For
the bound, observe that the size of H, and therefore the
computing time, doubles at each step in the loop. Thus the
total complexity has the same order as that for the last step,
which is O(|E| |[Nv|). o

Note that the class of near-rings is defined by equations.
Thus the whole theory for varieties applies, in particular,
there are free near-rings over any set.

COROLLARY 1. With appropriate bookkeeping, for any n €
N7, Algorithm 1 can also compute f € N such that n = f~.
In fact, it can also construct a term in the free near-ring
generated over E that represents f.

PrOOF. The necessary bookkeeping is straightforward. In
the first step, each element of H has the form ey, e € E,
thus has an appropriate representation by definition. If for
each element n € H we have a representation = f,7, then
for each element en € EH, we use fe, := efy. Similarly, if
n=m ~+...+ Nm, then we use f, = fo, +... + fy... O

Given v,n € T', the statement n € Ny means that there is
an f € N such that f(y) = . This leads us to the following
problem very common in near-ring theory.

Problem 2. (k-Interpolation) Given a sequence (y1,71),
..«y (Y&, k) of points in I' x I" and a near-ring N operating
on I', we want to know whether there is (and if so, find) a
function f € N such that f(vy;) =mn; foralli=1,... ,n.

Obviously, Algorithm 1 solves the 1l-interpolation problem.
In fact, the same algorithm can also be used to solve higher
interpolation problems, as can be easily seen as follows. If I"
is an N-group then I'? is an N group, too, in a natural way
by defining the operation as f(a,b) := (fa, fb). Similarly
each I'* is an N-group. With this definition, (c,d) € N(a,b)
just means that there exists f € N such that f(a) = ¢ and
f(b) = d, which is the 2-interpolation property.

PROPOSITION 2. The k-interpolation problem can be solved
within O(|E||T|*) operations.



ProOOF. This follows immediately from Proposition 2.2, us-
ing the operation defined above and applying Algorithm 1 to
compute N((y1,...,7)) and to decide whether (and find
out how) (91,...,m) is in this orbit. O

Thus, the k-interpolation-problem can be solved in time
polynomial in |E| and in |T'|. Unfortunately, the solution
is exponential in k. In particular, for the |I'|-interpolation
problem, which just means to test whether a given transfor-
mation is in N, we only get the bound O(|E||T|!"!), which
essentially means to enumerate all elements of N. But see
Section 8 for a different approach that works in many im-
portant cases.

3. FINDING THE IDENTITY IN A NEAR-
RING OF TRANSFORMATIONS

A near-ring need not have an identity. Thus we need a
method to find out whether a near-ring contains an identity,
and, in the affirmative case, how it looks like. We give a so-
lution for near-rings N faithfully operating on a group T
Without loss of generality, we assume that N < M(T).
Again, think of I" to be small, and N to be big, but gen-
erated by a small subset E.

Clearly, if the identity transformation id is an element of IV,
the near-ring has an identity and it is id. The converse, in
general, is not true, as the following counterexample demon-
strates:

Ezample 1. Let I' = Z2 X Z3 be Klein’s 4-group and N =
({0, 71}, +, 0), where 0 denotes the zero mapping, and 71 the
projection onto the first component, i.e., m1(z,y) = (z,0).
Then N is a near-ring with identity 1, in fact it is isomor-
phic to the residue class field of integers modulo 2. But
™1 7é idZ2><Zg

Nevertheless, the identity in N (if it exists) cannot be too far
from the identity transformation. We are going to develop
some necessary conditions for a transformation ¢ to be the
identity of N.

First, we use that ¢ is a left identity. Thus, for all n € N,
and all z € T', we have i(nz) = (in)x = nz. Hence

(1)

is a necessary condition for ¢ to be the near ring’s identity.
This means that at least on NT' it has to behave like the
identity mapping. And NT can be computed efficiently by
Algorithm 1.

i|nr =id|nr

Next, we use that ¢ is a right identity. Thus, for all f € N
and all z € I, we have f(iz) = (fi)z = fz, or, equivalently,
iz € T ({fe}). Soix € I := NT NNy f~H({f2})-

Of course, we cannot compute such an intersection if we
want to avoid computing all elements of N. Fortunately,
the condition f(iz) = fx only has to be tested for the set E
of generators of N, because from f(iz) = fz and g(iz) = gz,
we get immediately that fg(iz) = fgz and (f + g)(iz) =
(f + g)z. Thus we just have to go through the elements of
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NT and find out all the elements y for which fy = fx for
all feE.

Finally, we use that 4 must take some unique value for each
x € T'. Thus, if for some ¢ € T the set I, is empty, N
cannot have an identity. Similarly, if I, contains more than
one element for some z € I'; N cannot have an identity, too:
Suppose, a,b € I,. Then a,b € NI' and Vn € N: na =
nx = nb. In particular, za = . But a and b are from
NT (whereupon 4 acts as identity transformation, by (1)),
so a =tia =tb=0».

Summarizing, if N is generated by E, then

Vzel: I, :==|NI'N ﬂ n~ ' (nx)| = 1.

neE

(2)

and I, = {i(x)} is the single element. Conversely, if this
condition is satisfied, we define i(z) as the unique element
of I,. If this 7 is contained in NV, it is its identity. Otherwise
N has no identity.

Condition (2) uniquely determines iz at every point z (or
contradicts the existence of an identity). If the candidate ¢
computed using (2) happens to be an element of N, then it
is the identity of N. This is formulated in Algorithm 2.

Algorithm 2 Identity

Let N be a nearring of transformations
group I'.
Require: E a set of generators of V.
Ensure: Find an identity, if there is one.
for z €I do
I := N,ep(NT N0~ 'ng);
if |I;| # 1 then
return (N has no identity);
end if
Define i(z) to be the unique element in I.
end for
if i € N or N contains an identity then
return (7 is the identity of N);
else
return (N has no identity);
end if

on the

So, for a near ring of transformations on a group, we can
find its identity (if it has one) and the decision problem of
testing whether is has one has been reduced to the prob-
lem of deciding membership of a single transformation. The
complexity of this reduction is the same as the complexity
of computing NT.

4. LINEARITY

An element f of a near-ring N is called distributive on N
iff f(9g+h) = fg+ fh for all fh € N. A near-ring is
distributive iff all its elements are distributive on N. It is
called abelian iff the addition is commutative. Obviously, a
near-ring is a ring iff it is abelian and distributive.

Again, we take a small group I' and a (probably big) near-
ring N < M(T') generated by a small set E. Of course, if
f is an endomorphism of I" then it is distributive. But this



condition is not necessary. We need a weaker one. Call f
a piecewise endomorphism on N iff all restrictions of f to
N7, v € T, are endomorphisms. Note that this notion, like
distributivity, depends on the near-ring IV involved.

PRrROPOSITION 3. Let f € N < M(T"). Then f € N is dis-
tributive iff it is a piecewise endomorphism on N.

PrOOF. Let f be distributive and gy,hy € N7. Then
flgy +hy) = flg+Rh)y = (fg+ fh)y = f(g7) + f(hY).
So the restriction of f is a homomorphism. Clearly f(gvy) =
(fg9)y € Nv. Conversely, if f(g+ h)y = (fg + fh)y for all
~ € I, then, using faithfulness, f(g +h) = fg+ fh, hence f
is distributive. [l

Note that the N7y can be computed efficiently by Algo-
rithm 1.

Remark 1. To test whether a mapping f is a homomor-
phism on a group I' generated (as a group) by a set F it is
enough to test whether f(y+¢) = f(y)+ f(¢) forall y € T,
¢ € F. Thus the test has complexity O(|T'| |F).

PROPOSITION 4. N is an abelian near-ring iff all Ny are
abelian groups.

PrOOF. Let fy,gy € N. Then fy+gy = (f + g)y =
(g+ f)y = gy+ fyif N is abelian. Conversely, for f,g € N
we have to show that (f + g)y = (g + f)7y, which again
follows directly from N4 being abelian. ([l

COROLLARY 2. We can test whether N is a Ting using
O(|T'| |E)?) operations.

PROOF. A near-ring is a ring iff it is abelian and all its
generators are distributive. [l

Many more properties can be tested efficiently by a reduc-
tion to the computation of some N+ as before, e.g.:

PROPOSITION 5. f € N is in the center of N (i.e., com-
mutes with all g € N) iff f is distributive and commutes
with all generators.

Our test for distributivity is generalized in Section 7.

5. DIFFERENCE OPERATOR

Computations in spaces of continuous functions are usually
performed using linearization via the differential operator.
In the discrete case, we can do something similar with a
difference operator. We define it in the following way.

Definition 3. Let N be a near-ring and I' an N-group.
For f € N, z,a € T we define

Afza:=—fzx + f(z +a)

and call it the difference of f at x in direction a.

Thus the Operator A is understood to map an element of NV
into a function that maps elements of I into elements of I'T.
In particular, Afz € I'". This operator is also useful in the
case I' = N, i.e., if N itself is considered as an N-group via
the multiplication of N (just as a ring might be considered
as a module over itself).
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PROPOSITION 6. With the notation of the definition we have

Afr(a+b) = Afza+ Af(x + a)b, (quasi-linearity)

®3)
(translation rule)
(4)
ProOOF. Of course, both equations are equivalent. We show
(4):
—Afza+ Afz(a+b) = —f(z+a) + fr — fr + f(z+a+b)
= Af(z+a)b. O

Af(z+a)b = —-Afza+ Afz(a+b).

Of course, the definition of the difference operator is to mir-
ror that of the differential operator for functions on linear
spaces. In contrast to the latter, the difference at a point,
Afz, need not be a linear function. Equation (3), however,
suggests that it is not too far away. In particular, if we
know the difference in directions generating G (as a group),
then we know it in any direction. This is similar to partial
derivatives. On the other hand, the equivalent equation (4)
shows that the difference at 0, Af0, already determines the
difference at any point A fz. This is far away from the idea
that the difference at a point should describe a function lo-
cally. The following proposition again suggests a very close
connection.

PROPOSITION 7. The operator A fulfills the following chain
rule:

A(fg)ra = Af(gz)Agza. (5)

PrOOF. A(fg)za = —fgz + fg(x +a) = —fgz + f(gz +
Agza) = Af(gx)Agza. O

Some essential properties occurring in near-ring theory [9]
can be expressed easily using the difference operator:

Definition 4. A faithful N-group I is

1. tame iff Vf € N, Vx € T, Va € T 3f € N such that
Afza = fla;

2. k-tame if Vf € N, Vz € I, Vai,...,a, € T 3f € N’
such that Afza; = fla;, Vi=1,...,k;

3. compatible iff Vf € N, Vx € T' 3f € N’ such that
Afra = f'a,Va €T.

Thus, compatible means that Afz (€ T") operates in the
same way as some f € N, meaning something similar to
differentiability. Similarly, k-tame means that Afz can be
interpolated at k£ places by some element in N. Of course,
tame just means 1-tame, and can also be expressed as the
reachability problem A fza € Na. The following proposition
reduces the tameness test to testing the generators of the
near-ring.

PROPOSITION 8. Let E be a set of generators of the near-
ring N. Then a faithful abelian N-group I' is tame iff Vf €
E,Vx €T, andVa € T': Afzra € Na;



ProOOF. Onuly sufficiency is non-trivial. Suppose that f and

g fulfill the condition. Then A(f — g)xa = Afra — Agza €

Na—Na = Na and, applying (5), A(fg)za = Af(gz)Agza =
f'(g'a) = (f'g')a € Na. u

COROLLARY 3. We can test whether a faithful abelian N-

group T is tame within O(|E|” |T|) multiplications

PrOOF. By the proposition, the property in the definition

of tameness just has to be tested for all generators. ([l

COROLLARY 4. We can test whether a faithful abelian N-
group T is k-tame within O(|E|** |T|) multiplications.

PRrROOF. Instead of the l-interpolation problems before, we
are faced with k-interpolation problems here. O

PROPOSITION 9. Testing whether a transformation near-
ring N (on T') generated by a set E is compatible reduces
to O(|E||T'|) membership problems.

PROOF. We just have to test whether Afz € N, for all
points z € I' and generators f € E. |

6. COMPLETENESSAND REALIZABILITY

We continue considering a transformation near-ring N <
M(T") given by a set E of generators.

It is natural to ask, whether E already generates the full
transformation near-ring, i.e., whether N = M(T'). Cer-
tainly, this will not be the case if all generators are zero-
symmetric, i.e., if 0 = {0}, because this property is pre-
served by addition and composition. In this case, we better
to ask whether all zero-symmetric transformations can be
generated, i.e., whether N = Mo(T") :={ f € M(T")| f(0) =
0}.

Problem 3. (Completeness) Let N < M(T') be a near-ring
given by a set E of generators.

If N is zero-symmetric, decide whether N = Mq(T'), other-
wise whether N = M(T").

Let ' be a group, and let N be a sub-near-ring of M(T"). We
say that N has the k-interpolation property iff for all finite
subsets Q of I" with |Q2| < k and for all mappings m: Q@ —» T'
there exists an element f € F such that flo = m. It has the
k-interpolation property with respect to Mo(T') if it is enough
to interpolate all zero-symmetric mappings m € Mg(T").

Of course, as we only consider the case that I' is finite, the
|T'|-interpolation property means that N = M(T'), and if N
is zero-symmetric, then N = M(T") is the same as the |T'| —1
interpolation-property with respect to Mo(T").

Using our solution to the k-interpolation problem (Proposi-
tion 2.4) we can see that the k-interpolation property can
be solved within O(|E|)|[T|**T|F|?, where F is a set of gen-
erators for the group I': it is enough to test all interpolation
Problems of the form f(y1) = 1, ..., f(yx) = M with
v; € T, ; € F. This bound is polynomial in all variables,
except in k. In particular, we cannot really solve the com-
pleteness problem this way.

At this point, classical near-ring theory can help us, as it
provides the following density theorems:
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THEOREM 2. If N has the 2-interpolation property and
No := {f € N|f0 = 0} is not a ring, then N has the
k-interpolation property for all k € N.

Note that the 2-interpolation property can be tested effi-
ciently. Usually, it is not difficult to establish that Ny is not
a ring. But in some cases this may be difficult to test, and
we have to use a similar theorem.

THEOREM 3. If N has the 3-interpolation property and there
is an element v € ' with v+ v # 0, then N has the k-
interpolation property for all k € N.

If this does not help either, we have to resort to interpolation
on 4 places, which has no additional requirements and still
provides a polynomial-time algorithm.

THEOREM 4. If N has the 4-interpolation property, then N
has the n-interpolation property for all n € N.

Proofs for these classical results are contained in [2, 1].

For the 0-symmetric case, it is sometimes enough to test for
the l-interpolation property.

THEOREM 5. Let I' be a group with |[I'| > 3, and let N be
a sub-near-ring of Mo(I'). Then N has the k-interpolation
property for all k € N with respect to Mo(T) iff

1. N has the 1-interpolation property with respect to Mo (T'),
2. N 1is not a ring,

8. There is no fized point free group automorphism a # id
of (T, +) of prime order such that Vf € N: af = fa.

An automorphism a of (I',+) is called fized point free iff
a(y) = -y implies v = 0. The order of « is the smallest
positive k with o = id. Theorem 6.4 can be proved using
the description of 0-primitive near-rings in [4] or [1, Theo-
rem 4.21].

If these requirements cannot be established, we can always
resort to the 2-interpolation property.

THEOREM 6. Let N be a sub-near-ring of Mo(T") that has
the 2-interpolation property with respect to Mo(T). If N
is not a ring, then N has the k-interpolation property with
respect to Mo(L") for all k € N.

Often we will not be satisfied with the information that some
f € M(T") happens to be in N, but rather want to know how
f can be realized, i.e., how it can be obtained from the
generators using addition and composition.

Problem 4. (Realizability) Suppose that M(T') is gener-
ated by a set E of generators and let f € M(T").
Compute a term ¢ in the free near-ring over E that realizes f.



Suppose, e.g., that completeness of the near-ring generated
by E was established by Theorem 6.1. The constructive
proof of this theorem by [1] can be used to solve the realiz-
ability problem in this case, as described in Algorithm 3.

For this algorithm we will need a binary term (“multipli-
cation”) K on T such that K(vy,0) = K(0,v) = 0 for all
v € T, but K(a,3) # 0 for some «,3 € I. In our case,
these can be found as follows. If (I, +) is not abelian, then
we can take @ and § in T’ with a + 8 # 8 + «a, and define
K(y1,792) := —y1—7Y2+71+72. Otherwise, from establishing
Theorem 6.1, we know how to construct (from the genera-
tors in E) a transformation f € Mo(T'), such that there are
a,B € I’ with f(a+ B) # f(a) + f(B). Then we can take
these together with K (y1,72) := f(71) + f(72) — f(71 +72)-

Algorithm 3 takes a finite subset

Si={(y1,m), (v2,m2)5 -+ 5 (Va> k) }

(all y; different) of I'x ", and returns a term f (built from the
generators in E) such that f(y;) = fori =1,2,... ;k. We
assume that we have an algorithm InterpolateAtTwo that
produces this f if S has at most two elements. Proposi-
tion 2.4 (with full book-keeping, of course) can be used for
this purpose.

Algorithm 3 Interpolation

Require: A set {(vi,n:)|t=1,...,k} of points in I" x I,
Ensure: A term f satisfying f(y;) =ns foralli=1,...,n.
if £ <2 then
return Interpolate AtTwo(S)

else
(* Interpolate recursively on k — 1 points *)
s1 := Interpolation[{(vi,n:) |1 =1,2,... ,k — 1}]
3 := LagrangePoly ({(7i,0)|i=1,2,... ,k—1}U

{(vk,me — s1(%))})

return s; + s1
end if
The following algorithm LagrangePoly solves a specific
interpolation problem by a divide and conquer strat-
egy.
Require: A set {(yi,m:)|i=1,... ,k} of points in T x T
with 91 =--- =mr_1 = 0.
Ensure: A function f satisfying f(v;) = n for all ¢ =
1,... k.
if £ <2 then
Interpolate At Two(S)
else
Partition {1,... ,k — 1} into two smaller subsets X,Y
p1 := LagrangePoly ({(7i,0) |1 € X} U {(v,a)})
p2 := LagrangePoly ({(7i,0) |i € Y} U {(v,B)})
(* Multiply using K *)
h:= K(pl y p2)
g := Interpolate At Two[{(0,0), K(«, ), mx)}]
end if
return goh

Note that this algorithm just needs O(k?) interpolations on
2 places. Similar algorithms can be used to solve the realiz-
ability in the cases where one of the other density theorems
is applicable.

THEOREM 7. The Realizability problem can be solved in poly-
nomial time.

7. DEGREE

Considering real functions, we know that a polynomial has
degree n iff its (n + 1)st derivative is the first one that van-
ishes.

We do something similar using the difference operator, which
in fact can be iterated in the following way. The definition
is motivated by the formal rule A"t f = A(A™f).

Definition 5. Let T be an N-group, f € N, z,a,b € T,
a € I'". Then we define the higher order difference operators
as

A feba = —A' fra+ A f(z +b)a.

In particular,
N faba = A(Af)zba
=—-Afra+ Af(x+b)a
=—f(x+a)+ fr—fz+b)+ f(z+b+a).

Remark 2. If T is abelian, then A" is symmetric in the
last n arguments.

Remark 3. By the translation rule, Af =0 iff A"f0 =0
iff A" fxz =0 for some z.

Remark 4. An element f in a near-ring is constant (i.e.,
satisfies fg = f for all g) iff Af = 0. It is affine (i.e., f— fO
is distributive) iff A?f0 = 0. Here, we have considered N to
operate over itself.

Definition 6. An element f in a near-ring N has degree n
iff A"FLFON...N=0but A*fON...N #0.
— —

n+1 n

Ezample 2. Let R be an integral domain. Then the no-
tion of degree in the near-ring (R[z], +, o), according to the
above definition, coincides with the usual definition.

THEOREM 8. If a near-ring N operates faithfully on a
group T', then each f € N has degree at most n iff it op-
erates on I' piecewisely like a function of degree at most n,
i.e, iff AT'a0(N7Y)...(Ny) = {0}, for each v € T.

PrOOF. We proceed exactly as in the test for distributivity.
Suppose f has degree at most n. Let fiv,...,foy € N7v.
Then, using the distribute law, A" ™a0(f17,..., fay) =
A a0(f1,..., fu)y = 0y = 0. Conversely, to prove that
A" MLa0(f1,... , fn) = 0 (this is an equation over N) disap-
pears we have to show that how that A**a0(f1,..., fu)y

for all v € I, which is true by the same equality as above.
o

Remark 5. Again, instead of testing A"t a0(N7)...(Nv) =
{0}, it is enough to test A"t a0(M~y)F...F = {0}, if F gen-
erates Ny. Thus the complexity of this test is in O(|T| |F|™).



8. MEMBERSHIP

One of the most natural problems arising in the context of
transformation near-rings is the following.

Problem 5. (Membership) Let N < M(I') be given by a
set of generators E. For any f € M(T") test whether f € N.

This turns out to be the hardest of our problems and we
cannot give a completely satisfactory answer, but one that
is acceptable in many important cases.

The idea is to compute a set A of additive generators for
N, i.e., ones that generate N as a group. Then we can use
all the method’s known from computational group theory to
solve problems about NN, e.g., computing its size and solving
the membership problem.

Translated to the language of systems theory, additive gen-
erators correspond to building blocks from which all trans-
formations in IV can be built using only parallel connections.

Things are particularly easy if all generators of the near-ring
are distributive. Then additive generators can be computed
successively by an easy closure algorithm: Ey := E, E; :=
EoU EE,, Ey := E1UEE,, ..., until this process becomes
stable. Essentially the same method works if the generators
turn out to have degree 1. The basic idea here is that we
need not compute E(E + E), E(E+ E + E), ... because
from A’e0fg = 0, i.e., —eg+e0—ef +e(f+g) = 0, we know
that e(f + g) = eg — e0 + ef, and thus e(f + g) happens to
be in the additive closure of ef, eg, and e0.

There is a generalization for near-rings generated by ele-
ments of small degree:

THEOREM 9. Let E be a set of near-ring generators of N
of degree at most n. Define By = E, Eiy1 := E; U E(E; +
. + E;) (n-fold sum). If E, = Eg41, for some k, then Ej
generates N additively.

PRrOOF. The case n = 1 has been shown above. We show
the important case n = 2 (“quadratic functions”). We have
0= Ae0fgh = —A2elOgh + A’efgh = —e(g+ h) + eg —e0 +
eh—e(f+h)+ef—e(f+g)+e(f+g+h) and again see that
e(f + g+ h) can be isolated and thus is already contained
in the group generated by EOU E*> U (E + E). We omit the
general induction proof. [l

Thus we need O(|E||A|") steps to compute a set A of ad-
ditive generators for V. Of course, this solution by far does
not have the efficiency of all the other algorithms presented
in this note, in particular there is no good bound for |A]|.
Nevertheless, even in its most simple version, for n = 1, this
method has already solved some problems previously open

[3).

Some optimizations are possible, e.g., if the elements in E =
{e1,...,em } have different degrees, say ni, ..., nm, then it is
enough to compute all the e, (E; + ... + E;) (where the sum
is only n,-fold) instead of E(E; + ... + E;) with the n-fold
sum.
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9. CONCLUSION

Various problems for computing with transformation near-
rings have been considered. Most of them have got very
satisfactory solutions, as everything can be done with the
near-ring generators and we are able to compute with near-
ring of a size where group theoretic algorithms could not be
applied any more. The membership problem turned out to
be much harder and we had to resort to the computation of
additive generators, thus reducing the problem to computa-
tions with the additive group structure. On the other hand,
we can decide whether the full transformation near-ring is
generated and how we can realize arbitrary functions also in
this case.
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