Congruence preserving functions and polynomial functions on expanded groups

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz

20th International Conference on Near-rings and Near-fields Linz 2007

< □ > < 同 > < 回 > < 回 >

Erhard Aichinger Congruence preserving functions on an expanded group

< 同 > < 三 > < 三

Expanded Groups

Definition of expanded groups

An algebra $\langle V, +, -, 0, f_1, f_2, ... \rangle$ is an *expanded group* if $\langle V, +, -, 0 \rangle$ is a (not necessarily abelian) group.

Examples of expanded groups

- Every group (ring, near-ring, vector-space) is an expanded group.
- Every ring-module is an expanded group.
- For a near-ring N, every N-group Γ is an expanded group.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Expanded Groups

Definition of expanded groups

An algebra $\langle V, +, -, 0, f_1, f_2, ... \rangle$ is an *expanded group* if $\langle V, +, -, 0 \rangle$ is a (not necessarily abelian) group.

Examples of expanded groups

- Every group (ring, near-ring, vector-space) is an expanded group.
- Every ring-module is an expanded group.
- For a near-ring *N*, every *N*-group Γ is an expanded group.

ヘロト 人間 ト イヨト イヨト

Expanded Groups

Definition of expanded groups

An algebra $\langle V, +, -, 0, f_1, f_2, \ldots \rangle$ is an *expanded group* if $\langle V, +, -, 0 \rangle$ is a (not necessarily abelian) group.

Examples of expanded groups

- Every group (ring, near-ring, vector-space) is an expanded group.
- Every ring-module is an expanded group.
- For a near-ring N, every N-group Γ is an expanded group.

イロト イポト イヨト イヨト 三日

Expanded Groups

Definition of expanded groups

An algebra $\langle V, +, -, 0, f_1, f_2, \ldots \rangle$ is an *expanded group* if $\langle V, +, -, 0 \rangle$ is a (not necessarily abelian) group.

Examples of expanded groups

- Every group (ring, near-ring, vector-space) is an expanded group.
- Every ring-module is an expanded group.
- For a near-ring *N*, every *N*-group Γ is an expanded group.

<ロト < 課 > < 理 > < 理 > 一 理

Expanded Groups

Definition of expanded groups

An algebra $\langle V, +, -, 0, f_1, f_2, \ldots \rangle$ is an *expanded group* if $\langle V, +, -, 0 \rangle$ is a (not necessarily abelian) group.

Examples of expanded groups

- Every group (ring, near-ring, vector-space) is an expanded group.
- Every ring-module is an expanded group.
- For a near-ring N, every N-group Γ is an expanded group.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Congruences and Ideals

Ideals

Let $\mathbf{V} = \langle V, +, -, 0, f_1, f_2, ... \rangle$ be an expanded group. Then a normal subgroup *I* of $\langle V, +, -, 0 \rangle$ is an *ideal* of **V** if

$$f_j(v_1+i_1,\ldots,v_n+i_n)-f_j(v_1,\ldots,v_n)\in I$$

for all fundamental operations f_i of **V**.

Theorem

Let V be an expanded group. Then the ideals are in bijective correspondence with the congruence relations of V.

< □ > < @ > < E > < E >

Congruences and Ideals

Ideals

Let $\mathbf{V} = \langle V, +, -, 0, f_1, f_2, ... \rangle$ be an expanded group. Then a normal subgroup *I* of $\langle V, +, -, 0 \rangle$ is an *ideal* of **V** if

$$f_j(v_1+i_1,\ldots,v_n+i_n)-f_j(v_1,\ldots,v_n)\in I$$

for all fundamental operations f_i of **V**.

Theorem

Let **V** be an expanded group. Then the ideals are in bijective correspondence with the congruence relations of **V**.

・ロト ・聞 ト ・ ヨト ・ ヨト

Congruence preserving functions

Congruence preserving functions

Let **V** be and expanded group, and let $f : V \to V$. Then f is a *congruence preserving function* if for all ideals I of **V** and for all $x, y \in V$ with $x - y \in I$, we have $f(x) - f(y) \in I$.

Near-rings of congruence preserving functions

Let V be an expanded group. We define

 $\begin{array}{rcl} C(\mathbf{V}) &:= & \{f: V \to V \,|\, f \text{ is congruence preserving on } V\} \\ C_0(\mathbf{V}) &:= & \{f \in C(\mathbf{V}) \,|\, f(0) = 0\}. \end{array}$

Then $\langle C_0(\mathbf{V}), +, \circ \rangle$ is a zero-symmetric near-ring that contains id_V .

ヘロト 人間 ト イヨト イヨト

э

Congruence preserving functions

Congruence preserving functions

Let **V** be and expanded group, and let $f : V \to V$. Then f is a *congruence preserving function* if for all ideals I of **V** and for all $x, y \in V$ with $x - y \in I$, we have $f(x) - f(y) \in I$.

Near-rings of congruence preserving functions

Let V be an expanded group. We define

 $\begin{array}{lll} C(\mathbf{V}) & := & \{f : V \to V \mid f \text{ is congruence preserving on } V\} \\ C_0(\mathbf{V}) & := & \{f \in C(\mathbf{V}) \mid f(0) = 0\}. \end{array}$

Then $\langle C_0(\mathbf{V}), +, \circ \rangle$ is a zero-symmetric near-ring that contains id_V .

< □ > < 同 > < 回 > < 回 > < 回 >

э

Theorem (Cannon, Kabza, Q.M. 2001)

Let **V** be an expanded group such that the ideal lattice of **V** is a three element chain $\{0, A, V\}$. We assume $|A| \ge 2$. Then the ideals of $C_0(\mathbf{V})$ are $C_0(\mathbf{V})$, (A : V), (0 : A), $(A : V) \cap (0 : A)$, and 0.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let **V** be a finite expanded group. If **Id V** is a chain $0 = A_1 < A_2 < \cdots < A_n = V$ with $|A_i/A_{i-1}| \ge 3$ for all $i \in \{2, \ldots, n\}$, then we have:

- Every ideal of $C_0(\mathbf{V})$ is an intersection of Noetherian Quotients $(A_i : A_j)_{C_0(\mathbf{V})}$.
- The near-ring $C_0(\mathbf{V})$ has $\frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ ideals.
- ^③ The near-ring $C_0(V)$ is subdirectly irreducible, and its unique minimal ideal is $(0 : A_{n-1})_{C_0(V)} \cap (A_2 : G)_{C_0(V)}$.
- $C_0(\mathbf{V})$ has n-1 maximal ideals.

< ロ > < 同 > < 回 > < 回 >

Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let **V** be a finite expanded group. If **Id V** is a chain $0 = A_1 < A_2 < \cdots < A_n = V$ with $|A_i/A_{i-1}| \ge 3$ for all $i \in \{2, \ldots, n\}$, then we have:

- Every ideal of $C_0(\mathbf{V})$ is an intersection of Noetherian Quotients $(A_i : A_j)_{C_0(\mathbf{V})}$.
- 2 The near-ring $C_0(\mathbf{V})$ has $\frac{1}{n+1}\begin{pmatrix} 2n\\n \end{pmatrix}$ ideals.
- ^③ The near-ring $C_0(V)$ is subdirectly irreducible, and its unique minimal ideal is $(0 : A_{n-1})_{C_0(V)} \cap (A_2 : G)_{C_0(V)}$.
- $C_0(\mathbf{V})$ has n-1 maximal ideals.

< ロ > < 同 > < 回 > < 回 >

Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let **V** be a finite expanded group. If **Id V** is a chain $0 = A_1 < A_2 < \cdots < A_n = V$ with $|A_i/A_{i-1}| \ge 3$ for all $i \in \{2, \dots, n\}$, then we have:

• Every ideal of $C_0(\mathbf{V})$ is an intersection of Noetherian Quotients $(A_i : A_j)_{C_0(\mathbf{V})}$.

2 The near-ring
$$C_0(\mathbf{V})$$
 has $\frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ ideals.

- The near-ring C₀(V) is subdirectly irreducible, and its unique minimal ideal is (0 : A_{n-1})_{C₀(V)} ∩ (A₂ : G)_{C₀(V)}.
- $C_0(\mathbf{V})$ has n-1 maximal ideals.

< ロ > < 同 > < 回 > < 回 >

Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let **V** be a finite expanded group. If **Id V** is a chain $0 = A_1 < A_2 < \cdots < A_n = V$ with $|A_i/A_{i-1}| \ge 3$ for all $i \in \{2, \dots, n\}$, then we have:

- Every ideal of $C_0(\mathbf{V})$ is an intersection of Noetherian Quotients $(A_i : A_j)_{C_0(\mathbf{V})}$.
- 2 The near-ring $C_0(\mathbf{V})$ has $\frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ ideals.
- Solution The near-ring $C_0(\mathbf{V})$ is subdirectly irreducible, and its unique minimal ideal is $(0 : A_{n-1})_{C_0(\mathbf{V})} \cap (A_2 : G)_{C_0(\mathbf{V})}$.
- $C_0(\mathbf{V})$ has n-1 maximal ideals.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let **V** be a finite expanded group. If **Id V** is a chain $0 = A_1 < A_2 < \cdots < A_n = V$ with $|A_i/A_{i-1}| \ge 3$ for all $i \in \{2, \dots, n\}$, then we have:

• Every ideal of $C_0(\mathbf{V})$ is an intersection of Noetherian Quotients $(A_i : A_j)_{C_0(\mathbf{V})}$.

2 The near-ring
$$C_0(\mathbf{V})$$
 has $\frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ ideals.

- Solution The near-ring $C_0(\mathbf{V})$ is subdirectly irreducible, and its unique minimal ideal is $(0 : A_{n-1})_{C_0(\mathbf{V})} \cap (A_2 : G)_{C_0(\mathbf{V})}$.
- $C_0(\mathbf{V})$ has n-1 maximal ideals.

< ロ > < 同 > < 回 > < 回 > < 回 >

Maximal ideals of $C_0(\mathbf{V})$

Lemma

Let **V** be a finite expanded group. Then every maximal ideal of $C_0(\mathbf{V})$ is of the form $(A : B)_{C_0(\mathbf{V})}$ with $A \prec B$ in **Id** (**V**).

Theorem (E.A., JPAA 2006)

Let V be a finite expanded group, and let $A \prec B$ and $C \prec D$ be ideals of V. Then the following are equivalent:

- $(A:B)_{C_0(V)} = (C:D)_{C_0(V)}.$
- The intervals I[A, B] and I[C, D] are projective intervals in Id (V).

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Maximal ideals of $C_0(\mathbf{V})$

Lemma

Let **V** be a finite expanded group. Then every maximal ideal of $C_0(\mathbf{V})$ is of the form $(A : B)_{C_0(\mathbf{V})}$ with $A \prec B$ in **Id** (**V**).

Theorem (E.A., JPAA 2006)

Let **V** be a finite expanded group, and let $A \prec B$ and $C \prec D$ be ideals of **V**. Then the following are equivalent:

• (
$$A: B$$
) _{$C_0(V)$} = ($C: D$) _{$C_0(V)$} .

The intervals *I*[*A*, *B*] and *I*[*C*, *D*] are projective intervals in Id (V).

(日)

Maximal ideals of $C_0(\mathbf{V})$

Lemma

Let **V** be a finite expanded group. Then every maximal ideal of $C_0(\mathbf{V})$ is of the form $(A : B)_{C_0(\mathbf{V})}$ with $A \prec B$ in **Id** (**V**).

Theorem (E.A., JPAA 2006)

Let **V** be a finite expanded group, and let $A \prec B$ and $C \prec D$ be ideals of **V**. Then the following are equivalent:

(
$$A: B)_{C_0(\mathbf{V})} = (C: D)_{C_0(\mathbf{V})}.$$

The intervals *I*[*A*, *B*] and *I*[*C*, *D*] are projective intervals in Id (V).

(日)

Maximal ideals of $C_0(\mathbf{V})$

Lemma

Let **V** be a finite expanded group. Then every maximal ideal of $C_0(\mathbf{V})$ is of the form $(A : B)_{C_0(\mathbf{V})}$ with $A \prec B$ in **Id** (**V**).

Theorem (E.A., JPAA 2006)

Let **V** be a finite expanded group, and let $A \prec B$ and $C \prec D$ be ideals of **V**. Then the following are equivalent:

(
$$A: B)_{C_0(\mathbf{V})} = (C: D)_{C_0(\mathbf{V})}.$$

The intervals *I*[*A*, *B*] and *I*[*C*, *D*] are projective intervals in Id (V).

(日)

Quotients modulo the maximal ideals

Quotients modulo the maximal ideals

Let **V** be a finite expanded group. Let $A_0 \prec B_0$ be ideals of **V**, and let $\{(A_0, B_0), (A_1, B_1), \dots, (A_n, B_n)\}$ be the class of prime intervals projective to $I[A_0, B_0]$. Then:

- If exactly one of the A_i is a join irreducible element in Id (V), then $C_0(\mathbf{V})/(A_0:B_0)_{C_0(\mathbf{V})}$ is isomorphic to $M_0(B_0/A_0)$.
- If more than one of the A_i are join irreducible, C₀(**V**)/(A₀ : B₀)_{C₀(**V**)} is isomorphic to a full matrix ring over a finite field.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Quotients modulo the maximal ideals

Quotients modulo the maximal ideals

Let **V** be a finite expanded group. Let $A_0 \prec B_0$ be ideals of **V**, and let $\{(A_0, B_0), (A_1, B_1), \dots, (A_n, B_n)\}$ be the class of prime intervals projective to $I[A_0, B_0]$. Then:

If exactly one of the A_i is a join irreducible element in Id (V), then $C_0(\mathbf{V})/(A_0:B_0)_{C_0(\mathbf{V})}$ is isomorphic to $M_0(B_0/A_0)$.

If more than one of the A_i are join irreducible, $C_0(\mathbf{V})/(A_0:B_0)_{C_0(\mathbf{V})}$ is isomorphic to a full matrix ring over a finite field.

ヘロト 人間 ト イヨト イヨト

3

Quotients modulo the maximal ideals

Quotients modulo the maximal ideals

Let **V** be a finite expanded group. Let $A_0 \prec B_0$ be ideals of **V**, and let $\{(A_0, B_0), (A_1, B_1), \dots, (A_n, B_n)\}$ be the class of prime intervals projective to $I[A_0, B_0]$. Then:

- If exactly one of the A_i is a join irreducible element in Id (V), then $C_0(\mathbf{V})/(A_0:B_0)_{C_0(\mathbf{V})}$ is isomorphic to $M_0(B_0/A_0)$.
- If more than one of the A_i are join irreducible, C₀(**V**)/(A₀ : B₀)_{C₀(**V**)} is isomorphic to a full matrix ring over a finite field.

ヘロト 人間 ト イヨト イヨト

3

Theorem (E.A., JPAA 2006)

Let **V** be a finite expanded group, and let *A* be an ideal of **V**. Then there exists a function $e \in C_0(\mathbf{V})$ such that $e(V) \subseteq A$ and e(a) = a for all $a \in A$ iff *A* is a distributive element of the lattice **Id V**.

< ロ > < 同 > < 回 > < 回 > .

Polynomial functions

Polynomial functions

Let **V** be an expanded group. Then $P(\mathbf{V})$ is the set of all polynomial functions on **V**.

_emma

 $P(\mathbf{V}) \subseteq C(\mathbf{V}).$

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Polynomial functions

Polynomial functions

Let **V** be an expanded group. Then $P(\mathbf{V})$ is the set of all polynomial functions on **V**.

Lemma

 $P(\mathbf{V}) \subseteq C(\mathbf{V}).$

< ロ > < 同 > < 回 > < 回 > < □ > <

Possible sets of polynomial functions

Theorem (E.A., P. Mayr, Acta Math. Hung. 2007)

Let p, q be odd primes with $p \neq q$. Then there are exactly 17 subnear-rings of $M(\mathbb{Z}_{pq})$ that contain $M_{aff}(\mathbb{Z}_{pq})$.

< ロ > < 同 > < 回 > < 回 > < 回 > <