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Expanded Groups

Definition of expanded groups

An algebra 〈V ,+,−, 0, f1, f2, . . .〉 is an expanded group if
〈V ,+,−, 0〉 is a (not necessarily abelian) group.

Examples of expanded groups

Every group (ring, near-ring, vector-space) is an expanded
group.

Every ring-module is an expanded group.

For a near-ring N, every N-group Γ is an expanded group.
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Congruences and Ideals

Ideals

Let V = 〈V ,+,−, 0, f1, f2, . . .〉 be an expanded group. Then a
normal subgroup I of 〈V ,+,−, 0〉 is an ideal of V if

fj(v1 + i1, . . . , vn + in) − fj(v1, . . . , vn) ∈ I

for all fundamental operations fj of V.

Theorem
Let V be an expanded group. Then the ideals are in bijective
correspondence with the congruence relations of V.
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Congruence preserving functions

Let V be and expanded group, and let f : V → V . Then f is a
congruence preserving function if for all ideals I of V and for all
x , y ∈ V with x − y ∈ I, we have f (x) − f (y) ∈ I.

Near-rings of congruence preserving functions

Let V be an expanded group. We define

C(V) := {f : V → V ||| f is congruence preserving on V}
C0(V) := {f ∈ C(V) ||| f (0) = 0}.

Then 〈C0(V),+, ◦〉 is a zero-symmetric near-ring that contains
idV .
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Theorem (Cannon, Kabza, Q.M. 2001)

Let V be an expanded group such that the ideal lattice of V is a
three element chain {0, A, V}. We assume |A| ≥ 2. Then the
ideals of C0(V) are C0(V), (A : V ), (0 : A), (A : V ) ∩ (0 : A), and
0.
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Theorem (E.A., Cannon, Ecker, Kabza, Neuerburg)

Let V be a finite expanded group. If Id V is a chain
0 = A1 < A2 < · · · < An = V with |Ai/Ai−1| ≥ 3 for all
i ∈ {2, . . . , n}, then we have:

1 Every ideal of C0(V) is an intersection of Noetherian
Quotients (Ai : Aj)C0(V).

2 The near-ring C0(V) has 1
n+1

(

2n
n

)

ideals.

3 The near-ring C0(V) is subdirectly irreducible, and its
unique minimal ideal is (0 : An−1)C0(V) ∩ (A2 : G)C0(V).

4 C0(V) has n − 1 maximal ideals.
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Maximal ideals of C0(V)

Lemma

Let V be a finite expanded group. Then every maximal ideal of
C0(V) is of the form (A : B)C0(V) with A ≺ B in Id (V).

Theorem (E.A., JPAA 2006)

Let V be a finite expanded group, and let A ≺ B and C ≺ D be
ideals of V. Then the following are equivalent:

1 (A : B)C0(V) = (C : D)C0(V).
2 The intervals I[A, B] and I[C, D] are projective intervals in

Id (V).
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Quotients modulo the maximal ideals

Let V be a finite expanded group. Let A0 ≺ B0 be ideals of V,
and let {(A0, B0), (A1, B1), . . . , (An, Bn)} be the class of prime
intervals projective to I[A0, B0]. Then:

1 If exactly one of the Ai is a join irreducible element in Id (V),
then C0(V)/(A0 : B0)C0(V) is isomorphic to M0(B0/A0).

2 If more than one of the Ai are join irreducible,
C0(V)/(A0 : B0)C0(V) is isomorphic to a full matrix ring over
a finite field.
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Theorem (E.A., JPAA 2006)

Let V be a finite expanded group, and let A be an ideal of V.
Then there exists a function e ∈ C0(V) such that e(V ) ⊆ A and
e(a) = a for all a ∈ A iff A is a distributive element of the lattice
Id V.
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Polynomial functions

Let V be an expanded group. Then P(V) is the set of all
polynomial functions on V.

Lemma

P(V) ⊆ C(V).
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Possible sets of polynomial functions

Theorem (E.A., P. Mayr, Acta Math. Hung. 2007)

Let p, q be odd primes with p 6= q. Then there are exactly 17
subnear-rings of M(Zpq) that contain Maff(Zpq).
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