On the number of polynomially inequivalent finite Mal'cev algebras with congruence lattice of height two.

Erhard Aichinger

Institute of Algebra

Johannes Kepler University Linz, Austria

Basic Definitions Polynomial functions (Pol A)

Definition 1. Let $\mathbf{A} = \langle A; F \rangle$ be an algebra, and let $k \in \mathbb{N}$. Then Pol_k \mathbf{A} is the subuniverse of \mathbf{A}^{A^k} generated by

- the projection functions $\langle x_1, x_2, \ldots, x_k \rangle \mapsto x_i$ with $i = 1, \ldots, k$.
- the constant functions $\langle x_1, x_2, \ldots, x_k \rangle \mapsto a$ with $a \in A$.

Proposition 2. Let A be an algebra, and let $k \in \mathbb{N}$. Then $p : A^k \to A$ lies in Pol_kA iff there is an $m \in \mathbb{N}$, a term function $t \in Clo_{m+k}A$, and there are elements $a_1, a_2, \ldots, a_m \in A$ such that

$$p(x_1, x_2, \dots, x_k) = t(a_1, a_2, \dots, a_m, x_1, x_2, \dots, x_k)$$

for all $x_1, x_2, \ldots, x_k \in A$.

Clones

Definition 3 (Clones). A subset of $\bigcup \{A^{A^i} | i \in \mathbb{N}\}$ is a *clone* on A if it contains all projections, and it is closed under all compositions of functions. It is *constantive* if it contains all constant unary operations.

Proposition 4. A subset C of $\bigcup \{A^{A^i} | i \in \mathbb{N}\}$ is a constantive clone on A iff there is a family of operations F on A such that

$$\mathsf{Pol}\,\langle A;F\rangle = C.$$

Constantive clones

Question: Given a finite set A, how many constantive clones do we have on A?

Answer: [Ágoston et al., 1986] seven if |A| = 2, 2^{\aleph_0} if $|A| \ge 3$.

Question: (R. McKenzie, oral communication) Given a finite set A, how many constantive clones do we have on A that contain a ternary Mal'cev operation?

Polynomial Equivalence

Definition 5. Let $A_1 := \langle A; F_1 \rangle$ and $A_2 := \langle A; F_2 \rangle$ be algebras. A_1 and A_2 are *polynomially equivalent* if and only if $Pol A_1 = Pol A_2$.

Theorem 6 (Ágoston, Demetrovics, Hannák, 1986). Let A be a set with $|A| \ge 3$. Then there exist 2^{\aleph_0} polynomially inequivalent algebras with universe A.

Problem 7. Are there uncountably many finite polynomially inequivalent algebras with a Mal'cev polynomial?

 \ldots whose universe is an initial section of \mathbb{N} ...

Constantive clones on expanded groups

Problem 8. Let $\mathbf{V} = \langle V; +, F \rangle$ be a finite expanded group. How many clones *C* do we have on *V* such that

Pol $\mathbf{V} \subseteq C$?

Examples

Theorem 9 ([Bulatov and Idziak, 2003], [Idziak, 1999]). The algebras $\langle \mathbb{Z}_4; + \rangle$, $\langle \mathbb{Z}_4; +, 2xy \rangle$, $\langle \mathbb{Z}_4; +, 2xyz \rangle$, ... are pairwise polynomially inequivalent.

Conjecture 10 ([Idziak, 1999]). Let n be a squarefree natural number. Then $\langle \mathbb{Z}_n; + \rangle$ has only finitely many polynomially inequivalent expansions.

Theorem 11 ([Aichinger and Mayr, 2006]). Let p,q be primes with $p \neq q$. Then there are exactly 17 clones on \mathbb{Z}_{pq} that contain Pol $\langle \mathbb{Z}_{pq}; + \rangle$.

Idea: on every expansion of $\langle \mathbb{Z}_{pq}; + \rangle$, every function that preserves commutators and congruences is polynomial.

Wild Conjecture Let A an algebra with a Mal'cev polynomial. Then there are at most countably many clones C with $\operatorname{Pol} \mathbf{A} \subseteq C$.

Wilder Conjecture Let A be an algebra with a Mal'cev polynomial m. Then there exists a finite set R of relations on A such that

 $\mathsf{Pol}\,\mathbf{A} = \mathsf{Comp}(A, R).$

To disprove: find an infinite descending chain of clones that contain Pol($\langle A; m \rangle$). **Theorem 12.** Let $\mathbf{V} = \langle V; +, F \rangle$ be an expanded group. If $h(\text{Con V}) \leq$ 2, then there is a finite set of relations R such that

 $\mathsf{Pol}\,\mathbf{V} = \mathsf{Comp}(V, R).$

Ágoston, I., Demetrovics, J., and Hannák, L. (1986). On the number of clones containing all constants (a problem of R. McKenzie). In *Lectures in universal algebra (Szeged, 1983)*, volume 43 of *Colloq. Math. Soc. János Bolyai*, pages 21–25. North-Holland, Amsterdam.

Aichinger, E. and Mayr, P. (2006). Clones on groups of order pq. To Appear in Acta Mathematica Hungarica.

Bulatov, A. A. and Idziak, P. M. (2003). Counting Mal'tsev clones on small sets. *Discrete Math.*, 268(1-3):59–80. Idziak, P. M. (1999). Clones containing Mal'tsev operations. *Internat. J. Algebra Comput.*, 9(2):213–226.