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The term equivalence problem

The term equivalence problem

Let A be an algebra. We look for an algorithm solving the
following problem:

Given: Terms s, t in the language of A.

Asked: Do s and t induce the same term function on A?
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Results about the term equivalence problem

Theorem (Burris, Lawrence, 2004)

Let G be a finite nilpotent group of class k , let n ∈ N, and let
p ∈ Pol nG. If p(a1, . . . , an) = 1 for all (a1, . . . , an) with

|{i ∈ {1, . . . , n}||| ai 6= 1}| ≤ k ,

then p(x) = 1 for all x ∈ Gn.

Theorem (Hunt, Stearns, 1990, Burris, Lawrence 1993)

For a finite nilpotent ring, term equivalence can be decided in
polynomial time.
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Affine completeness

Definition

An algebra A is affine complete if Pol A = Comp (A, Con A).

Theorem (EA, Ecker, 2006)

There is an algorithm that solves the following problem:

Given: A finite nilpotent group G.

Asked: Is G affine complete?
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Clone theory

Theorem (Idziak, Bulatov)

Pol 〈Z4,+, 2x1x2〉 ⊂ Pol 〈Z4,+, 2x1x2x3〉 ⊂ Pol 〈Z4,+, 2x1x2x3x4〉 ⊂ · · ·

Theorem (Bulatov, 2002)

For every clone C with Pol 〈Z4,+〉 ⊆ C, there is a finite set R of
relations such that

C = Comp (Z4, R).
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Higher commutators

Bulatov’s multiplaced commutators (Proc. AAA60, 2001)

Let A be an algebra. For every n ∈ N, A. Bulatov defined an
n-ary operation on Con A

(α1, . . . , αn) 7→ [α1, . . . , αn]

with the following properties:

For n = 2, this operation yields the term-condition
commutator.

[α1, . . . , αn] ≤
∧
{αi ||| i ∈ {1, . . . , n}}.

[•, •, . . . , •] is monotonous.

[α1, . . . , αn] ≤ [α1, . . . , αn−2, αn].
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Properties of Bulatov’s commutators

Theorem (Mudrinski, 2007)

Let A be an algebra with a Mal’cev term, and let n ∈ N. Then:

[•, •, . . . , •] is join distributive in each argument (w.r.t.
arbitrary joins).

[α1, . . . , αn] = [α
π(1), . . . , απ(n)] for every π ∈ Sn. (This was

already claimed by Bulatov.)

[α1, [α2, . . . , αn]] ≤ [α1, α2, . . . , αn].
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Term equivalence

Theorem (EA, Mudrinski, 2007)

Let A be a Mal’cev algebra. We assume that there is a c ∈ N

such that [1A, 1A, . . . , 1A
︸ ︷︷ ︸

c times

] = 0A. Then term-equivalence can be

decided in polynomial time.

Theorem (cf. Kearnes, 1999)

Let A be an algebra of finite type in a congruence modular
variety. If A is nilpotent and of prime power cardinality, then
there exists a c ∈ N such that

[1A, 1A, . . . , 1A
︸ ︷︷ ︸

c times

] = 0A.
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Affine completeness

Theorem (EA, Mudrinski, 2007)

There is an algorithm that solves the following problem:

Given: A finite algebra A for which there is c ∈ N with
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Asked: Is A affine complete?
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Clone Theory

Theorem (EA, Mudrinski, 2007)

Let A be a finite Mal’cev algebra with congruence lattice of
height 2. Then there is a finite set R of relations on A such that
Pol A = Comp (A, R).
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Happy Birthday, Professor Wille!

Thank you for creating and maintaining the
AAA-conference series.

AAA76 : Linz, Austria, May, 22nd to 25th, 2008.
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