The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz, Austria

Combinatorics 2008, Costermano, Italy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Functions on groups Let $\langle G, +, -, 0 \rangle$ be a group. We define $M(G) := G^G$.

On M(G), we define \circ by

 $f \circ g(\gamma) = f(g(\gamma))$ for all $f, g \in M(G), \gamma \in G$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product **G**^{*G*}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- ► For all *f*, *g*, *h* ∈ *M*(*G*):

 $(f+g)\circ h=f\circ h+g\circ h.$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

 $f \circ (g+h) \neq f \circ g + f \circ h.$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ → 国 - のへで

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product \mathbf{G}^{G}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- For all $f, g, h \in M(G)$:

 $(f+g)\circ h=f\circ h+g\circ h.$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

 $f \circ (g + h) \neq f \circ g + f \circ h.$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product \mathbf{G}^{G}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- For all $f, g, h \in M(G)$:

 $(f+g)\circ h=f\circ h+g\circ h.$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

 $f \circ (g+h) \neq f \circ g + f \circ h.$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product \mathbf{G}^{G}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- ► For all *f*, *g*, *h* ∈ *M*(*G*):

 $(f+g)\circ h=f\circ h+g\circ h.$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

 $f \circ (g+h) \neq f \circ g + f \circ h.$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product \mathbf{G}^{G}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- For all *f*, *g*, *h* ∈ *M*(*G*):

$$(f+g)\circ h=f\circ h+g\circ h.$$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

$$f \circ (g+h) \neq f \circ g + f \circ h.$$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Properties of M(G)

- $\langle M(G), +, -, 0 \rangle$ is a group (the direct product \mathbf{G}^{G}).
- $\langle M(G), \circ \rangle$ is a semigroup.
- For all *f*, *g*, *h* ∈ *M*(*G*):

$$(f+g)\circ h=f\circ h+g\circ h.$$

▶ If |G| > 1, then there are $f, g, h \in M(G)$ such that

$$f \circ (g+h) \neq f \circ g + f \circ h.$$

For all $f \in M(G)$: $0 \circ f = 0$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

A near-ring is an algebra N with operations + (binary), - (unary), 0 (nullary), and \circ (binary) such that

- \triangleright $\langle N, +, -, 0 \rangle$ is a (not necessarily abelian) group,
- ▶ N satisfies the identity $(x + y) \circ z \approx x \circ z + y \circ z$, and
- ▶ **N** satisfies the identity $(x \circ y) \circ z \approx x \circ (y \circ z)$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

A near-ring is an algebra N with operations + (binary), - (unary), 0 (nullary), and \circ (binary) such that

- $\langle N, +, -, 0 \rangle$ is a (not necessarily abelian) group,
- ▶ **N** satisfies the identity $(x + y) \circ z \approx x \circ z + y \circ z$, and
- ▶ **N** satisfies the identity $(x \circ y) \circ z \approx x \circ (y \circ z)$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

A near-ring is an algebra N with operations + (binary), - (unary), 0 (nullary), and \circ (binary) such that

- $\langle N, +, -, 0 \rangle$ is a (not necessarily abelian) group,
- ▶ N satisfies the identity $(x + y) \circ z \approx x \circ z + y \circ z$, and

▶ **N** satisfies the identity $(x \circ y) \circ z \approx x \circ (y \circ z)$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

A near-ring is an algebra ${\bf N}$ with operations + (binary), - (unary), 0 (nullary), and \circ (binary) such that

- $\langle N, +, -, 0 \rangle$ is a (not necessarily abelian) group,
- ▶ **N** satisfies the identity $(x + y) \circ z \approx x \circ z + y \circ z$, and

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▶ **N** satisfies the identity $(x \circ y) \circ z \approx x \circ (y \circ z)$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Near-fields

Definition of Near-fields A near-field is a near-ring $\langle N, +, \circ \rangle$ such that $\langle N \setminus \{0\}, \circ \rangle$ is a group.

The Quaternion Near-field with 9 Elements We construct a 9-element near-field using the terminology of the "Ferrero-Near-ring-Factory" (Clay). (c Ferrero, Classificazione e costruzione degli stems *p*-singolari, Ist. Lombardo, 1968) Let $G := \mathbb{Z}_3 \times \mathbb{Z}_3$, and let $\Phi := \langle \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \rangle \leq GL(2, \mathbb{Z}_3)$. Define

 $a \circ b := M(b) \cdot a,$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where M(b) is the matrix in Φ with first column *b*. Then $\langle \mathbb{Z}_3 \times \mathbb{Z}_3, +, \circ \rangle$ is a near-field with multiplicative group Q_8 . The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Near-fields

Definition of Near-fields A near-field is a near-ring $\langle N, +, \circ \rangle$ such that $\langle N \setminus \{0\}, \circ \rangle$ is a group.

The Quaternion Near-field with 9 Elements We construct a 9-element near-field using the terminology of the "Ferrero-Near-ring-Factory" (Clay). (cf. Ferrero, Classificazione e costruzione degli stems *p*-singolari, Ist. Lombardo, 1968) Let $G := \mathbb{Z}_3 \times \mathbb{Z}_3$, and let $\Phi := \langle \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \rangle \leq GL(2, \mathbb{Z}_3)$. Define

$$a \circ b := M(b) \cdot a,$$

where M(b) is the matrix in Φ with first column b. Then $\langle \mathbb{Z}_3 \times \mathbb{Z}_3, +, \circ \rangle$ is a near-field with multiplicative group Q_8 . The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

・ロト・日本・日本・日本・日本・日本

Near-fields in Geometry

Near-field elements as coordinates

Finite projective planes of Lenz-Barlotti-types IV.a.2 and IV.a.3 can be coordinatized by near-fields.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Rings satisfying $x^n = x$

Theorem (Jacobson, 1945)

Let n > 1. Every ring satisfying $x^n = x$ is a subdirect product of fields satisfying $x^n = x$.

A consequence in equational logic (x + y) + z = x + (y + z) 0 + x = x-x + x = 0

(xy)z = x(yz)(x + y)z = xz + yz x(y + z) = xy + xz xⁿ = x The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

X + V = V + X

・ロト・西ト・西ト・西・ うろの

Rings satisfying $x^n = x$

Theorem (Jacobson, 1945)

Let n > 1. Every ring satisfying $x^n = x$ is a subdirect product of fields satisfying $x^n = x$.

A consequence in equational logic

$$(x + y) + z = x + (y + z)$$

$$0 + x = x$$

$$-x + x = 0$$

$$(xy)z = x(yz)$$

$$(x + y)z = xz + yz$$

$$x(y + z) = xy + xz$$

$$xn = x$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

$$\begin{array}{l} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} \\ \Rightarrow \mathbf{x}\mathbf{y} = \mathbf{y}\mathbf{x} \end{array}$$

・ロト・日本・日本・日本・日本・日本

Near-rings satisfying $x^n = x$

Theorem (S. Ligh, Kyungpook Math J., 1971) Let n > 1. Every **zerosymmetric near-**ring ($x \circ 0 \approx 0$) **with left identity** ($x \approx 1 \circ x$) satisfying $x^n = x$ is a subdirect product of **near-**fields satisfying $x^n = x$.

$$(x + y) + z = x + (y + z)$$

$$0 + x = x$$

$$-x + x = 0$$

$$(xy)z = x(yz)$$

$$(x + y)z = xz + yz$$

$$x0 = 0$$

$$1x = x$$

$$xn = x$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

 \Rightarrow x + y = y + x

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Planar near-rings

Near-rings satisfying $x^n = x$

Theorem (S. Ligh, Kyungpook Math J., 1971) Let n > 1. Every **zerosymmetric near-**ring ($x \circ 0 \approx 0$) **with left identity** ($x \approx 1 \circ x$) satisfying $x^n = x$ is a subdirect product of **near-**fields satisfying $x^n = x$.

$$(x + y) + z = x + (y + z)$$

$$0 + x = x$$

$$-x + x = 0$$

$$(xy)z = x(yz)$$

$$(x + y)z = xz + yz$$

$$x0 = 0$$

$$1x = x$$

$$xn = x$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

 \Rightarrow x + y = y + x

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Planar near-rings

Near-rings satisfying $x^n = x$

Theorem (S. Ligh, Kyungpook Math J., 1971) Let n > 1. Every **zerosymmetric near-**ring ($x \circ 0 \approx 0$) **with left identity** ($x \approx 1 \circ x$) satisfying $x^n = x$ is a subdirect product of **near-**fields satisfying $x^n = x$.

$$(x + y) + z = x + (y + z)$$

$$0 + x = x$$

$$-x + x = 0$$

$$(xy)z = x(yz)$$

$$(x + y)z = xz + yz$$

$$x0 = 0$$

$$1x = x$$

$$xn = x$$

$$\Rightarrow x + y = y + x$$

? $xy = yx$?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Let $\ensuremath{\mathcal{V}}$ denote the variety of zerosymmetric near-rings with left identity.

- Corollaries of Ligh's result Let $n \in \mathbb{N} \setminus \{1\}$, let $R \in \mathcal{V}$ satisfy $x^n \approx x$.
 - 1. Then *R* satisfies x + y = y + x.
 - 2. If every near-field whose multiplicative exponent divides n 1 is a field, then *R* satisfies xy = yx.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Let $\ensuremath{\mathcal{V}}$ denote the variety of zerosymmetric near-rings with left identity.

- Corollaries of Ligh's result Let $n \in \mathbb{N} \setminus \{1\}$, let $R \in \mathcal{V}$ satisfy $x^n \approx x$.
 - 1. Then *R* satisfies x + y = y + x.
 - 2. If every near-field whose multiplicative exponent divides n 1 is a field, then *R* satisfies xy = yx.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Let $\ensuremath{\mathcal{V}}$ denote the variety of zerosymmetric near-rings with left identity.

- Corollaries of Ligh's result Let $n \in \mathbb{N} \setminus \{1\}$, let $R \in \mathcal{V}$ satisfy $x^n \approx x$.
 - 1. Then *R* satisfies x + y = y + x.

2. If every near-field whose multiplicative exponent divides n - 1 is a field, then *R* satisfies xy = yx.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Let $\ensuremath{\mathcal{V}}$ denote the variety of zerosymmetric near-rings with left identity.

- Corollaries of Ligh's result
- Let $n \in \mathbb{N} \setminus \{1\}$, let $R \in \mathcal{V}$ satisfy $x^n \approx x$.
 - 1. Then *R* satisfies x + y = y + x.
 - 2. If every near-field whose multiplicative exponent divides n 1 is a field, then *R* satisfies xy = yx.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001) Let *F* be near-field whose multiplicative group is a 2-group. Then $F = D_9$ or *F* is a finite field.

Theorem (Jabara, J. Austr. Math. Soc., 2004) **GF**(2) is the only near-field satisfying $x^6 = x$.

Theorem (Jabara, Mayr, Forum Mathematicum, 2008, in print) Let *F* be a near-field with multiplicative exponent $2^m 3^n$ for some $m \ge 0$ and $n \in \{0, 1, 2\}$. Then $|F| \in \{3^2, 5^2, 7^2, 17^2\}$ or *F* is a finite field. The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

・ロト・西ト・西ト・日・ ウヘぐ

Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001)

Let *F* be near-field whose multiplicative group is a 2-group. Then $F = D_9$ or *F* is a finite field.

Theorem (Jabara, J. Austr. Math. Soc., 2004) **GF**(2) is the only near-field satisfying $x^6 = x$.

Theorem (Jabara, Mayr, Forum Mathematicum, 2008, in print) Let *F* be a near-field with multiplicative exponent $2^m 3^n$ for some $m \ge 0$ and $n \in \{0, 1, 2\}$. Then $|F| \in \{3^2, 5^2, 7^2, 17^2\}$ or *F* is a finite field.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001)

Let *F* be near-field whose multiplicative group is a 2-group. Then $F = D_9$ or *F* is a finite field.

Theorem (Jabara, J. Austr. Math. Soc., 2004) **GF**(2) is the only near-field satisfying $x^6 = x$.

Theorem (Jabara, Mayr, Forum Mathematicum, 2008, in print) Let *F* be a near-field with multiplicative exponent $2^m 3^n$ for some $m \ge 0$ and $n \in \{0, 1, 2\}$. Then $|F| \in \{3^2, 5^2, 7^2, 17^2\}$ or *F* is a finite field. The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The Equality $x^n \approx x$ in Near-rings with Left Identity

Zero-symmetric Near-rings with Left Identity that satisfy $x^n \approx x$

For $n \in \mathbb{N}$, let \mathcal{V}_n denote the subvariety of \mathcal{V} defined by $x^n \approx x$.

Corollary of the Theorems by Jabara and Mayr For $n \in \{2, 3, 4, 6, 7, 10, 19\}$, all elements of V_n are commutative rings.

Question

Is there an infinite near-field whose multiplicative group has finite exponent?

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The Equality $x^n \approx x$ in Near-rings with Left Identity

Zero-symmetric Near-rings with Left Identity that satisfy $x^n \approx x$

For $n \in \mathbb{N}$, let \mathcal{V}_n denote the subvariety of \mathcal{V} defined by $x^n \approx x$.

Corollary of the Theorems by Jabara and Mayr For $n \in \{2, 3, 4, 6, 7, 10, 19\}$, all elements of V_n are commutative rings.

Question

Is there an infinite near-field whose multiplicative group has finite exponent?

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The Equality $x^n \approx x$ in Near-rings with Left Identity

Zero-symmetric Near-rings with Left Identity that satisfy $x^n \approx x$

For $n \in \mathbb{N}$, let \mathcal{V}_n denote the subvariety of \mathcal{V} defined by $x^n \approx x$.

Corollary of the Theorems by Jabara and Mayr

For $n \in \{2, 3, 4, 6, 7, 10, 19\}$, all elements of \mathcal{V}_n are commutative rings.

Question

Is there an infinite near-field whose multiplicative group has finite exponent?

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Definition of Planar Near-rings

On a (right) near-ring \mathbf{N} , we define an equivalence relation \equiv by

$$a \equiv b : \Leftrightarrow \forall x \in N : x \circ a = x \circ b.$$

Definition (Anshel, Clay, Ferrero) Let **N** be a near-ring. **N** is a planar near-ring: ⇔

N has at least 3 equivalence classes modulo \equiv , i.e. $|N/_{\equiv}| \geq 3$.

2

For all $a, b, c \in N$ such that $a \neq b$, there exists *precisely one x* such that

$$\mathbf{x} \circ \mathbf{a} = \mathbf{x} \circ \mathbf{b} + \mathbf{c}.$$

The conditions P1 and P2 are called the *planarity conditions*.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Definition of Planar Near-rings

On a (right) near-ring $\boldsymbol{N},$ we define an equivalence relation \equiv by

$$a \equiv b : \Leftrightarrow \forall x \in N : x \circ a = x \circ b.$$

Definition (Anshel, Clay, Ferrero) Let **N** be a near-ring. **N** is a planar near-ring: ⇔

P1 *N* has at least 3 equivalence classes modulo \equiv , i.e. $|N/_{\equiv}| \geq 3$.

P2 For all $a, b, c \in N$ such that $a \neq b$, there exists *precisely one x* such that

$$x \circ a = x \circ b + c.$$

The conditions P1 and P2 are called the *planarity conditions*.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Definition of Planar Near-rings

On a (right) near-ring \mathbf{N} , we define an equivalence relation \equiv by

$$a \equiv b : \Leftrightarrow \forall x \in N : x \circ a = x \circ b.$$

Definition (Anshel, Clay, Ferrero)

Let **N** be a near-ring. **N** is a planar near-ring: \Leftrightarrow

- P1 *N* has at least 3 equivalence classes modulo \equiv , i.e. $|N/_{\equiv}| \geq 3$.
- P2 For all $a, b, c \in N$ such that $a \neq b$, there exists *precisely one x* such that

$$x \circ a = x \circ b + c.$$

The conditions P1 and P2 are called the *planarity conditions*.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Definition

Let **N** be a near-ring. **N** is a Ferrero near-ring if it satisfies **P2**. This means that for all $a, b, c \in N$ such that $a \neq b$, there exists *precisely one x* such that

$$x \circ a = x \circ b + c.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Integral planar near-rings

Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. N is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. N is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- N is an integral planar near-ring, or we have a ∘ b = a for all a, b ∈ N with b ≠ 0.
- 4. N is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings
Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. N is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. **N** is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- 3. N is an integral planar near-ring, or we have $a \circ b = a$ for all $a, b \in N$ with $b \neq 0$.
- 4. N is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-rings

Varieties of near-rings

Planar near-rings

Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. **N** is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. N is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- 3. N is an integral planar near-ring, or we have $a \circ b = a$ for all $a, b \in N$ with $b \neq 0$.
- 4. N is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-rings

Varieties of near-rings

Planar near-rings

Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. **N** is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. **N** is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- 3. N is an integral planar near-ring, or we have $a \circ b = a$ for all $a, b \in N$ with $b \neq 0$.
- 4. N is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-rings

Varieties of near-rings

Planar near-rings

Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. **N** is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. **N** is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- 3. **N** is an integral planar near-ring, or we have $a \circ b = a$ for all $a, b \in N$ with $b \neq 0$.

4. N is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-rings

Varieties of near-rings

Planar near-rings

Definition

A near-ring **N** is called integral iff for all $x, y \in N \setminus \{0\}$, we have $x \circ y \neq 0$.

Theorem (S. Ligh, 1971)

Let **N** be a finite, zero-symmetric near-ring. Then the following conditions are equivalent:

- 1. **N** is subdirectly irreducible, and for every $x \in N$, there is a natural number n(x) such that $x^{n(x)} = x$.
- 2. **N** is subdirectly irreducible, and there is a natural number *n* such that for all $x \in N$, we have $x^n = x$.
- 3. N is an integral planar near-ring, or we have $a \circ b = a$ for all $a, b \in N$ with $b \neq 0$.
- 4. **N** is an integral Ferrero near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-rings

Varieties of near-rings

Planar near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Corollary

A finite zero-symmetric near-ring that satisfies $x^n \approx x$ is a direct product of integral Ferrero near-rings.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ◆

Known facts Let \mathcal{N} be the variety of all near-rings.

- ▶ Is \mathcal{N} locally finite? No ($\langle \mathbb{Z}, +, -, 0, \cdot \rangle$).
- ▶ Is N residually small? No (**M**(**G**) is simple if $|G| \neq 2$).
- ► Is the word problem for F_N(X) solvable? Yes. We give a confluent, terminating rewrite system.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Known facts Let \mathcal{N} be the variety of all near-rings.

- ▶ Is \mathcal{N} locally finite? No ($\langle \mathbb{Z}, +, -, 0, \cdot \rangle$).
- ▶ Is N residually small? No (**M**(**G**) is simple if $|G| \neq 2$).
- ► Is the word problem for F_N(X) solvable? Yes. We give a confluent, terminating rewrite system.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Known facts

Let \mathcal{N} be the variety of all near-rings.

- ▶ Is \mathcal{N} locally finite? No ($\langle \mathbb{Z}, +, -, 0, \cdot \rangle$).
- ► Is N residually small? No (**M**(**G**) is simple if $|G| \neq 2$).
- ► Is the word problem for F_N(X) solvable? Yes. We give a confluent, terminating rewrite system.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Known facts

Let \mathcal{N} be the variety of all near-rings.

- ▶ Is \mathcal{N} locally finite? No ($\langle \mathbb{Z}, +, -, 0, \cdot \rangle$).
- ► Is N residually small? No (**M**(**G**) is simple if $|G| \neq 2$).
- ► Is the word problem for F_N(X) solvable? Yes. We give a confluent, terminating rewrite system.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

A confluent rewrite system for near-rings

1: $0 + x \rightarrow x$ 2: $-(x) + x \rightarrow 0$ 3: $(x+y)+z \rightarrow x+(y+z)$ 4: $(x * y) * z \rightarrow x * (y * z)$ 5: $(x + y) * z \rightarrow (x * z) + (y * z)$ $6: -(x) + (x+z) \rightarrow z$ $9: -(0) \rightarrow 0$ 110 : $x + 0 \rightarrow x$ 12 : $-(-(x)) \rightarrow x$ 13: $x + -(x) \rightarrow 0$ 14 : $x + (-(x) + z) \rightarrow z$ $16 \cdot 0 * z \rightarrow 0$ 19: $-(x + y) \rightarrow -(y) + -(x)$ 21 : $-(x) * z \rightarrow -(x * z)$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

More questions about varieties of near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Is the word problem for F_A(X) is solvable, where A is the variety of all near-rings satisfying the identity x + y ≈ y + x? YES.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ▶ Is *N* generated by its finite members? YES.
- ▶ Is *A* generated by its finite members? YES.

More questions about varieties of near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Is the word problem for F_A(X) is solvable, where A is the variety of all near-rings satisfying the identity x + y ≈ y + x? YES.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Is \mathcal{N} generated by its finite members? YES.
- ▶ Is *A* generated by its finite members? YES.

More questions about varieties of near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Is the word problem for F_A(X) is solvable, where A is the variety of all near-rings satisfying the identity x + y ≈ y + x? YES.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Is \mathcal{N} generated by its finite members? YES.
- ► Is *A* generated by its finite members? YES.

The following varieties are generated by their finite members:

- The variety of all groups.
- ► The variety of all sets.
- ▶ The variety of all semigroups.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The following varieties are generated by their finite members:

- The variety of all groups.
- The variety of all sets.
- ► The variety of all semigroups.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Planar near-rings

The following varieties are generated by their finite members:

- The variety of all groups.
- The variety of all sets.

▶ The variety of all semigroups.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Planar near-rings

The following varieties are generated by their finite members:

- The variety of all groups.
- The variety of all sets.
- The variety of all semigroups.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Planar near-rings

The following varieties are not generated by their finite members:

- The variety of vector-spaces over the rationals.
- Each variety that has an infinite member, but all of its finite members have precisely one element.
- The variety of modular lattices (Freese, Transactions AMS, 1979).
- The variety B₆₆₅ of all groups of exponent dividing 665 (Shumyatsky, Journal of Pure and Applied Algebra, 2002).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The following varieties are not generated by their finite members:

- The variety of vector-spaces over the rationals.
- Each variety that has an infinite member, but all of its finite members have precisely one element.
- The variety of modular lattices (Freese, Transactions AMS, 1979).
- The variety B₆₆₅ of all groups of exponent dividing 665 (Shumyatsky, Journal of Pure and Applied Algebra, 2002).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The following varieties are not generated by their finite members:

- The variety of vector-spaces over the rationals.
- Each variety that has an infinite member, but all of its finite members have precisely one element.
- The variety of modular lattices (Freese, Transactions AMS, 1979).
- The variety B₆₆₅ of all groups of exponent dividing 665 (Shumyatsky, Journal of Pure and Applied Algebra, 2002).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The following varieties are not generated by their finite members:

- The variety of vector-spaces over the rationals.
- Each variety that has an infinite member, but all of its finite members have precisely one element.
- The variety of modular lattices (Freese, Transactions AMS, 1979).
- The variety B₆₆₅ of all groups of exponent dividing 665 (Shumyatsky, Journal of Pure and Applied Algebra, 2002).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The following varieties are not generated by their finite members:

- The variety of vector-spaces over the rationals.
- Each variety that has an infinite member, but all of its finite members have precisely one element.
- The variety of modular lattices (Freese, Transactions AMS, 1979).
- The variety B₆₆₅ of all groups of exponent dividing 665 (Shumyatsky, Journal of Pure and Applied Algebra, 2002).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Observation

If a variety \mathcal{V} is generated by its finite members, then $\mathbf{F}_{\mathcal{V}}(X)$ is a subdirect product of finite algebras.

Observation

If \mathcal{V} is generated by its finite members, \mathcal{V} is a variety of algebras with finitely many operation symbols, and \mathcal{V} is defined by finitely many identities, then for every set X, the word problem for the free algebra $\mathbf{F}_{\mathcal{V}}(X)$ is solvable (Evans, Bull. Amer. Math. Soc., 1978).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Observation

If a variety \mathcal{V} is generated by its finite members, then $\mathbf{F}_{\mathcal{V}}(X)$ is a subdirect product of finite algebras.

Observation

If \mathcal{V} is generated by its finite members, \mathcal{V} is a variety of algebras with finitely many operation symbols, and \mathcal{V} is defined by finitely many identities, then for every set X, the word problem for the free algebra $\mathbf{F}_{\mathcal{V}}(X)$ is solvable (Evans, Bull. Amer. Math. Soc., 1978).

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

The variety of all near-rings

Theorem (Freese, Transactions AMS, 1980)

The word problem for the free modular lattice over a five element set is unsolvable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

$\ensuremath{\mathcal{N}}$ is generated by its finite members

Theorem (EA, Monatshefte für Mathematik, 2004)

The variety of all near-rings is generated by its finite members. The variety of all zero-symmetric near-rings is generated by its finite members.

Idea of the proof

Every identity that fails in some near-ring even fails in some finite near-ring. The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

$\ensuremath{\mathcal{N}}$ is generated by its finite members

Theorem (EA, Monatshefte für Mathematik, 2004)

The variety of all near-rings is generated by its finite members. The variety of all zero-symmetric near-rings is generated by its finite members.

Idea of the proof

Every identity that fails in some near-ring even fails in some finite near-ring.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Task Produce a finite near-ring in which

 $x_1 \circ (-x_2) \approx -(x_1 \circ x_2)$

does not hold.

Take a prime *p* with p > 2, $\mathbf{N} := \mathbf{M}(\mathbb{Z}_p)$.

 $\begin{array}{rcl} f(\gamma) & := & \gamma^2 & \text{ for all } \gamma \in \mathbb{Z}_p \\ g(\gamma) & := & \gamma & \text{ for all } \gamma \in \mathbb{Z}_p. \end{array}$

Then $f \circ (-g) (\gamma) = (-\gamma)^2 = \gamma^2$, and $-(f \circ g) (\gamma) = -\gamma^2$. Hence for $\eta_0 := 1$, we have

$$f\circ (-g)\;(\eta_0)
eq -(f\circ g)\;(\eta_0).$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Task Produce a finite near-ring in which

$$x_1\circ(-x_2)\approx-(x_1\circ x_2)$$

does not hold.

Take a prime p with p > 2, $\mathbf{N} := \mathbf{M}(\mathbb{Z}_p)$.

$$\begin{array}{rcl} f(\gamma) & := & \gamma^2 & \text{ for all } \gamma \in \mathbb{Z}_p \\ g(\gamma) & := & \gamma & \text{ for all } \gamma \in \mathbb{Z}_p. \end{array}$$

Then $f \circ (-g) (\gamma) = (-\gamma)^2 = \gamma^2$, and $-(f \circ g) (\gamma) = -\gamma^2$. Hence for $\eta_0 := 1$, we have

$$f \circ (-g) (\eta_0) \neq -(f \circ g) (\eta_0).$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶▲□▶▲□▶▲□▶ □ のへの

From near-rings to groups

Hence, instead of finding a finite model of

Near-ring axioms $\cup \{x_1 \circ (-x_2) \not\approx -(x_1 \circ x_2)\},\$

we try to find a finite model of

Group axioms \cup {f₁(-f₂(y₀)) \approx -f₁(f₂(y₀))},

where f_i are unary function symbols. So, the task is now:

Find a finite group **G**, an element $\eta_0 \in G$, and mappings f_1, f_2 on this group such that $f_1(-f_2(\eta_0)) \neq -f_1(f_2(\eta_0))$.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Finding a finite model Step 1 We translate

 $f_1(-f_2(y_0)) \not\approx -f_1(f_2(y_0)),$

into

$$\begin{array}{lll} s_0 = f_1(-f_2(y_0)), & t_0 = -f_1(f_2(y_0)), & B_0 = \emptyset, & & \\ s_1 = f_1(-y_1), & t_1 = -f_1(f_2(y_0)), & B_1 = \{y_1 \approx f_2(y_0)\}, & \\ s_2 = f_1(y_2), & t_2 = -f_1(f_2(y_0)), & B_2 = B_1 \cup \{y_2 \approx -y_1\} & \\ s_3 = y_3, & t_3 = -f_1(f_2(y_0)), & B_3 = B_2 \cup \{y_3 \approx f_1(y_2)\}, & \\ s_4 = y_3, & t_4 = -f_1(y_4), & B_4 = B_3 \cup \{y_4 \approx f_2(y_0)\}, & \\ s_5 = y_3, & t_5 = -y_5, & B_5 = B_4 \cup \{y_5 \approx f_1(y_4)\}, & \\ s_6 = y_3, & t_6 = y_6, & B_6 = B_5 \cup \{y_6 \approx -y_5\}. & \end{array}$$

Thus, we are left with

$$\begin{array}{rcl} y_3 & \not\approx & y_6 \\ y_1 & \approx & f_2(y_0) & y_2 & \approx & -y_1 \\ y_3 & \approx & f_1(y_2) & y_4 & \approx & f_2(y_0) \\ y_5 & \approx & f_1(y_4) & y_6 & \approx & -y_5. \end{array}$$

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Step 2 We divide the formulas into *E*, *F*, *G*.

$$E := \{y_3 \not\approx y_6\}$$
$$y_1 \approx f_2(y_0)$$

$$F := \left\{ \begin{array}{ll} y_3 &\approx f_1(y_2) \\ y_4 &\approx f_2(y_0) \\ y_5 &\approx f_1(y_4) \end{array} \right\}$$

$$G:=\{\begin{array}{ll}y_2 &\approx & -y_1\\y_6 &\approx & -y_5\end{array}\}$$

Define \sim on $\{0,1,2,\ldots,6\}$ by

$$i \sim j$$
 iff Group-axioms $\cup F \cup G \models y_i \approx y_j$.

We have

$$1 \sim 4$$
, all others are inequivalent.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finding models

We form

$$F' := \{ \mathbf{y}_i \approx \mathbf{y}_j \, | \, i \sim j \}.$$

Now, for all *i*, *j* with $i \not\sim j$,

Group-axioms $\cup F' \cup G \cup \{y_i \not\approx y_j\}$ is satisfiable.

Since the variety of groups is generated by its finite members, we even find a **finite model** of

Group-axioms $\cup F' \cup G \cup \{y_i \not\approx y_j\},\$

and hence of

Group-axioms $\cup F' \cup G \cup \{y_r \not\approx y_s \mid r \not\sim s\}.$

Now, we may define the interpretation of f_i such that F is satisfied.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples of composition algebras

• Let **A** be a set. Then $\langle M(A), \circ \rangle$ is a semigroup.

- Let ⟨G, +, -, 0⟩ be a group. Then ⟨M(G), +, -, 0, ∘⟩ is a near-ring.
- Let ⟨R, +, -, 0, ·⟩ be a ring. Then ⟨M(R), +, -, 0, ·, ∘⟩ is a composition ring.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General version:

▶ Let $\langle A, F \rangle$ be an algebra in the variety \mathcal{V} . Then $\langle M(A), F \cup \{\circ\} \rangle$ is a \mathcal{V} -composition algebra.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

Examples of composition algebras

- Let **A** be a set. Then $\langle M(A), \circ \rangle$ is a semigroup.
- Let ⟨G, +, -, 0⟩ be a group. Then ⟨M(G), +, -, 0, ∘⟩ is a near-ring.
- Let ⟨R,+,-,0,·⟩ be a ring. Then ⟨M(R),+,-,0,·,∘⟩ is a composition ring.

General version:

▶ Let $\langle A, F \rangle$ be an algebra in the variety \mathcal{V} . Then $\langle M(A), F \cup \{\circ\} \rangle$ is a \mathcal{V} -composition algebra.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

The variety of all near-rings

・ロト・西ト・山田・山田・山下
Examples of composition algebras

- Let **A** be a set. Then $\langle M(A), \circ \rangle$ is a semigroup.
- Let ⟨G, +, -, 0⟩ be a group. Then ⟨M(G), +, -, 0, ∘⟩ is a near-ring.
- Let ⟨R, +, -, 0, ·⟩ be a ring. Then ⟨M(R), +, -, 0, ·, ∘⟩ is a composition ring.

General version:

▶ Let $\langle A, F \rangle$ be an algebra in the variety \mathcal{V} . Then $\langle M(A), F \cup \{\circ\} \rangle$ is a \mathcal{V} -composition algebra.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The variety of all near-rings

・ロト・西ト・西ト・日・ ウヘぐ

Examples of composition algebras

- Let **A** be a set. Then $\langle M(A), \circ \rangle$ is a semigroup.
- Let ⟨G, +, -, 0⟩ be a group. Then ⟨M(G), +, -, 0, ∘⟩ is a near-ring.
- Let ⟨R, +, -, 0, ·⟩ be a ring. Then ⟨M(R), +, -, 0, ·, ∘⟩ is a composition ring.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

General version:

▶ Let $\langle A, F \rangle$ be an algebra in the variety \mathcal{V} . Then $\langle M(A), F \cup \{\circ\} \rangle$ is a \mathcal{V} -composition algebra.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

The definition of composition algebras

Let \mathcal{L} be a language of algebras. We consider algebras of language $\mathcal{C}(\mathcal{L})$, where $\mathcal{C}(\mathcal{L})$ contains all function symbols of \mathcal{L} plus one new binary symbol \circ added.

Definition

Let \mathcal{L} be a language of algebras, and let \mathcal{K} be a class of \mathcal{L} -algebras. A $\mathcal{C}(\mathcal{L})$ -algebra **N** is called a \mathcal{K} -composition algebra iff the \mathcal{L} -reduct of **N** lies in \mathcal{K} , and **N** satisfies the identities

 $(\mathbf{x}_1 \circ \mathbf{x}_2) \circ \mathbf{x}_3 \approx \mathbf{x}_1 \circ (\mathbf{x}_2 \circ \mathbf{x}_3)$

and

 $\omega(\mathbf{x}_1,\ldots,\mathbf{x}_k)\circ\mathbf{x}_{k+1}\approx\omega(\mathbf{x}_1\circ\mathbf{x}_{k+1},\ldots,\mathbf{x}_k\circ\mathbf{x}_{k+1}),$

where $k \in \mathbb{N} \cup \{0\}$ and ω is a *k*-ary function symbol of \mathcal{L} .

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The surprising ubiquity of planar near-rings

Erhard Aichinger

Vear-ring:

Varieties of near-rings

Planar near-rings

The definition of composition algebras

Let \mathcal{L} be a language of algebras. We consider algebras of language $\mathcal{C}(\mathcal{L})$, where $\mathcal{C}(\mathcal{L})$ contains all function symbols of \mathcal{L} plus one new binary symbol \circ added.

Definition

Let \mathcal{L} be a language of algebras, and let \mathcal{K} be a class of \mathcal{L} -algebras. A $\mathcal{C}(\mathcal{L})$ -algebra **N** is called a \mathcal{K} -composition algebra iff the \mathcal{L} -reduct of **N** lies in \mathcal{K} , and **N** satisfies the identities

$$(x_1 \circ x_2) \circ x_3 \approx x_1 \circ (x_2 \circ x_3)$$

and

$$\omega(\mathbf{x}_1,\ldots,\mathbf{x}_k)\circ\mathbf{x}_{k+1}\approx\omega(\mathbf{x}_1\circ\mathbf{x}_{k+1},\ldots,\mathbf{x}_k\circ\mathbf{x}_{k+1}),$$

where $k \in \mathbb{N} \cup \{0\}$ and ω is a *k*-ary function symbol of \mathcal{L} .

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

The variety of all near-rings

・ロト・日本・日本・日本・日本・日本

The class of composition algebras

 $\mathbb{C}(\mathcal{K})$:= the class of all \mathcal{K} -composition algebras. For every algebra **A** in a variety \mathcal{V} , the full function algebra **M**(**A**) lies in $\mathbb{C}(\mathcal{V})$.

Definition

Let \mathcal{V} be a variety of \mathcal{L} -algebras, and let \mathcal{F} be a subclass of \mathcal{V} . Then we define the class $\mathbb{M}(\mathcal{F})$ as the subclass of $\mathbb{C}(\mathcal{V})$ given by

$$\mathbb{M}(\mathcal{F}) := \{ \mathsf{M}(\mathsf{A}) \, | \, \mathsf{A} \in \mathcal{F} \}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-rings

Varieties of near-rings

Planar near-rings

What we really have proved

Theorem

Let \mathcal{L} be a language of algebras, let \mathcal{F} be a class of \mathcal{L} -algebras, and let $\mathcal{V} := \mathbb{HSP}(\mathcal{F})$. Then the variety of \mathcal{V} -composition algebras is generated by the class of all $\mathbf{M}(\mathbf{A})$, where $\mathbf{A} \in \mathbb{P}_{\mathrm{fin}}(\mathcal{F})$. In other words, we have

 $\mathbb{C}(\mathcal{V}) = \mathbb{HSP}(\mathbb{M}(\mathbb{P}_{\mathrm{fin}}(\mathcal{F}))).$

Brief summary:

 $\mathbb{C}(\mathbb{HSP}(\mathcal{F})) = \mathbb{HSP}(\mathbb{M}(\mathbb{P}_{\mathrm{fin}}(\mathcal{F}))).$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Consequences

Corollary

Let p be a prime. Then the variety of near-rings is generated by {**M**(**G**) | **G** is a finite p-group}.

Let \mathcal{V} be a variety of algebras such that \mathcal{V} is generated by its finite members. Then the variety $\mathbb{C}(\mathcal{V})$ is also generated by its finite members.

Hence, also the variety \mathcal{A} of near-rings with abelian addition is generated by its finite members, and hence has a solvable word-problem.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring

Varieties of near-rings

Planar near-rings

Consequences

Corollary

Let p be a prime. Then the variety of near-rings is generated by {**M**(**G**) | **G** is a finite p-group}.

Let \mathcal{V} be a variety of algebras such that \mathcal{V} is generated by its finite members. Then the variety $\mathbb{C}(\mathcal{V})$ is also generated by its finite members.

Hence, also the variety \mathcal{A} of near-rings with abelian addition is generated by its finite members, and hence has a solvable word-problem.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings

Consequences

Corollary

Let p be a prime. Then the variety of near-rings is generated by {**M**(**G**) | **G** is a finite p-group}.

Let \mathcal{V} be a variety of algebras such that \mathcal{V} is generated by its finite members. Then the variety $\mathbb{C}(\mathcal{V})$ is also generated by its finite members.

Hence, also the variety \mathcal{A} of near-rings with abelian addition is generated by its finite members, and hence has a solvable word-problem.

The surprising ubiquity of planar near-rings

Erhard Aichinger

Near-ring:

Varieties of near-rings

Planar near-rings