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Functions on groups
Let (G, +, —,0) be a group. We define

M(G) := GC®.
On M(G), we define o by

fog (y) =f(g(v)) forall f,g € M(G), v € G.
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Near-rings of functions

Properties of M(G)
» (M(G), +, —,0) is a group (the direct product G°).
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Near-rings of functions

Properties of M(G)

» (M(G), +, —,0) is a group (the direct product G°).
» (M(G), o) is a semigroup.
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Near-rings of functions

Properties of M(G)

» (M(G), +, —,0) is a group (the direct product G°).
» (M(G), o) is a semigroup.
» Forallf,g,h € M(G):

(f+g)oh=foh+goh.
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Near-rings of functions

Properties of M(G)

» (M(G), +, —,0) is a group (the direct product G°).
» (M(G), o) is a semigroup.
» Forallf,g,h € M(G):

(f+g)oh=foh+goh.
» If |G| > 1, then there are f,g,h € M(G) such that

fo(g+h)#fog+foh.
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Near-rings of functions

Properties of M(G)

» (M(G), +, —,0) is a group (the direct product G°).
» (M(G), o) is a semigroup.
» Forallf,g,h € M(G):

(f+g)oh=foh+goh.
» If |G| > 1, then there are f,g,h € M(G) such that
fo(g+h)#fog+foh.

» Forallf e M(G): 0of =0.

The surprising
ubiquity of planar
near-rings

Erhard Aichinger

Near-rings



Definition of Near-rings

A near-ring is an algebra N with operations + (binary), —
(unary), 0 (nullary), and o (binary) such that
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Definition of Near-rings

A near-ring is an algebra N with operations + (binary), —
(unary), 0 (nullary), and o (binary) such that

» (N,+,—,0) is a (not necessarily abelian) group,
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Definition of Near-rings

A near-ring is an algebra N with operations + (binary), —
(unary), 0 (nullary), and o (binary) such that

» (N,+,—,0) is a (not necessarily abelian) group,
» N satisfies the identity (x +y)oz ~xoz+yoz, and
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Definition of Near-rings

A near-ring is an algebra N with operations + (binary), —
(unary), 0 (nullary), and o (binary) such that

» (N,+,—,0) is a (not necessarily abelian) group,
» N satisfies the identity (x +y)oz ~xoz+yoz, and
» N satisfies the identity (x oy) 0z = X o (y 0 z).



Near-fields

Definition of Near-fields
A near-field is a near-ring (N, +, o) such that (N \ {0}, o)
is a group.

The surprising
ubiquity of planar
near-rings

Erhard Aichinger

Near-rings



Near-fields Sl Al AL

near-rings

Erhard Aichinger

Definition of Near-fields
A near-field is a near-ring (N, +, o) such that (N \ {0}, o) Near-rings
is a group.

The Quaternion Near-field with 9 Elements

We construct a 9-element near-field using the
terminology of the “Ferrero-Near-ring-Factory” (Clay). (cf.
Ferrero, Classificazione e costruzione degli stems
p-singolari, Ist. Lombardo, 1968)

Let G := Z3 x Z3, and let

®:=((11),(93)) < GL(2,Z3). Define

aob:=M(b)-a,

where M(b) is the matrix in ¢ with first column b.
Then (Z3 x Z3,+,0) is a near-field with multiplicative

group Qg.



Near-fields in Geometry

Near-field elements as coordinates
Finite projective planes of Lenz-Barlotti-types IV.a.2 and
IV.a.3 can be coordinatized by near-fields.
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Rings satisfying x" = x

Theorem (Jacobson, 1945)

Let n > 1. Every ring satisfying x" = x is a subdirect
product of fields satisfying x" = x.
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Rings satisfying x" = x

Theorem (Jacobson, 1945)

Let n > 1. Every ring satisfying x" = x is a subdirect

product of fields satisfying x" = x.

A consequence in equational logic
X+y)+z=x+(y+2)

0+Xx=x

—X4+x=0

(xy)z = x(yz)

(X +Yy)z =%z +Yyz
X(y +z) =xy +xz
x" =x

X+y=y+X
= Xy = yX
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Near-rings satisfying x" = x

Theorem (S. Ligh, Kyungpook Math J., 1971)

Let n > 1. Every zerosymmetric near- ring (x o0 = 0)
with left identity (x ~ 1 o x) satisfying x" = x is a
subdirect product of near-fields satisfying x" = x.
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subdirect product of near-fields satisfying x" = x.
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Near-rings satisfying x" = x

Theorem (S. Ligh, Kyungpook Math J., 1971)

Let n > 1. Every zerosymmetric near- ring (x o0 = 0)
with left identity (x ~ 1 o x) satisfying x" = x is a
subdirect product of near-fields satisfying x" = x.

(xX+y)+z=x+(y+2)

0+x=x

—X+x=0

(xy)z = x(yz) = X+Yy =Y +X
(X +Yy)z=%xz+Yyz ?2Xy =yx ?
x0=0

Ix =x

X" =x
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Zero-symmetric Near-rings with Left Identity

Let V denote the variety of zerosymmetric near-rings with
left identity.
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Zero-symmetric Near-rings with Left Identity

Let V denote the variety of zerosymmetric near-rings with
left identity.

Corollaries of Ligh’s result
Letn e N\ {1}, letR € V satisfy x" ~ x.
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Zero-symmetric Near-rings with Left Identity

Let V denote the variety of zerosymmetric near-rings with
left identity.

Corollaries of Ligh’s result
Letn e N\ {1}, letR € V satisfy x" ~ x.
1. Then R satisfiesx +y =y + X.
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Zero-symmetric Near-rings with Left Identity

Let V denote the variety of zerosymmetric near-rings with
left identity.

Corollaries of Ligh’s result
Letn e N\ {1}, letR € V satisfy x" ~ x.
1. Then R satisfiesx +y =y + X.

2. If every near-field whose multiplicative exponent
divides n — 1 is a field, then R satisfies xy = yx.
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Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001)

Let F be near-field whose multiplicative group is a
2-group. Then F = Dg or F is a finite field.
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Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001)

Let F be near-field whose multiplicative group is a
2-group. Then F = Dg or F is a finite field.

Theorem (Jabara, J. Austr. Math. Soc., 2004)
GF(2) is the only near-field satisfying x® = x.
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Near-fields with finite multiplicative exponent

Theorem (Suchkov, Algebra and Logic, 2001)

Let F be near-field whose multiplicative group is a
2-group. Then F = Dg or F is a finite field.

Theorem (Jabara, J. Austr. Math. Soc., 2004)

GF(2) is the only near-field satisfying x® = x.

Theorem (Jabara, Mayr, Forum Mathematicum,
2008, in print)

Let F be a near-field with multiplicative exponent 2M3" for

somem >0andn e {0,1,2}. Then
IF| € {32%,52,72,17%} or F is a finite field.

The surprising
ubiquity of planar
near-rings

Erhard Aichinger

Varieties of
near-rings



The Equality x" ~ x in Near-rings with Left
Identity

Zero-symmetric Near-rings with Left Identity that
satisfy x" ~ x

For n € N, let V, denote the subvariety of V defined by
X" =~ X.
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The Equality x" ~ x in Near-rings with Left
Identity

Zero-symmetric Near-rings with Left Identity that
satisfy x" ~ x

For n € N, let V, denote the subvariety of V defined by
X" =~ X.

Corollary of the Theorems by Jabara and Mayr

Forn e {2,3,4,6,7,10,19}, all elements of V, are
commutative rings.
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The Equality x" ~ x in Near-rings with Left
Identity

Zero-symmetric Near-rings with Left Identity that
satisfy x" ~ x

For n € N, let V, denote the subvariety of V defined by
X" =~ X.

Corollary of the Theorems by Jabara and Mayr

Forn e {2,3,4,6,7,10,19}, all elements of V, are
commutative rings.

Question
Is there an infinite near-field whose multiplicative group
has finite exponent?
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Definition of Planar Near-rings
On a (right) near-ring N, we define an equivalence
relation = by

a=b:oVYWeN:xoca=xob.

Definition (Anshel, Clay, Ferrero)
Let N be a near-ring. N is a planar near-ring: <

The conditions P1 and P2 are called the planarity
conditions.
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Definition of Planar Near-rings ubicuiy of laner
On a (right) near-ring N, we define an equivalence Em::::h?:ger
relation = by

a=b:eVxeN:xoa=xob.
Planar near-rings
Definition (Anshel, Clay, Ferrero)
Let N be a near-ring. N is a planar near-ring: <

P1 N has at least 3 equivalence classes modulo =, i.e.
IN/=| > 3.

The conditions P1 and P2 are called the planarity
conditions.



The surprising

Definition of Planar Near-rings ubiquity of planar
On a (right) near-ring N, we define an equivalence nea.rings

. Erhard Aichinger
relation = by

a=b:oVYWeN:xoca=xob.

Planar near-rings

Definition (Anshel, Clay, Ferrero)
Let N be a near-ring. N is a planar near-ring: <

P1 N has at least 3 equivalence classes modulo =, i.e.
IN/=| > 3.

P2 Forall a,b,c € N such that a # b, there exists
precisely one x such that

Xoa=Xob-+cC.

The conditions P1 and P2 are called the planarity
conditions.
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Let N be a near-ring. N is a Ferrero near-ring if it satisfies
P2. This means that for all a,b,c € N such thata # b,
there exists precisely one x such that

Planar near-rings

Xoa=Xob+c.



Integral planar near-rings

Definition
A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.
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Integral planar near-rings

Definition
A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.

Theorem (S. Ligh, 1971)
Let N be a finite, zero-symmetric near-ring. Then the
following conditions are equivalent:
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Integral planar near-rings

Definition
A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.

Theorem (S. Ligh, 1971)
Let N be a finite, zero-symmetric near-ring. Then the
following conditions are equivalent:

1. Nis subdirectly irreducible, and for every x € N,
there is a natural number n(x) such that x"®) = x.
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Definition

A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.

Theorem (S. Ligh, 1971)
Let N be a finite, zero-symmetric near-ring. Then the
following conditions are equivalent:
1. Nis subdirectly irreducible, and for every x € N,
there is a natural number n(x) such that x"®) = x.

2. N is subdirectly irreducible, and there is a natural
number n such that for all x € N, we have x" = x.

Planar near-rings
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Definition
A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.

Theorem (S. Ligh, 1971)

Let N be a finite, zero-symmetric near-ring. Then the
following conditions are equivalent:

1. Nis subdirectly irreducible, and for every x € N,
there is a natural number n(x) such that x"®) = x.

Planar near-rings

2. N is subdirectly irreducible, and there is a natural
number n such that for all x € N, we have x" = x.

3. Nis an integral planar near-ring, or we have
aob=aforalla,b € N with b # 0.



Integral planar near-rings

Definition
A near-ring N is called integral iff for all x,y € N \ {0},
we have X oy # 0.

Theorem (S. Ligh, 1971)

Let N be a finite, zero-symmetric near-ring. Then the
following conditions are equivalent:

1. Nis subdirectly irreducible, and for every x € N,
there is a natural number n(x) such that x"®) = x.

2. N is subdirectly irreducible, and there is a natural
number n such that for all x € N, we have x" = x.

3. Nis an integral planar near-ring, or we have
aob=aforalla,b € N with b # 0.

4. N is an integral Ferrero near-ring.
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Corollary

A finite zero-symmetric near-ring that satisfies x" ~ x is a
direct product of integral Ferrero near-rings.
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The variety of all near-rings

Known facts
Let AV be the variety of all near-rings.
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Let AV be the variety of all near-rings. The variety of all

near-rings
» Is A locally finite? No ((Z, +, —, 0, -)).
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Known facts
Let AV be the variety of all near-rings. The variety of all

near-rings
» Is A locally finite? No ((Z, +, —, 0, -)).

» Is NV residually small? No (M(G) is simple if
G| # 2).



The variety of all near-rings ubiquty ofpanas
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Known facts
Let AV be the variety of all near-rings. The vaiety o al
» Is A locally finite? No ((Z, +, —, 0, -)).
» Is NV residually small? No (M(G) is simple if
G| # 2).
» Is the word problem for Fx-(X) solvable? Yes. We
give a confluent, terminating rewrite system.



A confluent rewrite system for near-rings

110:

13:
14 -
16 :
19:
21:

OOk, wWNBE

0+x —X

(X)+X—>O
(X+y)+zZ—=X+(y+2)
(X*xy)*xzZ — X *(y *2)
(X+y)*xz— (x*x2)+(y *2)
(x)+( +z)—>z
-(0) —

x+0—>x
—(=(x)) — x

X+ —(x)—0

X+ (=(X)+2z)—2z
Oxz—0

—(x+y) = —(y)+—-(x)

—(X)*xz — —(x*2)
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More questions about varieties of near-rings

» Is the word problem for F 4(X) is solvable, where A is
the variety of all near-rings satisfying the identity
X+y=y+x?YES.
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More questions about varieties of near-rings

» Is the word problem for F 4(X) is solvable, where A is
the variety of all near-rings satisfying the identity
X+y=y+x?YES.

» Is N generated by its finite members? YES.
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» Is the word problem for F 4(X) is solvable, where Ais e varieyofail
the variety of all near-rings satisfying the identity rearnes
X+y =y +x?YES.

» Is N generated by its finite members? YES.
» Is A generated by its finite members? YES.



Varieties that are generated by their finite
members

The following varieties are generated by their finite
members:
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The variety of all
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The following varieties are generated by their finite
members:

» The variety of all groups.
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The following varieties are generated by their finite
members:

» The variety of all groups.
» The variety of all sets.



Varieties that are generated by their finite
members

The following varieties are generated by their finite
members:

» The variety of all groups.
» The variety of all sets.
» The variety of all semigroups.
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Varieties that are not generated by their finite
members

The following varieties are not generated by their finite
members:
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The following varieties are not generated by their finite
members: The variety of all

near-rings

» The variety of vector-spaces over the rationals.
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The following varieties are not generated by their finite
members: The variety of all

near-rings

» The variety of vector-spaces over the rationals.

» Each variety that has an infinite member, but all of its
finite members have precisely one element.
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The following varieties are not generated by their finite
members: The variety of all

near-rings

» The variety of vector-spaces over the rationals.

» Each variety that has an infinite member, but all of its
finite members have precisely one element.

» The variety of modular lattices (Freese, Transactions
AMS, 1979).
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The following varieties are not generated by their finite
members: The variety of all

near-rings

» The variety of vector-spaces over the rationals.
» Each variety that has an infinite member, but all of its

finite members have precisely one element.
» The variety of modular lattices (Freese, Transactions

AMS, 1979).
» The variety Bggs of all groups of exponent dividing

665 (Shumyatsky, Journal of Pure and Applied

Algebra, 2002).
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Fy(X) is a subdirect product of finite algebras.



Varieties that are generated by their finite
members

Observation
If a variety V is generated by its finite members, then
Fy(X) is a subdirect product of finite algebras.

Observation

If V is generated by its finite members, V is a variety of
algebras with finitely many operation symbols, and V is
defined by finitely many identities, then for every set X,
the word problem for the free algebra Fy,(X) is solvable
(Evans, Bull. Amer. Math. Soc., 1978).
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Theorem (Freese, Transactions AMS, 1980)

The word problem for the free modular lattice over a five
element set is unsolvable.
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N is generated by its finite members

Theorem (EA, Monatshefte fir Mathematik, 2004)
The variety of all near-rings is generated by its finite
members. The variety of all zero-symmetric near-rings is
generated by its finite members.
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N is generated by its finite members

Theorem (EA, Monatshefte fur Mathematik, 2004)

The variety of all near-rings is generated by its finite
members. The variety of all zero-symmetric near-rings is
generated by its finite members.

Idea of the proof

Every identity that fails in some near-ring even fails in
some finite near-ring.
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Task

Produce a finite near-ring in which

does not hold.

X1 0 (—Xz) ~ _(Xl o X2)
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The surprising
ubiquity of planar

TaSk near-rings
Produce a finite near-ring in which R AL

X1 0 (—Xz) ~ _(Xl o X2)

does not hold.

The va_\riety of all
near-rings
Take a prime p with p > 2, N := M(Zp).
f(y) = ~% forallye Z
g(v) = ~ forallyeZp.

Thenf o (—g) (7) = (—)* =~ and —(f o @) () = —*.
Hence for ng := 1, we have

fo(=g) (no) # —(Fo9) (m)-



From near-rings to groups ubiquty ofpanas

near-rings
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Hence, instead of finding a finite model of

Near-ring axioms U {X; o (—X2) % —(X1 0 X2)},

The variety of all

we try to find a finite model of near-rings

Group axioms U {f1(—f2(yo)) % —f1(f2(¥0))},

where f; are unary function symbols.

So, the task is now:
Find a finite group G, an element ng € G, and
mappings fy, fo on this group such that

f1(—f2(no)) # —f1(f2(n0))-



Finding a finite model
Step 1 We translate

into
So = f1(—f2(¥0)), to = —f1(f2(¥0)),
s1 = fi(—y1), t; = —f1(f2(Yo)),
So = f1(y2), to = —f1(f2(¥o)),
S3 =3, tz3 = —f1(f2(yo0)),
S4 =Y3, ta = —f1(ya),
S5 = Y3, ts = —ys,
S6 = Y3, ts = Ys,
Thus, we are left with
Y3 # Ve
yi ~ fa(yo) y2 =
ys ~ fi(y2) ya =~
ys ~ fi(ya) ¥ =~

The surprising
ubiquity of planar
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f1(—f2(yo)) # —f1(f2(yo)),

Bo = 0,

B = {y1 ~ f2(Yo)},
B, =By U{y> =~ —y1}
Bs = Ba U {ys ~ f1(y2)},
B4 = B3z U {ys =~ f2(Yo)},
Bs = B4 U {ys ~ f1(y4)},
Bs = Bs U {yes ~ —Vs}.

The variety of all
near-rings

Y1
f2(yo)
—Ys.



The surprising

Step 2 We divide the formulas into E | F, G. “biqn“ei?,.?ifnﬂi"ar
Erhard Aichinger
E :={ys # Ys} o
yi ~ fa(yo)
F ::{ y3 f Il(yZ) }
y4 N 2 (Yo ) The variety of all
ys = f1 (y4) near-rings
Y2 & )N
G:=
t Yo = —VYs5 !

Define ~ on {0,1,2,...,6} by
i ~]j iff Group-axiomsUF UG =y; =Y.
We have

1 ~ 4, all others are inequivalent.



Finding models

We form
Fi={yi=yli~ij}
Now, for all i, j with i £ j,

Group-axioms UF' UG U {y; # Y} is satisfiable.

Since the variety of groups is generated by its finite
members, we even find a finite model of

Group-axioms UF UG U {y; #y;},
and hence of
Group-axioms UF UG U {y; #ys|r # s}.

Now, we may define the interpretation of f; such that F is
satisfied.
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Examples of composition algebras

» Let A be a set. Then (M(A), o) is a semigroup.

General version:

The surprising
ubiquity of planar
near-rings

Erhard Aichinger

The variety of all
near-rings



Examples of composition algebras ubiquty ofpanas

near-rings

Erhard Aichinger

» Let A be a set. Then (M(A), o) is a semigroup.

> Let <67 +’ ) 0> be a group' Then <M (G)7 +7 ) Oa O> The variety of all
is a near-ring. near-ings

General version:



Examples of composition algebras ubiquty ofpanas

near-rings

Erhard Aichinger

» Let A be a set. Then (M(A), o) is a semigroup.

> Let <67 +’ ) 0> be a group' Then <M(G)7 +7 ) Oa O> The variety of all
is a near-ring. R

» Let (R,+,—,0,-) bearing. Then (M(R),+,—,0,-,0)
is a composition ring.

General version:



Examples of composition algebras ubiquty ofpanas
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Erhard Aichinger

» Let A be a set. Then (M(A), o) is a semigroup.
> Let <67 +7 ) 0> be a group' Then <M(G)7 +7 ) Oa O> The variety of all
is a near-ring. R
» Let (R,+,—,0,-) bearing. Then (M(R),+,—,0,-,0)
is a composition ring.
General version:

» Let (A F) be an algebra in the variety V. Then
(M(A),F U {o}) is a V-composition algebra.



The definition of composition algebras

Let £ be a language of algebras. We consider algebras of
language C(L), where C(£) contains all function symbols
of £ plus one new binary symbol o added.
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The definition of composition algebras

Let £ be a language of algebras. We consider algebras of
language C(L), where C(£) contains all function symbols
of £ plus one new binary symbol o added.

Definition
Let £ be a language of algebras, and let K be a class of
L-algebras. A C(L)-algebra N is called a C-composition
algebra iff the £-reduct of N lies in I, and N satisfies the
identities

(Xl OX2) O0X3 X~ X110 (X2 OX3)

and
W(Xb s 7Xk) O Xk+1 = W(Xl O Xk41y---,Xk O Xk+l)7

where k € NU {0} and w is a k-ary function symbol of L.
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The class of composition algebras

C(K) := the class of all K-composition algebras.

For every algebra A in a variety V, the full function
algebra M(A) lies in C(V).

Definition

Let V be a variety of £-algebras, and let F be a subclass
of V. Then we define the class M(F) as the subclass of
C(V) given by

M(F) := {M(A)| A € F}.
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What we really have proved

Theorem

Let £ be a language of algebras, let F be a class of
L-algebras, and let V := HSP(F). Then the variety of
V-composition algebras is generated by the class of all
M(A), where A € Psn(F). In other words, we have

C(V) = HSP(M(Psin(F)))-

Brief summary:

C(HSP(F)) = HSP(M(Pfin(F)))-
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Consequences

Corollary

Let p be a prime. Then the variety of near-rings is
generated by {M(G)| G is a finite p-group}.
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Consequences

Corollary

Let p be a prime. Then the variety of near-rings is
generated by {M(G)| G is a finite p-group}.

Let V be a variety of algebras such that V is generated by
its finite members. Then the variety C(V) is also
generated by its finite members.
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Consequences

Corollary

Let p be a prime. Then the variety of near-rings is
generated by {M(G)| G is a finite p-group}.

Let V be a variety of algebras such that V is generated by
its finite members. Then the variety C(V) is also
generated by its finite members.

Hence, also the variety .4 of near-rings with abelian
addition is generated by its finite members, and hence
has a solvable word-problem.
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