Lineare Algebra und Analytische Ge	eome	etrie	e 1 ·	Wi	$_{ m nter}$	20	16/1	$17 \cdot \mathbf{Min}$	i-Test	1	10.10	0.2016
Name (deutlich lesbar!):												
Matrikelnummer (deutlich lesbar!):												

Aufgabe 1 Es seien $A = \{1, 2, \{3\}, \{1, 7\}, \emptyset\}, B = \{7, 3, \{2\}, 1, \{\emptyset\}\},$ Bestimmen Sie folgende Mengen:

- 1. $A \cap B =$
- 2. $A \setminus B =$

Lösung. 1. $\{1\}$, 2. $\{2, \{3\}, \{1, 7\}, \emptyset\}$.

Aufgabe 2 Seien A, B, C Mengen. Zeigen Sie: $(A \cap B) \cap C = A \cap (B \cap C)$.

Lösung. "' \subseteq " Sei $x \in (A \cap B) \cap C$ beliebig. Dann ist $x \in A \cap B$ und $x \in C$. Aus $x \in A \cap B$ folgt $x \in A$ und $x \in B$. Also gilt $x \in A$ und $x \in B$ und $x \in C$. Aus den letzten beiden folgt $x \in B \cap C$ und mit $x \in A$ folgt daraus $x \in A \cap (B \cap C)$.

"' \subseteq "' Sei $x \in A \cap (B \cap C)$ beliebig. Dann ist $x \in A$ und $x \in B \cap C$. Aus letzterem folgt $x \in B$ und $x \in C$. Also gilt $x \in A$ und $x \in B$ und $x \in C$. Aus den ersten beiden folgt $x \in A \cap B$, und mit $x \in C$ folgt daraus $x \in (A \cap B) \cap C$.