http://www.algebra.uni-linz.ac.at/teaching/ws2016/linalg/

Übungsblatt 10

Besprechung am 12.12.2016

Aufgabe 1 (Basis) Seien U und V folgende Unterräume des \mathbb{R}^4 .

$$U = \operatorname{span}((-1, -1, 2, -7), (2, 2, -4, 14), (1, 0, -2, 3), (0, 1, 0, 4)),$$

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 3x_1 - 5x_2 + 2x_4 = -x_1 - 3x_2 + 4x_3 = 0\}.$$

- a) Bestimmen Sie jeweils eine Basis der Räume $U, V, U \cap V, U + V$.
- b) Bestimmen Sie eine Basis von U + V, die als Teilmengen sowohl eine Basis von $U \cap V$, als auch von U und von V enthält.

Aufgabe 2 (Basisauswahl) Sei $k \in \mathbb{N}$, und seien $b_1, \ldots b_k$ paarweise verschiedene Vektoren, die alle ungleich dem Nullvektor sind, sodass $\{b_1, \ldots, b_k\}$ ein Erzeugendensystem des Vektorraums V ist. Zeigen Sie, dass es $m \in \mathbb{N}$ und paarweise verschiedene $i_1, i_2, \ldots, i_m \in \{1, \ldots, k\}$ gibt, sodass $\{b_{i_1}, \ldots, b_{i_m}\}$ eine Basis von V ist. Ist m eindeutig bestimmt?

Aufgabe 3 (Basisaustausch) Sei $B = \{b_1, \ldots, b_k\}$ eine Basis von V und sei $a \in V$ mit $a \neq 0$. Zeigen Sie, dass es $j \in \{1, \ldots, k\}$ gibt, sodass $(B \setminus \{b_j\}) \cup \{a\}$ eine Basis von V ist.

Aufgabe 4 (Faktorräume) Sei U der Unterraum des Raums $V = \mathbb{R}^3$, der von (1,0,2) und (0,1,-3) erzeugt wird.

- a) Geben Sie ein Repräsentantensystem R für den Faktorraum V/U an; finden Sie also R, sodass es für jedes $v \in V$ genau ein $r \in R$ mit $r \in [v]_{\sim_U}$ gibt.
- b) Können Sie R in (a) so wählen, dass R ein Unterraum von \mathbb{R}^3 ist?
- c) Welche der beiden Abbildungen f und g von V/U nach \mathbb{R} ist wohldefiniert?

$$\begin{array}{lcl} f([(x,y,z)]_{\sim_U}) & = & x+y-z, \\ g([(x,y,z)]_{\sim_U}) & = & 4x-6y-2z \text{ für } x,y,z \in \mathbb{R}. \end{array}$$

Aufgabe 5 Zeigen Sie folgenden Satz:

Sei $k \in \mathbb{N}$, und seien U_1, \ldots, U_k Unterräume des \mathbb{R} -Vektorraums V, die alle ungleich V sind. Dann gilt auch $U_1 \cup U_2 \cup \ldots \cup U_k \neq V$.

Hinweis: Die folgenden Hinweise enthalten zielführende Information, die Sie allerdings noch logisch richtig zusammenbauen müssen.

Gehen Sie mit Induktion nach k vor. Nehmen Sie $x \in U_k \setminus (U_1 \cup \ldots \cup U_{k-1})$ und $y \in V \setminus U_k$ (warum und wie geht das?). Wählen Sie $\lambda \in \mathbb{R} \setminus \{0\}$ und überlegen Sie, ob $\lambda x + y$ in U_k liegen kann. Finden Sie $\lambda_1, \lambda_2 \in \mathbb{R}$, sodass $\lambda_1 x + y$ und $\lambda_2 x + y$ im gleichen U_j liegen. Was heißt das für $(\lambda_1 - \lambda_2)x$?