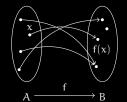
Diskrete Strukturen Vorlesungszusammenfassung

Manuel Kauers · Institute for Algebra · JKU

Funktionen

Was ist das?

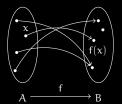
- Informal: eine Zuordnung der Elemente einer Menge A auf Elemente einer Menge B
- Formal: $f \subseteq A \times B$ mit $\forall x \in A \exists_1 y \in B : (x, y) \in f$



Funktionen

Was ist das?

 Informal: eine Zuordnung der Elemente einer Menge A auf Elemente einer Menge B



• Formal: $f \subset A \times B$ mit $\forall x \in A \exists_1 y \in B : (x,y) \in f$

Wofür braucht man das?

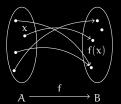
- Funktionen drücken z.B. aus, wie man das, was man hat, überführt in das, was man will.
- Manche diskrete Strukturen lassen sich mit Hilfe von Funktionen beschreiben.
- Viele physikalische Zusammenhänge werden durch Funktionen ausgedrückt.

1

Funktionen

Was ist das?

 Informal: eine Zuordnung der Elemente einer Menge A auf Elemente einer Menge B



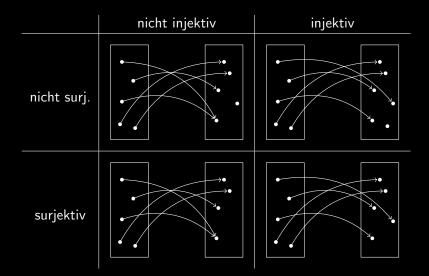
• Formal: $f \subset A \times B$ mit $\forall x \in A \exists_1 y \in B : (x,y) \in f$

Wofür braucht man das?

- Funktionen drücken z.B. aus, wie man das, was man hat, überführt in das, was man will.
- Manche diskrete Strukturen lassen sich mit Hilfe von Funktionen beschreiben.
- Viele physikalische Zusammenhänge werden durch Funktionen ausgedrückt.

Was muss man darüber wissen?

- Wie man Funktionen formal sauber definiert
- Wie man Funktionen auf Injektivität, Surjektivität, Bijektivität untersucht.



Was ist das?

- ullet Informal: eine Verallgemeinerung von \leq
- Formal: eine anti-symmetrische, reflexive, transitive Relation.

Was ist das?

- ullet Informal: eine Verallgemeinerung von \leq
- Formal: eine anti-symmetrische, reflexive, transitive Relation.

Wofür braucht man das?

 z.B. um Abhängigkeiten zwischen Softwarepaketen zu modellieren (wenn diese nicht zyklisch sein dürfen).

Was ist das?

- ullet Informal: eine Verallgemeinerung von \leq
- Formal: eine anti-symmetrische, reflexive, transitive Relation.

Wofür braucht man das?

 z.B. um Abhängigkeiten zwischen Softwarepaketen zu modellieren (wenn diese nicht zyklisch sein dürfen).

Was muss man darüber wissen?

- Unterschied zwischen partieller Ordnung und totaler Ordnung.
- ullet Beispiele: \leq für Zahlen, \subseteq für Mengen, \leq_{lex} für Wörter

■ Äquivalenzrelationen

Äquivalenzrelationen

Was ist das?

- Informal: eine Verallgemeinerung von =
- Formal: eine symmetrische, reflexive, transitive Relation.

Äquivalenzrelationen

Was ist das?

- Informal: eine Verallgemeinerung von =
- Formal: eine symmetrische, reflexive, transitive Relation.

Wofür braucht man das?

• Damit kann man von gegebenen mathematischen Objekten die uninteressanten Eigenschaften ausblenden.

■ Äquivalenzrelationen

Was ist das?

- Informal: eine Verallgemeinerung von =
- Formal: eine symmetrische, reflexive, transitive Relation.

Wofür braucht man das?

 Damit kann man von gegebenen mathematischen Objekten die uninteressanten Eigenschaften ausblenden.

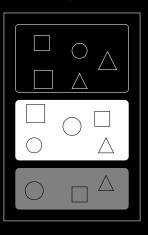
Was muss man darüber wissen?

- Wie man zeigt, dass eine gegebene Relation eine Äquivalenzrelation ist
- Wie man eine Funktionsdefinition $f: A/\sim \to B$ auf Repräsentantenunabhängigkeit überprüft.

Α

5

A/~



3 4 0

Was ist das?

- Informal: ein Netzwerk von Knoten und Verbindungen.
- $\bullet \ \, \text{Formal:} \ \, G=(V\!,E) \,\, \text{mit} \,\, V \,\, \text{endlich und} \,\, E\subseteq V\times V.$

Was ist das?

- Informal: ein Netzwerk von Knoten und Verbindungen.
- Formal: G = (V, E) mit V endlich und $E \subseteq V \times V$.

Wofür braucht man das?

Graphen sind die wichtigste Datenstruktur in der Informatik.
 Damit kann man alle möglichen Dinge modellieren.

Was ist das?

- Informal: ein Netzwerk von Knoten und Verbindungen.
- Formal: G = (V, E) mit V endlich und $E \subseteq V \times V$.

Wofür braucht man das?

Graphen sind die wichtigste Datenstruktur in der Informatik.
 Damit kann man alle möglichen Dinge modellieren.

Was muss man darüber wissen?

- Wie man Graphen im Computer codieren kann
- Wie man zwei gegebene Graphen auf Isomorphie überprüft
- Wie man in einem Graphen einen Pfad zwischen zwei gegebenen Knoten findet

Gruppen

Was ist das?

- Informal: eine Abstraktion des Zahlenraums ($\mathbb{Z}, +$)
- Formal: eine Menge G mit einer Verküpfung ○: G × G → G, die die Gruppenaxiome erfüllt.

7

Gruppen

Was ist das?

- Informal: eine Abstraktion des Zahlenraums ($\mathbb{Z}, +$)
- Formal: eine Menge G mit einer Verküpfung ○: G × G → G, die die Gruppenaxiome erfüllt.

Wofür braucht man das?

- Vor allem zur Beschreibung von Symmetrien (s.u.)
- Für modulares Rechnen (s.u.)

Gruppen

Was ist das?

- Informal: eine Abstraktion des Zahlenraums ($\mathbb{Z}, +$)
- Formal: eine Menge G mit einer Verküpfung ○: G × G → G, die die Gruppenaxiome erfüllt.

Wofür braucht man das?

- Vor allem zur Beschreibung von Symmetrien (s.u.)
- Für modulares Rechnen (s.u.)

Was muss man darüber wissen?

- Die Gruppenaxiome und wann zwei Gruppen isomorph sind
- Einige Beispiele von Gruppen
- Was Untergruppen sind und wie man sie erzeugt

• Die Menge S_n aller bijektiven Funktionen $\pi\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$ bildet mit der Verkettung \circ als Verknüpfung eine (im Fall $n\geq 3$ nicht-kommutative) Gruppe.

- Die Menge S_n aller bijektiven Funktionen
 π: {1,...,n} → {1,...,n} bildet mit der Verkettung ∘ als
 Verknüpfung eine (im Fall n ≥ 3 nicht-kommutative) Gruppe.
- Jedes π ∈ S_n lässt sich in eindeutiger Weise in paarweise disjunkte Zyklen zerlegen.

- Die Menge S_n aller bijektiven Funktionen
 π: {1,...,n} → {1,...,n} bildet mit der Verkettung ∘ als
 Verknüpfung eine (im Fall n ≥ 3 nicht-kommutative) Gruppe.
- Jedes $\pi \in S_n$ lässt sich in eindeutiger Weise in paarweise disjunkte Zyklen zerlegen.

• Beispiel: $S_3 = \{ id, (12), (13), (23), (123), (132) \}.$

- Die Menge S_n aller bijektiven Funktionen $\pi\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$ bildet mit der Verkettung \circ als Verknüpfung eine (im Fall $n\geq 3$ nicht-kommutative) Gruppe.
- $\label{eq:sigma} \begin{array}{l} \bullet \mbox{ Jedes } \pi \in S_n \mbox{ lässt sich in} \\ \mbox{ eindeutiger Weise in paarweise} \\ \mbox{ disjunkte Zyklen zerlegen.} \end{array}$

- Beispiel: $S_3 = \{ id, (12), (13), (23), (123), (132) \}.$
- Beispiel: Die von $\pi = (1\,2\,3)$ und $\sigma = (1\,2\,4)$ erzeugte Untergruppe von S_4 ist

$$\begin{split} \langle \pi, \sigma \rangle &= \big\{ \mathrm{id}, \ \pi, \ \sigma, \ \pi^2, \ \pi\sigma, \ \sigma\pi, \\ \sigma^2, \ \pi\sigma^2, \ \sigma\pi^2, \ \pi^2\sigma, \ \sigma^2\pi, \ \sigma\pi^2\sigma \big\}. \end{split}$$

- Die Menge S_n aller bijektiven Funktionen
 π: {1,...,n} → {1,...,n} bildet mit der Verkettung ∘ als
 Verknüpfung eine (im Fall n ≥ 3 nicht-kommutative) Gruppe.
- Jedes $\pi \in S_n$ lässt sich in eindeutiger Weise in paarweise disjunkte Zyklen zerlegen.

- Beispiel: $S_3 = \{ id, (12), (13), (23), (123), (132) \}.$
- Beispiel: Die von $\pi = (1\,2\,3)$ und $\sigma = (1\,2\,4)$ erzeugte Untergruppe von S_4 ist

$$\langle \pi, \sigma \rangle = \{ \mathrm{id}, (123), (124), (132), (13)(24), (14)(23), (142), (14), (13), (24), (23), (12) \}.$$

- Die Menge S_n aller bijektiven Funktionen
 π: {1,...,n} → {1,...,n} bildet mit der Verkettung ∘ als
 Verknüpfung eine (im Fall n ≥ 3 nicht-kommutative) Gruppe.
- Jedes $\pi \in S_n$ lässt sich in eindeutiger Weise in paarweise disjunkte Zyklen zerlegen.

- Beispiel: $S_3 = \{ id, (12), (13), (23), (123), (132) \}.$
- Beispiel: Die von $\pi = (1\,2\,3)$ und $\sigma = (1\,2\,4)$ erzeugte Untergruppe von S_4 ist

$$\langle \pi, \sigma \rangle = \{ \text{id}, (123), (124), (132), (13)(24), (14)(23), (142), (14), (13), (24), (23), (12) \}.$$

• Für alle $n \in \mathbb{N}$ gilt $|S_n| = n!$.

Gruppenoperationen

■ Gruppenoperationen

Was ist das?

- Informal: Die Elemente einer Gruppe G werden als Funktionen X → X einer Menge in sich selbst interpretiert.
- Formal: $*: G \times X \to X$ mit e*x = x und $(g \circ h)*x = g*(h*x)$ für alle $x \in X$, $g, h \in G$ und das Neutralelement e von G.

Gruppenoperationen

Was ist das?

- Informal: Die Elemente einer Gruppe G werden als Funktionen $X \to X$ einer Menge in sich selbst interpretiert.
- Formal: $*: G \times X \to X$ mit e*x = x und $(g \circ h)*x = g*(h*x)$ für alle $x \in X$, $g, h \in G$ und das Neutralelement e von G.

Wofür braucht man das?

 Mit Gruppenoperationen beschreibt man Symmetrien in der Menge X.

Gruppenoperationen

Was ist das?

- Informal: Die Elemente einer Gruppe G werden als Funktionen X → X einer Menge in sich selbst interpretiert.
- Formal: $*: G \times X \to X$ mit e*x = x und $(g \circ h)*x = g*(h*x)$ für alle $x \in X$, $g, h \in G$ und das Neutralelement e von G.

Wofür braucht man das?

 Mit Gruppenoperationen beschreibt man Symmetrien in der Menge X.

Was muss man darüber wissen?

- Was die Bahn und der Stabilisator eines Elements $x \in X$ sind
- Dass eine Gruppenoperation eine Äquivalenzrelation auf X erklärt, deren Äquivalenzklassen die Bahnen sind.

■ Beispiel 1: Tupel modulo Reihenfolge

• Ist M irgendeine Menge, so operiert S_4 auf $X = M^4$ via

$$\pi*(x_1,x_2,x_3,x_4):=(x_{\pi(1)},x_{\pi(2)},x_{\pi(3)},x_{\pi(4)}).$$

• Ist M irgendeine Menge, so operiert S_4 auf $X=M^4$ via

$$\pi*(x_1,x_2,x_3,x_4):=(x_{\pi(1)},x_{\pi(2)},x_{\pi(3)},x_{\pi(4)}).$$

• Beispiel: $(132) * (\blacksquare, \bullet, \blacktriangle, \blacktriangledown) = (\blacktriangle, \blacksquare, \bullet, \blacktriangledown)$

• Ist M irgendeine Menge, so operiert S_4 auf $X=M^4$ via

$$\pi * (x_1, x_2, x_3, x_4) := (x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, x_{\pi(4)}).$$

- Beispiel: $(132) * (\blacksquare, \bullet, \blacktriangle, \blacktriangledown) = (\blacktriangle, \blacksquare, \bullet, \blacktriangledown)$
- Der Stabilisator eines Tupels ist die Untergruppe aller Permutationen, die es auf sich selbst abbilden. Beispiel:

$$Stab((\blacksquare, \blacksquare, \bullet, \bullet)) = \{id, (12), (34), (12)(34)\}$$

ullet Ist M irgendeine Menge, so operiert S_4 auf $X=M^4$ via

$$\pi * (x_1, x_2, x_3, x_4) := (x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, x_{\pi(4)}).$$

- Beispiel: $(132) * (\blacksquare, \bullet, \blacktriangle, \blacktriangledown) = (\blacktriangle, \blacksquare, \bullet, \blacktriangledown)$
- Der Stabilisator eines Tupels ist die Untergruppe aller Permutationen, die es auf sich selbst abbilden. Beispiel:

$$Stab((, , , , ,)) = \{id, (12), (34), (12)(34)\}$$

• Die Bahn eines Tupels ist die Menge aller Tupel, die sich durch Umordnen der Komponenten erzeugen lassen. Beispiel:

$$G*(\blacksquare,\blacksquare,\bullet,\bullet)=\big\{(\blacksquare,\blacksquare,\bullet,\bullet),\;(\blacksquare,\bullet,\blacksquare,\bullet),\;(\bullet,\blacksquare,\blacksquare,\bullet),\\ (\blacksquare,\bullet,\bullet,\blacksquare),\;(\bullet,\blacksquare,\bullet,\blacksquare),\;(\bullet,\bullet,\blacksquare,\blacksquare)\big\}$$

• Ist M irgendeine Menge, so operiert S_4 auf $X=M^4$ via

$$\pi * (x_1, x_2, x_3, x_4) := (x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, x_{\pi(4)}).$$

- Beispiel: $(132) * (\blacksquare, \bullet, \blacktriangle, \blacktriangledown) = (\blacktriangle, \blacksquare, \bullet, \blacktriangledown)$
- Der Stabilisator eines Tupels ist die Untergruppe aller Permutationen, die es auf sich selbst abbilden. Beispiel:

$$Stab((\blacksquare, \blacksquare, \bullet, \bullet)) = \{id, (12), (34), (12)(34)\}$$

• Die Bahn eines Tupels ist die Menge aller Tupel, die sich durch Umordnen der Komponenten erzeugen lassen. Beispiel:

$$\mathsf{G} \ast (\blacksquare,\blacksquare,\bullet,\bullet) = \big\{ (\blacksquare,\blacksquare,\bullet,\bullet), \ (\blacksquare,\bullet,\blacksquare,\bullet), \ (\bullet,\blacksquare,\blacksquare,\bullet), \\ (\blacksquare,\bullet,\bullet,\blacksquare), \ (\bullet,\blacksquare,\bullet,\blacksquare), \ (\bullet,\bullet,\blacksquare,\blacksquare) \big\}$$

Jedes Tupel gehört zu genau einer Bahn.

■ Beispiel 2: Die Automorphiegruppe eines Graphen

• S_n operiert auch auf der Menge aller Graphen G=(V,E) mit $V=\{1,\ldots,n\}$. Beispiel:

$$(1\,3\,4)* \begin{picture}(1\,3\,4) \put(0.5,0){\line(1,0){3}} \put(0.5,0){\l$$

■ Beispiel 2: Die Automorphiegruppe eines Graphen

• S_n operiert auch auf der Menge aller Graphen G = (V, E) mit $V = \{1, ..., n\}$. Beispiel:

• Der Stabilisator eines Graphen ist seine Automorphiegruppe:

■ Beispiel 2: Die Automorphiegruppe eines Graphen

• S_n operiert auch auf der Menge aller Graphen G=(V,E) mit $V=\{1,\ldots,n\}$. Beispiel:

$$(134)*$$
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 (134)
 $(13$

• Der Stabilisator eines Graphen ist seine Automorphiegruppe:

$$\operatorname{Aut}(\operatorname{Stab}(\operatorname{Sta$$

• Die Bahn eines Graphen entspricht einem Graphen, bei dem man die Knotenbezeichnungen ignoriert:

$$S_n * \circlearrowleft \stackrel{2}{\circlearrowleft} \stackrel{4}{\circlearrowleft} = \{ \circlearrowleft \stackrel{2}{\circlearrowleft} \stackrel{4}{\circlearrowleft} \stackrel{2}{\circlearrowleft} \stackrel{3}{\circlearrowleft} \stackrel{1}{\circlearrowleft} , \ \circlearrowleft \stackrel{3}{\circlearrowleft} \stackrel{1}{\circlearrowleft} , \dots \} \ "=" \ \circlearrowleft \stackrel{2}{\circlearrowleft} \stackrel{1}{\circlearrowleft} \stackrel{1}{\hookrightarrow} \stackrel{1}{\hookrightarrow}$$

Modulares Rechnen

■ Modulares Rechnen

Was ist das?

- Informal: Man rechnet in $\mathbb Z$ und nimmt immer, wenn die Zahlen zu lang werden, modulo $\mathfrak m$.
- Formal: $\mathbb{Z}_{\mathfrak{m}} = \mathbb{Z}/\equiv_{\mathfrak{m}}$, wobei $x \equiv_{\mathfrak{m}} y \iff \mathfrak{m} \mid x y$.

Modulares Rechnen

Was ist das?

- Informal: Man rechnet in $\mathbb Z$ und nimmt immer, wenn die Zahlen zu lang werden, modulo $\mathfrak m$.
- Formal: $\mathbb{Z}_{\mathfrak{m}} = \mathbb{Z}/\equiv_{\mathfrak{m}}$, wobei $\mathfrak{x} \equiv_{\mathfrak{m}} \mathfrak{y} \iff \mathfrak{m} \mid \mathfrak{x} \mathfrak{y}$.

Wofür braucht man das?

- Man kann damit Pseudozufallszahlengeneratoren konstruieren.
- Viele Krypto-Verfahren basieren auf Rechnungen in $\mathbb{Z}_{\mathfrak{m}}$.
- Statt in \mathbb{Z} ist es manchmal effizienter in \mathbb{Z}_m zu rechnen.

■ Modulares Rechnen

Was ist das?

- Informal: Man rechnet in $\mathbb Z$ und nimmt immer, wenn die Zahlen zu lang werden, modulo $\mathfrak m$.
- Formal: $\mathbb{Z}_{\mathfrak{m}} = \mathbb{Z}/\equiv_{\mathfrak{m}}$, wobei $x \equiv_{\mathfrak{m}} y \iff \mathfrak{m} \mid x y$.

Wofür braucht man das?

- Man kann damit Pseudozufallszahlengeneratoren konstruieren.
- Viele Krypto-Verfahren basieren auf Rechnungen in $\mathbb{Z}_{\mathfrak{m}}$.
- Statt in \mathbb{Z} ist es manchmal effizienter in \mathbb{Z}_m zu rechnen.

Was muss man darüber wissen?

- Den (erweiterten) euklidischen Algorithmus und den chinesischen Restsatz.
- Dass $\mathbb{Z}_p \setminus \{0\}$ mit \cdot genau dann eine Gruppe ist, wenn p eine Primzahl ist, und wie man modulare Inverse ausrechnet.

Zählfunktionen

Zählfunktionen

Was ist das?

Den Elementen x einer Menge X wird eine Größe w(x) ∈ N zugeordnet, und zwar so, dass es für jedes n ∈ N nur endlich viele x ∈ X mit w(x) = n gibt. Dann ist a: N → N, a(n) := |{x ∈ X : w(x) = n}| die Zählfunktion für X.

Zählfunktionen

Was ist das?

Den Elementen x einer Menge X wird eine Größe w(x) ∈ N zugeordnet, und zwar so, dass es für jedes n ∈ N nur endlich viele x ∈ X mit w(x) = n gibt. Dann ist α: N → N, α(n) := |{x ∈ X : w(x) = n}| die Zählfunktion für X.

Wofür braucht man das?

 Um abzuschätzen, wie lange eine Rechnung dauert, muss man oft verstehen, wie viele Objekte eines bestimmten Typ es gibt.

■ Zählfunktionen

Was ist das?

Den Elementen x einer Menge X wird eine Größe w(x) ∈ N zugeordnet, und zwar so, dass es für jedes n ∈ N nur endlich viele x ∈ X mit w(x) = n gibt. Dann ist a: N → N, a(n) := |{x ∈ X : w(x) = n}| die Zählfunktion für X.

Wofür braucht man das?

 Um abzuschätzen, wie lange eine Rechnung dauert, muss man oft verstehen, wie viele Objekte eines bestimmten Typ es gibt.

Was muss man darüber wissen?

- Was Partitionen von Mengen bzw. von Zahlen sind
- Das Prinzip des kombinatorischen Beweises
- Die kombinatorische Bedeutung von $\binom{n}{k}$ und der Catalanzahlen C_n

Was ist das?

 Gleichungen, durch die man Probleme auf ein oder mehrere kleinere Probleme gleichen Typs zurückführen kann.

Was ist das?

 Gleichungen, durch die man Probleme auf ein oder mehrere kleinere Probleme gleichen Typs zurückführen kann.

Wofür braucht man das?

- Um Zählfunktionen effizient berechnen zu können.
- Zur Komplexitätsanalyse von Algorithmen.

Was ist das?

 Gleichungen, durch die man Probleme auf ein oder mehrere kleinere Probleme gleichen Typs zurückführen kann.

Wofür braucht man das?

- Um Zählfunktionen effizient berechnen zu können.
- Zur Komplexitätsanalyse von Algorithmen.

Was muss man darüber wissen?

- Welche verschiedenen Typen von Rekurrenzen es gibt
- Das Prinzip des Induktionsbeweises
- ullet Die Pascal-Rekurrenz für $inom{n}{k}$ und ihre wichtigsten Folgerungen
- Die O-Notation und das Master-Theorem zur Lösung von Divide-and-Conquer-Rekurrenzen