Übungsblatt 2

Besprechung am 20. März 2017

Aufgabe 1 Gegeben seien die Polynome $f = X^3 + 1$, $g = X^3 + X + 1$ und $h = X^3 + X^2 + 1$ mit Koeffizienten in \mathbb{Z}_2 .

- a) Betrachten Sie die Ringe $\mathbb{Z}_2[X]/(f\mathbb{Z}_2[X])$, $\mathbb{Z}_2[X]/(g\mathbb{Z}_2[X])$, $\mathbb{Z}_2[X]/(h\mathbb{Z}_2[X])$. In welchen davon sind [X] und [X+1] invertierbar?
- b) Betrachten Sie diese Ringe als Vektorräume über \mathbb{Z}_2 und finden Sie jeweils eine Basis. Wieviele Elemente haben daher diese Ringe?
- c) Welche dieser Ringe sind Körper?
- d) Betrachten Sie g als Polynom über $\mathbb{Z}_2[X]/(g\mathbb{Z}_2[X])$ und finden Sie eine Nullstelle.

Aufgabe 2 a) Seien

$$b_1 = (4, 1, 5)$$
 $b_2 = (0, 2, -1)$, $b_3 = (0, 0, 1)$.

Sei weiters h eine lineare Abbildung, sodass

$$h(b_1) = 2b_1$$
$$h(b_2) = -b_2$$
$$h(b_3) = -b_3$$

Bestimmen Sie die Eigenwerte von h sowie die Abbildungsmatrix von h bezüglich der Basis (b_1, b_2, b_3) .

b) Sei

$$A = \left(\begin{array}{rrr} 0 & 0 & -6 \\ -1 & 0 & -3 \\ 0 & -1 & 1 \end{array} \right).$$

Bestimmen Sie die Eigenwerte von A als Matrix über \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_5 , \mathbb{Z}_7 .

c) Zeigen Sie: Die Eigenwerte einer Dreicksmatrix sind genau die Einträge in deren Diagonale.

Aufgabe 3 a) Sei A eine Matrix. Zeigen Sie, dass A und A^{\top} dieselben Eigenwerte haben.

- b) Haben A und A^{\top} auch dieselben Eigenvektoren?
- c) Sei A nilpotent (d.h., es gibt ein $n \in \mathbb{N}$, sodass $A^n = 0$). Zeigen Sie, dass 0 der einzige Eigenwert von h ist.
- d) Sei für eine lineare Abbildung $v_1 \neq 0$ ein Eigenvektor zum Eigenwert λ_1 und $v_2 \neq 0$ ein Eigenvektor zum Eigenwert λ_2 . Zeigen Sie: Wenn $\lambda_1 \neq \lambda_2$ ist, dann sind v_1 und v_2 linear unabhängig.

Aufgabe 4 Wir betrachten den Vektorraum V der stetigen Funktionen $C([0,1],\mathbb{R})$ sowie die Abbildung $S:V\to V$ mit $S(f)(x)=\int_0^x f(t)\,dt$. Zeigen Sie, dass S linear ist und bestimmen Sie die Eigenwerte und -vektoren von S.

Aufgabe 5 Sei $A \in \mathbb{Q}^{n \times n}$ und λ ein Eigenwert von A. Zeigen Sie: $\lambda^3 + 3\lambda + 7$ ist ein Eigenwert von $A^3 + 3A + 7I_n$.