Aufgabe 1 Bestimmen Sie ein annihilierendes Polynom für die Matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$.

 $L\ddot{o}sung.$ Wegen des Satzes von Cayley-Hamilton ist das charakteristische Polynom

$$\chi(A) = \det(A - X I_2) = \begin{vmatrix} 1 - X & 2 \\ 1 & -1 - X \end{vmatrix} = (1 - X)(-1 - X) - 2 = X^2 - 3$$

ein annihilierendes Polynom.

Aufgabe 2 Sei V ein K-Vektorraum, $h:V\to V$ ein Endomorphismus, Seien U_1,U_2 zwei h-invariante Unterräume von V. Zeigen Sie: $U_1\cap U_2$ ist h-invariant.

Lösung. zu zeigen: $h(U_1 \cap U_2) \subseteq U_1 \cap U_2$.

Sei $y \in h(U_1 \cap U_2)$. Dann gibt es ein $x \in U_1 \cap U_2$ mit y = h(x). Aus $x \in U_1$ und der h-Invarianz von U_1 folgt $h(x) \in U_1$. Aus $x \in U_2$ und der h-Invarianz von U_2 folgt $h(x) \in U_2$. Aus beidem zusammen folgt $y = h(x) \in U_1 \cap U_2$.