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Groups

SONATA adds some functions for groups. To use the functions provided by SONATA, one has to load it
into GAP:

gap> LoadPackage( "sonata" );

1.1 Thomas' and Wood'’s catalogue of small groups

Most of the nonabelian groups (even small ones) do not have a popular name (as Ss3 or A4). We like to give
unique names to the groups we are working with. The book “Group Tables” by Thomas and Wood classifies
all groups up to order 32. In this book every group has a name of the form m/n, where m is the order of the
group and n the number of the particular group of order m. The cyclic groups have the name m/1. Then
come the abelian groups, finally the non-abelian ones. To find out the name of a given group in their book
we use IdTWGroup.

gap> G := DihedralGroup( 8 );

<pc group of size 8 with 3 generators>
gap> IdTWGroup( G );

[8, 4]

If we want to refer to the group with the name 8/4 directly we say

gap> H := TWGroup( 8, 4 );
8/4

Groups which are obtained in this way always come as a group of permutations. We can have a look at the
elements of H if we ask for H as a list.

gap> AsList( H );
[ O, 2,9, 1,2)3,4, 1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3) 1]

Clearly, G and H are not equal but they are isomorphic. If we want to know what the isomorphism between
the two looks like, we use IsomorphismGroups. Note, that a homomorphism is determined by the images
of the generators.

gap> IsomorphismGroups(G,H);
[ £f1, £f2, £3 1 -> [ (2,4), (1,2,3,4), (1,3)(2,4) ]

How many nonisomorphic groups are there of order n? Up to order 1000 the function NumberSmallGroups
gives the answer. As a shortcut for TWGroup( 32, 46 ) we may also type GTW32_46.

gap> NumberSmallGroups( 32 );

51

gap> GTW32_46;

32/46

gap> GTW32_46 = TWGroup( 32, 46 );
true

Now we find all nonabelian groups with trivial centre of order at most 32. We use GroupList, a list of all
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groups up to order 32 and filter out the nonabelian ones with trivial center.

gap> Filtered( GroupList, g -> not IsAbelian( g ) and

> Size(Centre( g ))=1 );

[ 6/2, 10/2, 12/4, 14/2, 18/4, 18/5, 20/5, 21/2, 22/2, 24/12, 26/2,
30/4 1

This was the first time that we have used a function as an argument. The second argument of the function
Filtered is a function (g -> not ...), which returns for every g the boolean value true if g is not abelian
and the size of its centre is 1, and false otherwise. This is the easiest way to write a function.

1.2 Subgroups

The function Subgroups returns a list of all subgroups of a group. We can use this function and the Filtered
command to determine all characteristic subgroups of the dihedral group of order 16.

gap> D16 := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> S := Subgroups( D16 );

[ Group([ 1), Group([ f4 1), Group([ f1 1), Group([ f1x£f3 1),
Group([ f1xf4 1), Group([ f1x£3*f4 1), Group([ f1xf2 1),
Group([ f1xf2xf3 1), Group([ fi1xf2*xf4 1),

Group([ f1*f2*£f3*f4 1), Group([ f4, £3 1), Group([ f4, f1 1),
Group([ f1x£3, f4 1), Group([ f4, f1xf2 1),

Group([ f1xf2%£f3, f4 1), Group([ f4, £3, f1 1),

Group([ f4, £3, £2 1), Group([ f4, £3, f1xf2 1),

Group([ f4, £3, f1, f2 1) ]

gap> C := Filtered( S, G -> IsCharacteristicInParent( G ) );

[ Group([ 1), Group([ £4 1), Group([ f4, £3 1), Group([ f4, £3, f2 1),
Group([ f4, £3, f1, f2 1) ]

1.3 Group endomorphisms

Everybody knows that every automorphism of the symmetric group S3 (= GIW6_2) fixes a point (besides
the identity of the group). But, are there endomorphisms which fix nothing but the identity? We are going
to simply try it out. On our way we will find out that all automorphisms of S3 are inner automorphisms.

gap> G := GIW6_2;
6/2
gap> Automorphisms( G );
[ IdentityMapping( 6/2 ), ~(2,3), ~(1,3), ~(1,3,2), ~(1,2,3), “(1,2) ]
gap> Endos := Endomorphisms( G );
(@2, 1,2,31 >00, O1, [ 1,2, (1,2,3) 1 > [ (2,3, O 1,

[ (1,2), (1,2,3) 1,3, O1, [ 1,2), (1,2,3) 1 > [ 1,2, O 1,
(1,2), (1,2,3) (2,3), (1,2,3) 1,
(1,2), (1,2,3) (2,3), (1,3,2
(1,2), (1,2,3) (1,2), (1,3,2
(1,2), (1,2,3) 1,2), (1,2,3
(1,2), (1,2,3) (1,3, 1,2,3
(1,2), (1,2,3) 1,3, (1,3,2
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—
|
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Now it is time for real programming, but don’t worry, it is all very simple. We write a function which
decides whether an endomorphism fixes a point besides the identity or not (in the latter case we call the
endomorphism fixed-point-free).
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gap> IsFixedpointfree := function( endo )

>local group;

> group := Source( endo ); # the domain of endo

> return ForAll( group, x -> (x <> x"endo) or (x = Identity(group)) );
> # x is not fixed or x is the identity

>end;

function ( endo ) ... end

This paragraph says that IsFixedpointfree is a function that takes one argument (called endo). Now we
create a local variable group to store the group on which the endomorphism acts (in our example this will
always be S3, but maybe we want to use this function for other groups, too). Local means that GAP may
forget this variable as soon as it has computed what we want (and it will forget it instantly afterwards).
Now we store the domain of endo in the variable group. The next line already returns the result. It returns
true if for all elements x of group either x is not fixed by endo or x is the identity of the group. This line
is a one-to-one translation of the logical statement that endo is fixed-point-free.

The result is a function which can be applied to any endomorphism, now. For example we can ask if the
fourth endomorphism in the list E is fixed-point-free.

gap> e := Endos[4];

[ 1,2, (1,2,3) 1 > [ (1,2), O]
gap> IsFixedpointfree( e );

false

Now we filter out the fixed-point-free endomorphisms.

gap> Filtered( Endos, IsFixedpointfree );
([0 @@,2, 1,2,3)1 >100, O11

1.4 Finding a set of generators

It is well known that for any finite p-group G the factor G/®(G) modulo the Frattini subgroup ®(G) has
order p?(%), where §(G) is the minimal number of generators of G. Moreover the representatives of the
residue classes modulo ®(G) form a set of generators. So a generating set for a p-group could be obtained
in the following way. We choose the group 16/11 (a semidirect product of the cyclic group of order 8 with
the cyclic group of order 2).

gap> G := GTW16_11;

16/11

gap> F := FrattiniSubgroup( G );

Group([ (1,4,11,14)(2,7,10,16)(3,8,15,9)(5,12,6,13) 1)

gap> NontrivialRepresentativesModNormalSubgroup( G, F );

[ (1,16,14,10,11,7,4,2)(3,12,9,5,15,13,8,6),
(1,3)(2,5)(4,8)(6,10)(7,12) (9,14)(11,15) (13,16),
(1,13,4,5,11,12,14,6) (2,3,7,8,10,15,16,9) ]

gap> H := Group( last );

Group([ (1,16,14,10,11,7,4,2)(3,12,9,5,15,13,8,6),
(1,3)(2,5)(4,8)(6,10)(7,12) (9,14) (11,15) (13,16),
(1,13,4,5,11,12,14,6)(2,3,7,8,10,15,16,9) 1)

gap> G = H; # test

true

The variable 1last in the this example refers to the last result, i.e. in this case the list of representatives.






Nearrings

A (left) nearring is an algebra (N, 4, %), where (N,+) is a (not necessarily abelian) group, (N,x*) is a
semigroup, and the distributive law z * (y + 2) = z * y + 2 * z holds. Such nearrings are called left nearrings.
A typical example is constructed as follows: take a group (G,+) (not necessarily abelian), and take the
set M(G) of all mappings from G to G. Then we define + on M(G) as pointwise addition of mappings,
and * by m * n(y) := n(m(y)). The multiplication looks more natural if we write functions right of their
arguments. Then the definition reads (y)m * n = ((y)m)n.

Textbooks on nearrings are [Mel85], [Cla92], [CFF02]. They all use left nearrings. The book [Pil83] uses
right nearrings; these are the algebras that arise if we claim the right distributive law (z4y)*2z = zxz+y*z
instead of the left distributive law given above.

SONATA uses left nearrings throughout.
2.1 Entering nearrings into the system

The problem: Input the nearring given in the example of page 406 of [Pil83] into SONATA.

This nearring is given by an explicit multiplication table. The function ExplicitMultiplicationNearRing
can be used to do the job. But first, let’s get the additive group, which is Klein’s four group:

gap> G := GTW4_2;
4/2

Now we have to establish a correspondence between the elements 0, a, b, ¢ of the group in the example and
GAP’s representation of the group elements.

gap> AsSortedList( G );
[ O, 3,49, (1,2), (1,2)(3,4 ]

Ok, let’s map 0 to (), a to (3,4), b to (1,2) and c to (1,2)(3,4)

gap> SetSymbols( G, [ non, mah, pn, nen ] );
gap> PrintTable( G );

Let:

0:=0

a := (3,4

b := (1,2)

c := (1,2)(3,4)
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Now for entering the nearring multiplication: We will use the function NrMultiplicationByOperationTable.l]
This function requires as one of its arguments a matrix of integers representing the operation table: We
choose the entries of table according to the positions of the elements of G in AsSortedList( G ):

gap> table := [ [ 1, 1, 1, 117,
> [1, 1, 2, 21,
> [1, 2, 4, 317,
> [1,2,3,41]11;
rft+,1,1¢,11,01,12,2,21,[1,2,4,31,I[1,2,3,41]1]

Now we are in position to define a nearring multiplication:

gap> mul:=NearRingMultiplicationByOperationTable(
> G, table, AsSortedList(G) );
function( x, y ) ... end

And finally, we can define the nearring;:

gap> N := ExplicitMultiplicationNearRing( G, mul );
ExplicitMultiplicationNearRing ( 4/2 , multiplication )

We get no error message, which means that we have indeed defined a nearring multiplication on G. Now let’s
take a look at it:

gap> PrintTable( N );

Let:

0 := (O)

a := ((3,4))

b := ((1,2))

c = ((1,2)(3,4))

The symbols used for the elements of the group are also used for the elements of the nearring. Of course, it
is still possible to redefine the symbols.

2.2 Some simple questions about the nearring

Now, that the nearring is in the system, let’s ask some questions about it. A nearring is a nearfield if it has
more than one element and its nonzero elements are a group with respect to multiplication. A textbook on
nearfields is [W&h87]. They are interesting structures, closely connected to sharply 2-transitive permutation
groups and fixedpointfree automorphism groups of groups.
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gap> IsNearField( N );

false

gap> IsIntegralNearRing( N );
false

gap> IsNilpotentNearRing( N );
false

[Pil83] is correct ... Well at least in this case.;-))

2.3 Entering the nearring with less typing

Certainly, everybody has immediately seen, that this nearring is a transformation nearring on GTW4_2 which
is generated by the transformations 0 to 0, a to a, b to c, ¢ to b, and the identity transformation, so

gap> t := GroupGeneralMappingByImages (

> G, G, AsSortedList(G), AsSortedList(G){[1,2,4,3]1} );

[ O, 3,49, (1,2, (1,20@,4 1 > [ O, 3,49, (1,2(3,4), (1,2) 1]

gap> id := IdentityMapping( G );

IdentityMapping( 4/2 )

gap> T := TransformationNearRingByGenerators( G, [t,id] );

TransformationNearRingByGenerators(

(Lo, 6,49, (1,2), (1,22@,49 1 >10, 3,9, 1,2@G,49, 1,2 1,
IdentityMapping( 4/2 ) 1)

Let’s see what we’ve got:

gap> PrintTable(T);

Let:

n0 := <mapping: 4/2 -> 4/2
nl := <mapping: 4/2 -> 4/2
n2 := <mapping: 4/2 -> 4/2
n3 := <mapping: 4/2 -> 4/2

vV V V V

Obviously, we’ve got the correct nearring. Let’s make for sure:

gap> IsIsomorphicNearRing( N, T );
true

However, N and T are certaily not equal:

gap> N = T;
false






The nearring library

There are many non-isomorphic nearrings, even of small order. All non-isomorphic nearrings of orders 2 to
15 and all non-isomorphic nearrings with identity up to order 31 with exception of those on the elementary
abelian groups of orders 16 and 27 are collected in the SONATA nearring library.

3.1 An application of the nearring library

The number of nearrings in the library is big. For example, try
gap> NumberLibraryNearRings( GTW12_3 );
48137
Try your favorite small groups with this function to get an impression of these numbers.

Of course, no one can know all these nearrings personally. Therefore, the main purpose of the nearring
library is to filter out the nearrings of interest.

Consider for example the following

Problem: How many non-rings with identity of order 4 are there and what do they look like? If you cannot
answer this question adhoc, stay tuned.

Let’s start with the groups of order 4. Of course you know, there are 2 groups of order 4: GTW4_1, the cyclic
group and GTW4_2, Klein’s four group.

Let’s go for GTW4_1 first:
gap> NumberLibraryNearRingsWithOne( GTW4_1 );

1

gap> Filtered( AllLibraryNearRingsWithOne( GTW4_1 ),
> n -> not IsDistributiveNearRing( n ) );
L]

So, the only nearring with identity there is on GTW4_1 is the ring. Well... you knew that before, didn’t you?
Now for GTW4_2:

gap> NumberLibraryNearRingsWithOne( GTW4_2 );

5
gap> Filtered( AllLibraryNearRingsWithOne( GTW4_2 ),
> n -> not IsDistributiveNearRing( n ) );

[ LibraryNearRing(4/2, 12), LibraryNearRing(4/2, 22) ]

Here we go:

gap> PrintTable( LibraryNearRing( GTW4_2, 12 ) );

Let:

n0 := (O)

nl := ((3,4))

n2 := ((1,2))

n3 := ((1,2)(3,4))
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n3 n0 nl n2 n3
gap> PrintTable( LibraryNearRing( GTW4_2, 22 ) );

Let:

n0 := (O)

nl := ((3,4))

n2 := ((1,2))

n3 := ((1,2)(3,4))

3.2 Appendix K revisited

An alternative to filtering the nearring library is to use a for ... do ... od construction.

We shall demonstrate this by recomputing the list of nearrings given in appendix K of [Pil83], i.e. a list of
all nearrings on the dihedral group of order 8 (GTW8_4) which have an identity, are non-zerosymmetric or
are integral.

First, we initialize the variable nr_list as the empty list:
gap> nr_list := [ ];

L]

Now, we write ourselves a for loop and add those nearrings we want:
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gap> for i in [1..NumberLibraryNearRings( GTW8_4 )] do

> n := LibraryNearRing( GTW8_4, i );

> if ( not IsZeroSymmetricNearRing( n ) or
> IsIntegralNearRing( n ) or

> Identity( n ) <> fail

> ) then

> Add( nr_list, n );

> fi;

> od;

gap> Length( nr_list );

141

How many boolean nearrings are amongst these? We call a nearring boolean if x x z = z for all x € N.

gap> Filtered( nr_list, IsBooleanNearRing );
[ LibraryNearRing(8/4, 1314), LibraryNearRing(8/4, 1380),
LibraryNearRing(8/4, 1446), LibraryNearRing(8/4, 1447) ]

Which correspond to the numbers 140, 86, 99, and 141 in [Pil83], appendix K, accordingly.

For those who got interested in boolean nearrings: many results about them have been collected in [Pil83],
9.31.






Nearrings of
transformations on
groups

We are going to study transformations on the alternating group on four elements Ay.

The problem: Let T be the nearring of mappings from A4 to A4 generated by the single mapping ¢ which
maps (2,3,4) to (2,4,3), (2,4,3) to (1,2)(3,4), (1,2)(3,4) to (1,2,3), (1,2,3) back to (2,3,4) and all other elements
of A4 to the neutral element (). Then, how many mappings are there in T that have (1,2,3) as a fixed point?
If there are only a few we would be interested in a list of all of these.

The solution:

The first thing to do is create the nearring T'. So we start with the group A4, which can easily be constructed
with the command

gap> A4 := AlternatingGroup( 4 );
AltC L1 ..41)

The result is an object which represents the group Ay. If we want to see its elements we have to ask GAP
to make a list of elements out of the group.

gap> AsSortedList( A4 );
[ O, (2,3,4, (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]

Now we create the mapping ¢. We use the function MappingByPositionList to enter it.

t := EndoMappingByPositionList( A4, [1,3,4,5,2,1,1,1,1,1,1,1] );
<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup(
[1..47)>

For Mappings the usual operations + and * can be used to add and multiply them.

gap> t+t;

<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup(
[1..41)>

gap> last * t;

<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup(
[1..41)>

(Recall that last stands for the result of the last computation, in this case this is t + t). Now we can
construct the nearring. We use the function TransformationNearRingByGenerators which asks for the
group (A4) and a list of generating elements (the list with ¢ as the only entry) as arguments.

gap> T := TransformationNearRingByGenerators( A4, [ t ] );;

Nearrings, allthough generated by a single element can become rather big. Before we print out all elements
we ask for the size of T.



4-2 Chapter 4. Nearrings of transformations on groups

gap> Size( T );
20736

It seems reasonable not to print all elements. Note that they are not even computed, yet. All we wanted
to know was the size of T and this can be computed without generating all elements. But, yes, we could
generate them with AsList or AsSortedList. At last we want to find out how many of these 20736
GroupTransformations have (1,2,3) as a fixed point. We filter them out, but we use a second semicolon
at the end to suppress printing, because there might be a lot of them. Then we ask for the length of the
resulting list F' of mappings.

gap> F := Filtered( T, tfm -> Image( tfm, (1,2,3) ) = (1,2,3) );;
gap> Length( F );
1728

It seems not to be worth printing the whole list. But we could for example choose a random transformation
from this list F' for testing purposes.

gap> Random( F );;

There are of course other properties of the nearring 7" which might be interesting. It is clear that a nearring
which is generated by a single element is not necessarily abelian. T is a counterexample. As for finding
counterexamples, SONATA can be used as a research tool.

gap> IsCommutative( T );
false

Finally, we try to disprove the conjecture that every transformation nearring on an abelian group that is
generated by a single element must be commutative.

gap> g := CyclicGroup(2);;

gap> m := MapNearRing(g);;

gap> Filtered( m, n -> not( IsCommutative(

> TransformationNearRingByGenerators( g, [n] ) ) ) );

gap> [ <mapping: Group( [ £f1 ] ) -> Group( [ £f1 1 ) >,
<mapping: Group( [ f1 ] ) -> Group( [ £f1 1 ) > 1]

gap> GraphOfMapping(last[1]);

[ [ <identity> of ..., f1 1, [ f1, <identity> of ... ] ]



Some interesting
nearrings

One motivation for creating SONATA was to study particular near-rings associated with a given group G:
the inner automorphism nearring I(G), the automorphism nearring A(G), and the endomorphism nearring
E(G). The nearring I(G) is the smallest subnearring of the nearring M (G) of all mappings from G into
G that contains all inner automorphisms; similarly A(G) and E(G) are defined. [Mel85] contains a lot of
information on these near-rings.

5.1 Nearrings generated by endomorphisms on a group

Let us compute the nearring I(Ay4), which is the nearring of all zero-symmetric polynomial functions on the
group Ay.

gap> I := InnerAutomorphismNearRing ( AlternatingGroup ( 4 ) );
InnerAutomorphismNearRing( A1t( [ 1 .. 41 ) )

gap> Size (I);

3072

For a polynomial function, we can ask for a polynomial that induces it.

gap> p := Random( I );

<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup( [ 1 .. 41 ) >

gap> PrintAsTerm( p );
-gl+g2-x-g2+gl+g2+gl-x+g2-x+2x*gl-

3*xx-gl+x+g2-x-g2+gl+x-gl+x-gl+x+

gl+x-g2-x+g2-gl-x+gl+x

gap> Generators0fGroup( AlternatingGroup( 4 ) );

[ (1,2,3), (2,3,4) 1]

We get a polynomial (not necessarily the shortest possible polynomial) that induces the polynomial function.
The expressions g1 and g2 stand for the first and second generator of the group respectively.

Now we compute the nearring that is additively generated by the automorphisms of the dihedral group of
order 8. This nearring is usually called A(Dsg).

gap> A := AutomorphismNearRing ( DihedralGroup ( 8 ) );
AutomorphismNearRing( <pc group of size 8 with 3 generators> )
gap> Size (4);

32

Much attention has been devoted to the nearring E(Sy), which is the nearring additively generated by the
endomorphisms on the symmetric group on four letters.
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gap> EndS4 := EndomorphismNearRing ( SymmetricGroup ( 4 ) );
EndomorphismNearRing( Sym( [ 1 .. 41 ) )

gap> Size ( EndS4 );

927712935936

gap> F1 := last;;

gap> Collected ( Factors( F1 ));

(l2 31, [3, 311

In the last example, we have computed the size of E(S,) as 23° - 33.

We have also included some less popular examples of nearrings. One of those is the nearring H (G, U). This
is the nearring that is generated by all endomorphisms on G whose range lies in the subgroup U of G. We
do an example on the group 16/8 in the classification of Thomas and Wood. It is a subdirectly irreducible
group of order 16, and the factor modulo the monolith is isomorphic to the elementary abelian group of
order 8.

gap> G := GTW16_8;
16/8
gap> U := First ( NormalSubgroups( G ), N -> Size(N) = 2 );

Group([ ( 1, 5)( 2,100( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) 1)
gap> HGU := RestrictedEndomorphismNearRing (G, U);
RestrictedEndomorphismNearRing( 16/8, Group(

[ (1, 8(C2,100( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) 1) )
gap> Size (HGU);

8

It is interesting to compare this nearring to the nearring of all functions e in the endomorphism nearring
E(G) with the property e(G) C U.

gap> EofG := EndomorphismNearRing ( G );

EndomorphismNearRing( 16/8 )

gap> EGU := NoetherianQuotient ( EofG, U, G );

NoetherianQuotient ( Group(

[ (1, 5(2,100( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) 1) ,16/8 )
gap> Size ( EGU );

128

If N is a transformation nearring on G, and U, V are subsets of G then NoetherianQuotient (N,U,V)
returns the collection of all mappings f € N such that f(V) C U.

5.2 More information than just the size

In this section, we use SONATA to produce some interesting information about the nearring I(.Ss), which
is the nearring of all zero-symmetric polynomial functions on the group Ss.

gap> G := SymmetricGroup ( 3 );

Sym(C [ 1 ..31)

gap> I := InnerAutomorphismNearRing ( G );
InnerAutomorphismNearRing( Sym( [ 1 .. 31 ) )
gap> Size( I );

54

Now we would like to see how many of these 54 functions are idempotent. First a complicated version.
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gap> Filtered ( I,

> t -> ForAll( G, g -> Image(t, g) = Image(t, Image(t, g)) ) );;
gap> Length( last );
18

Now a simpler version.

gap> Filtered ( I, i -> i"2 =1 );;
gap> Length( last );
18

5.3 Centralizer nearrings

Let ® be a subset of the endomorphisms of a group G. Then we define Ms(G) as the set of all mappings
m : G — G that satisfy m o = ¢ om for all ¢ € ®. This set is closed under addition and composition
of mappings, and hence a subnearring of M (G). The set Mg(G) is called the centralizer nearring of G
determined by ®. It need not necessarily be zero-symmetric.

In the following examples, we compute the centralizer nearring Mpgpq(s,)(S3).

gap> G := SymmetricGroup( 3 );
Sym( [ 1 ..31)
gap> endos := Endomorphisms( G );
([ (,2,3, 4,221 >00, O1, [ @,2,3, (1,221 >0, @,3 1,
[ (1,2,3), (1,2) O, 2,31, [ 1,2,3), 1,221 >10, 1,21,
[ (1,2,3), (1,2) 1,2,3), (1,3) 1,
[ (1,2,3), (1,2) (1,3,2), (1,2) 1,
[ (1,2,3), (1,2) (1,3,2), (1,3) 1,
[ (1,2,3), (1,2) (1,2,3), (2,3) 1,
[ (1,2,3), (1,2) (1,2,3), (1,2) 1,
[ (1,2,3), (1,2) 1 > [ (1,3,2), (2,3) 11

—
|
\
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gap> C := CentralizerNearRing( G, endos );
CentralizerNearRing( Sym( [ 1 .. 31 ), ... )
gap> Size ( C );

6

An ideal of a nearring (N, +,*) is a subset I such that I is a normal subgroup of (N, +), and for all ¢ € I,
n,m € N, we have (m +i)«n—m=+n € I and nxi € I. Ideals are in one-to-one correspondence to the
congruence relations on (N, +, *).

Do you think that this nearring is simple? Alan Cannon does not think so, and, in fact, SONATA tells us:
gap> I := NearRingIdeals( C );
[ < nearring ideal >, < nearring ideal >, < nearring ideal >,
< nearring ideal > ]
gap> List( I, Size );
[1, 2, 3, 6]

So, we have ideals of size 1,2,3 and 6.

5.4 Finding affine complete groups

We shall now construct all compatible (= congruence preserving) functions on the group 16/6 (Thomas-
Wood-notation); this is the 6" group of order 16 in [TW80]. It is the direct product of Dg and C,. Let
G be this group. We first construct the nearring P(G) of all polynomial functions. Then we construct all
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those functions that can be interpolated at every subset of G with at most two elements by a function in

P(G) by using the function LocalInterpolationNearRing: these are the compatible functions on G (see
[Pi183]).

gap> P := PolynomialNearRing( GTW16_6 );
PolynomialNearRing( 16/6 )

gap> Size( P );

256

gap> C := LocallnterpolationNearRing(P, 2);
LocalInterpolationNearRing( PolynomialNearRing( 16/6 ), 2 )
gap> Size (C);

256

Hence the group 16/6 is 1-affine complete. A much faster algorithm for computing the nearring of compatible
functions can be used.

gap> C := CompatibleFunctionNearRing( GIW16_6 );
< transformation nearring with 7 generators >
gap> Size(C);

256;

Finally, the fastest way to decide 1-affine completeness is to use the function Isl1AffineComplete.
gap> IslAffineComplete( GTW16_6 );

true

When studying polynomial functions on direct products of groups, it is important to know the smallest
positive number [ such that the zero-function can be expressed by a term a; +e;-z+ag+---+ €, T+ apt1
with " e; = [. This [ has been called the length of the group by S.D.Scott.

gap> ScottLength( SymmetricGroup( 3 ) );
2



|deals, factors, and
direct products of
nearrings

An ideal of a nearring (N, +, %) is a subset I such that I is a normal subgroup of (N, +), and for all 7 € I,
n,m € N, we have (m +i)«n —mx*n € I and n i € I. Ideals are in one-to-one correspondence to the
congruence relations on (N, +, *).

A right ideal of a nearring (N, +,x) is a subset I such that I is a normal subgroup of (N,+), and for
all i € I, n,m € N, we have (m + i) xn — m *n € I. Right ideals are in one-to-one correspondence to
the congruence relations on (N, +, {\,|m € M}), where A\, (n) := n * m. Hence, right ideals describe the
congruences of the N-group Ny.

A left ideal of a nearring (N, +,#) is a subset I such that I is a normal subgroup of (N,+), and for all
i1€l,ne N, wehave nxi € I.

6.1 Direct products

For all sorts of nearrings direct products A x B can be constructed. The result is again a nearring. In
the case that both A and B are TransformationNearRings, the result will be a TransformationNearRing
acting on the direct product of the groups A and B act on. In any other case the result is an ExplicitMul-
tiplicationNearRing, even if one of the factors is a TransformationNearRing. In any case, the elements
of a direct product are not pairs or tuples.

gap> A := LibraryNearRing( GTW8_2, 12 );

LibraryNearRing(8/2, 12)

gap> B := LibraryNearRing( GTW12_4, 13 );

LibraryNearRing(12/4, 13)

gap> D := DirectProductNearRing( A, B );

DirectProductNearRing( LibraryNearRing(8/2, 12),
LibraryNearRing(12/4, 13) )

gap> SetName( D, "A x B" );

gap> D;

AxB

In this case the result is an ExplicitMultiplicationNearRing. It is a good idea to give a shorter name to
the nearring D, because we will investigate one of its ideals in the next section.

6.2 ldeals and factors

We go on with the last example of the previous section and try to compute a left ideal which is generated
by two elements, namely the second and the twenty-fifth in the sorted list of elements. The GAP function
list{[ poss 1} constructs a list of those elements of the list 1ist the position in the list 1ist of which is
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in the list poss. For short, elms{[2,25]} is a list which contains the second and the twenty-fifth element
of the list elms.

gap> elms := AsSortedList( D );;

gap> gens := elms{[2,25]};

[ (C8, 9,10)), ((3,5)(4,6)) ]

gap> L := NearRingleftIdealByGenerators( D, gens );
< nearring left ideal >

Now we can start investigating 1. We can compute its size and test if it is an ideal.

gap> Size( L );

24

gap> IsNearRingRightIdeal( L );
true

gap> L;

< nearring ideal of size 24 >

So L is a two-sided ideal with 24 elements. Now we are getting interested in L. Is it a maximal ideal, what
is the factor D/L?

gap> IsMaximalNearRingIdeal( L );

false

gap> F := D/L;

FactorNearRing( A x B, < nearring ideal of size 24 > )
gap> PrintTable( F, "am" );

Here, we use PrintTable with a second argument, because we do not want to see all the information. Here
a stands for addition and m stands for multiplication table. For more options see the reference manual.
Obviously, F' is a constant nearring on a group of order 4. The additive group of the nearring is Zs x Zy. To
make this fact more obvious, we choose other names (symbols) for the elements of the nearring and print
the addition table again.

gap> IsElementaryAbelian( GroupReduct( F ) );

true

gap> # this would also convince us

gap> IsCyclic( GroupReduct( F ) );

false

gap> SetSymbols( F, ["(0,0)","(0,1)","(1,00","(1,1)"] );
gap> PrintTable( F, "m" );
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So F is the zero-ring on Zsy X Zso, which is not simple, but we knew that before.

Of course all this operations can be applied to all nearrings.

6-3






Planar nearrings

We recall the definition of planar nearrings and basic results (see [Cla92]). Let (N, +, ) be a left nearring.
For a,b € N we define a =biff a-n=>b-nforalln € N. If a = b, then a and b are called equivalent
multipliers. A nearring N is called planar if |[N/=| > 3 and if for any two non-equivalent multipliers a and
b in N, for any ¢ € N, the equation a -z = b - z 4+ ¢ has a unique solution.

A Ferrero pair is a pair of finite groups (N, ®) such that ® is a fixed-point-free automorphism group of
(N, +).

Starting with a Ferrero pair (N, ®) we can construct a planar nearring in the following way: Select repre-
sentatives, say ey, ..., e, for some or all of the non-trivial orbits of N under ®. Let C = ®(e1)U...UD(e).
For each z € N we define ¢ -z =0for a € N\ C, and a -z = ¢,(z) for a € ®(e;) C C and ¢,(e;) = a.
Then (N,+,-) is a (left) planar nearring with |N/=| = |®| 4 1.

Every finite planar nearring can be constructed from some Ferrero pair together with a set of orbit repre-
sentatives in this way.

The problem: Find a planar nearring with 25 elements and 9 pairwise non-equivalent multipliers.

The solution: We follow the Ferrero method described above for defining a nearring multiplication on an
additive group. First we have to find a fixed-point-free (fpf) automorphism group of order 8 on a group of
order 25.

We start with the cyclic group of order 25: First of all we ask for the existence of an fpf automorphism
group on CyclicGroup(25) by computing an upper bound for its order.

gap> FpfAutomorphismGroupsMaxSize( CyclicGroup(25) );
[ 4, 1]

This function returns a list with two integers, 4 and 1. The first number is an upper bound for the size of
an fpf automorphism group; if there is a metacyclic fpf automorphism group, then it has a cyclic normal
subgroup of index dividing the second number. These bounds are not sharp. If the upper bound for the size
of an fpf automorphism group on some group is 1, we know that there is no nontrivial fpf automorphism
group, no Ferrero pair, and no planar nearring on this group at all.

Here, SONATA does not exclude the possibility that the cyclic group of order 25 has an fpf automorphism
group of order 4. However, we can be sure that all fpf automorphism groups are cyclic and that none of
them has size 8.

Thus we have to consider the elementary abelian group of order 25 instead.

gap> FpfAutomorphismGroupsMaxSize( ElementaryAbelianGroup(25) );
[ 24, 2]

There might even exist an fpf automorphism group of order 24. (In fact there is more than one. The
reference manual explains how to obtain all nearfields of size 25.) For our example, we could compute either
a cyclic automorphism group or one isomorphic to the quaternion group with 8 elements. Let’s try the
latter.
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gap> aux := FpfAutomorphismGroupsMetacyclic( [5,5], 4, -1 );
(L CCf1, £21 > [ £f172, £2°3 1, [ f1, £2 ] -> [ £274, £f1 1] 1],
<pc group of size 25 with 2 generators> ]

Here, the function FpfAutomorphismGroupsMetacyclic determines the metacyclic fpf automorphism groups
on AbelianGroup([5,5]) with generators p, g satisfying p* = 1, p¢ = p~!, and ¢% = p?. For each conjugacy
class of such groups one representative is given. Conjugacy is determined within the whole automorphism
group of AbelianGroup([5,5]). The actual output of the function is a list with 2 elements. The first is
not the list of fpf groups up to conjugacy but the list of automorphisms p, ¢ generating those groups. The
second element is simply the group AbelianGroup([5,5]), on which the automorphisms act.

Since there is only one pair of generators p, ¢, all fpf automorphism groups isomorphic to the quaternion
group are conjugate. Now, we have our Ferrero pair (G, ®).

gap> phi := Group( aux[1][1] );

<group with 2 generators>

gap> G := aux[2];

<pc group of size 25 with 2 generators>

Next we have to pick some orbit representatives. We note that for a fixed Ferrero pair distinct choices of
representatives may yield isomorphic nearrings. The function OrbitRepresentativesForPlanarNearRing
returns exactly one set of representatives of given cardinality for each isomorphism class of planar nearrings
which can be generated from (G, ®).

gap> OrbitRepresentativesForPlanarNearRing( G, phi, 1 );
LLf11]1

This tells us that all planar nearrings obtained from (G, ®) with one orbit representative are in fact isomor-
phic. What happens if we choose 2 representatives?

gap> reps := OrbitRepresentativesForPlanarNearRing( G, phi, 2 );
[ [£f1, fixf2 1, [ £f1, £172%f272 ] ]

We obtain 2 non-isomorphic planar near-rings. Let’s just construct one of them. The result will be an
ExplicitMultiplicationNearRing.

gap> n := PlanarNearRing( G, phi, reps[1] );
ExplicitMultiplicationNearRing ( <pc group of size 25 with
2 generators> , multiplication )

How many non-isomorphic planar nearrings can be defined from our Ferrero pair (G, ®) in total? Since
there are 3 non-trivial orbits of ® on G, we may choose up to 3 representatives.

gap> Length(OrbitRepresentativesForPlanarNearRing( G, phi, 3 ));
6

Summing all up, we get exactly 9 non-isomorphic planar nearrings with elementary abelian additive group
of order 25 whose multiplication is defined using a quaternion group of fpf automorphisms.



Designs

Various designs can be obtained from nearrings. The design structure and basic functions for the manipula-
tion of designs have been implemented within SONATA, as well as the means to construct the most popular
nearring designs. Please see the reference manual for other ways to generate designs, e.g. by a set of blocks
or by an incidence matrix.

8.1 Designs from planar nearrings

We are going to generate a design with a feasible parameter set from a planar nearring, respectively from a
Ferrero pair. For notations and definitions we refer to [Cla92].

Let N be a (left) planar nearring. Then we can define a design (N, B*, €) with N as the set of points and
{N*-a+bla,b € N,a # 0} as set of blocks. Here N* = {z € N|z - N = N}. We note that such a design
is always a BIB-design. Suppose that the planar nearring N is obtained from the Ferrero pair (G, ®) as
described in the previous chapter with v := |G|, k := |®|. We can identify G and the additive group of the
nearring N. Then N*-a = ®(a) for all ¢ € N. The number of points of (N, B*, €) is v, each block has size
k, and any 2 distinct points are together incident with precisely £ — 1 blocks. We say that (N, B*,€) is a
2 — (v, k,k — 1) design. Note that k divides v — 1.

The problem: Find a 2 — (16, 5,4) design (N, B*, €) if possible.

The solution: Since our design should have 16 points, we need a planar nearring of size 16. Furthermore,

this planar nearring has an underlying Ferrero pair with a fixed-point-free (fpf) automorphism group of
order 5, since the blocks should be of that size.

Let (G, ®) be such a Ferrero pair. We note that ® is fpf on all characteristic subgroups of G, in particular,
on the center of G. For our example the size of the center modulo 5 has to be congruent to 1. Therefore the
center has order 16, and G is abelian. Since ® is also fpf on any factor of G by a characteristic subgroup,
® is fpf on the factor of G by its Frattini subgroup. Thus G is elementary abelian.

Now we compute an fpf automorphism group of order 5 on the elementary abelian group of order 16:

gap> aux := FpfAutomorphismGroupsCyclic( [2,2,2,2], 5 );

[ [[f1, £f2, £3, f4 1 -> [ f4, f1xf2, f2*%f3, £3xf4 ] ],
<pc group of size 16 with 4 generators> ]

gap> a := aux[1][1];

[ £f1, f2, £3, £f4 1 —> [ £4, f1xf2, £2%f3, £3xf4 ]

gap> phi := Group( a );;

gap> G := aux[2];;

Up to conjugacy there is only one fpf automorphism group of order 5. We note that all planar nearrings

obtained from a fixed Ferrero pair (G, ®) yield the same design. We build the blocks ®(a) + b for a,b €
G,a # 0, of (N, B*, €) directly from (G, ®) without actually generating a nearring.
gap> D := DesignFromFerreroPair( G, phi, "*" );

<a 2 - ( 16, 5, 4 ) nearring generated design>

The reference manual describes other options for DesignFromFerreroPair besides "*" and the correponding
designs as well.
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8.2 Information on designs

We investigate the design D, which we have generated from a planar nearring in the last section.
gap> D;
<a 2 - ( 16, 5, 4 ) nearring generated design>
gap> DesignParameter( D );
[ 2, 16, 48, 15, 5, 4 ]

DesignParameter( D ) returns the set of parameters ¢, v, b, 7, k, A of the design D. Here there are 16 points,
48 blocks, every point is incident with precisely 15 blocks, every block is incident with precisely 5 points,
every 2 distinct points are together incident with precisely 4 blocks. The design can be visualized by printing
the incidence matrix. The rows are labelled by the points, the columns by the blocks. The point of number
i is incident with the block of number j if and only if the entry in the i-th row, j-th column is 1.

gap> PrintIncidenceMat( D );
U e s e e e s e A A 1 8

By checking the entries in the incidence matrix we realize this design is circular, that is, any 2 distinct blocks
have at most 2 points in common. Actually, this is not so easy to see. We prefer to do it like this:

gap> IsCircularDesign( D );
true

There are convenient functions to check which points are incident with a given set of blocks and vice versa.

gap> PointsIncidentBlocks( D, [2,7] );
[ 6, 14 ]

gap> BlocksIncidentPoints( D, [6,14] );
[ 2,7, 31, 44 ]

Here the 6-th and the 14-th point are incident with the given blocks with numbers 2 and 7. The numbering
corresponds to that of the columns and rows of the incidence matrix. Blocks 2, 7, 31, and 44 are incident
with points 6 and 14.

The cardinalities of the intersections of one block with all the others, e.g. of the 4-th block with all 48 blocks
are given like this.

gap> BlockIntersectionNumbers( D, 4 );
[o, 2,2,5,0,0,2, 2,1, 2,1, 2, 2,
2, 2,2,2,1,2,2,1,2,2,1, 2,1

2, 2,1, 21

1, 2,2,2,1, 2,1, 2, 0,
, 1, 2,0, 2,2,0, 2, 2, 0,2

) B

Of course, all these functions can be applied to all kinds of designs no matter how they have been generated.
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