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Preface

When working on our master’s and PhD-projects in nearring theory we hoped that we would gain more
insight into the problems we worked on if we had significant examples at hand. For example, Erhard
Aichinger wanted to find 1-affine complete groups; these are groups on which every unary compatible, i.e.,
congruence preserving, function can be interpolated by a polynomial function. In other words, a group G
is 1-affine complete if the nearring I (G) contains all functions in the nearring C0(G) of all zero-preserving
compatible functions. After having written a straight-forward program to compute all polynomial functions
on a group, which basically relied on computing all terms and checking whether the arising functions were
equal, he found that in that way probably only the groups of order less than 10 could be treated, and
therefore abandoned his hope to find help in computers for quite a while.

At about the same time, Christof Nöbauer was collecting a library of all small nearrings; and he decided
to implement his library into the group-theory system GAP. Then Jürgen Ecker started to break rings into
their subdirectly irreducible parts using GAP.

In May 1995, we realized that the problem of computing the number of polynomial functions on a group was
actually an easy task if one used the power of computational group theory. The easy key observation is that
it is easy to compute how big the group generated by some group elements is. Representing the functions
on G as elements of G |G|, it is easy to compute first the generators of the group of polynomial functions and
then all polynomial functions as the closure of these generators. This observation, albeit strikingly easy, and
of course not even original, made it possible to compute the number of polynomial functions on S4, which
is 22 265 110 462 464, in a few seconds. The same strategy also worked for other kinds of distributively
generated nearrings, such as A(G) or E (G).

At this point, we decided to make a package of our functions and make them available to a wider community.
Encouraged by the enthusiasm of Prof. Günter Pilz, and paid by the “Fonds zur Förderung wissenschaftlicher
Forschung”, we started to bring our functions into a common form, and to add many functions that we found
useful, as e.g. the computation of Noetherian Quotients, which works especially fine for polynomial nearrings.
We wanted to include the applications of nearring theory to design-theory, because especially in this field
we thought that it could only be through the examination of examples that the contribution of nearrings to
this field could be investigated. This part was then mainly carried forward by Peter Mayr.

In the beginning of 1997, with the conference at Stellenbosch coming near, we decided to make our programs
available to nearringers six months later. Despite of the fact that SONATA does not contain many new
sophisticated algorithms, and therefore hardly represents a big deal in computational nearring theory, it uses
a lot of well-established sophisticated algorithms in group theory. We think that our real contribution is
to take advantage of these algorithms for computing with nearrings. Nevertheless, computational nearring
theory could be interesting: A typical problem arising in the computation of nearrings would be the following:
Given a function on a group, how big is the nearring generated by it? And what if we take more than one
function? And how can a given function in the nearring be represented by the generators? We recall that
Sim’s stabilizer chains give solutions to similar problems in the theory of permutation groups. We think
that even an answer for one function, and on special groups, would be delightful.

Examples of nearrings are nice; but it would be even nicer to have a lot of interesting examples in a small
booklet. At this point, Franz Binder joined us, and started to work on a nearring table containing all
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nearrings up to a certain order and giving meaningful information about each of them, such as for example
the ideal lattice with commutators in the sense of universal algebra. It was when he started to work on
this complete library that the people at the Maths Department, whose printers we constantly fed with new
nearring information, started to give us rather strange looks, which we could not explain to ourselves but
as signs of starting admiration for the beauty of nearrings.

When a beta version 4 of GAP came out, we found that SONATA should be written in this new version of
GAP4. Jürgen Ecker’s effort to translate all existing GAP3-code into GAP4 was rewarded by the observation
that many things worked much better in GAP4 than they did before. Just before leaving to Stellenbosch,
he invented the name SONATA for our programs that sometimes proceed andante, but at other times really
rather presto.

At the nearring conference in Stellenbosch in July 1997, we showed some possibilities of our system to
many people doing research in nearring theory. Their interest in our system showed us that our hope that
nearringers would actually use SONATA was by no means unfounded.

On October 1st, 1997, we gave away the first version of SONATA. In January 2002, finally, we were able to
submit SONATA for refereeing as a GAP4 share package.

We are eager to hear YOUR feedback in order to make SONATA nicer in all respects.

We, the SONATA team, want to say THANK YOU to all that have helped us in some way to realize this
project:

- to Tim Boykett for helping us with his expertise in computers and how they could be used in
algebra;

- to Roland Eggetsberger for his ideas about planar nearrings and designs;
- to Marcel Widi, who contributed some functions on semigroups which, however, somehow do not

lie in the scope of the SONATA project;
- to Christof Nöbauer, who not only filled our hard disks with an evergrowing number of nearrings,

but also worked a lot to keep our computers running;
- to Markus Hetzmannseder for administrating our computers and keeping our GAP installation

alive and up-to-date for the last few years;
- to the staff at the algebra group at our department, and in particular to all our visitors, who have

put lots of ideas into our heads: this includes Peter Fuchs, Gerhard Betsch, Jim Clay, Wen-Fong
Ke, Carl Maxson, John Meldrum, Gary Birkenmeier;

- to the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung”(FWF) for supporting
SONATA via the grants P11486-TEC and P12911-INF.

Needless to say, this project would never been carried out without the encouragement and suggestions of
Prof. Günter Pilz.

So, what you have now is a system that contains a library of all small nearrings and many functions to
construct and analyze a lot of interesting big nearrings. Have fun !

Linz, 16.1.02, the SONATA Team*

* The SONATA Team consists of
Erhard Aichinger
Franz Binder
Jürgen Ecker
Peter Mayr
Christof Nöbauer



1
Supportive functions

for groups

In order to support nearring calculations, a few functions for groups had to be added to the standard GAP
group library functions.

The functions described here can be found in the source files grpend.g? and grpsupp.g?

1.1 Predefined groups

All groups of order 2 to 32 are predefined. They can be accessed by variables of the kind GTWo n where o
defines the order of the group and n the number of the group of order o as they appear in [TW80] . For
example, GTW16 6 defines the group of Thomas – Wood type 16/6, which is actually D4 × C2.

Alternatively, these groups can be accessed via the function

x TWGroup( o, n )

with o and n as above. In addition, all these groups are stored in the list GroupList.

Conversely, for any group G of order at most 32,

x IdTWGroup( G )

returns a pair [o,n], meaning that G is isomorphic to the group o/n.
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gap> G := GTW6_2;
6/2
gap> H := TWGroup( 4, 2 );
4/2
gap> D := DirectProduct( G, H );
Group([ (1,2), (1,2,3), (4,5), (6,7) ])
gap> IdTWGroup( D );
[ 24, 4 ]
gap> GroupList;
[ 2/1, 3/1, 4/1, 4/2, 5/1, 6/1, 6/2, 7/1, 8/1, 8/2, 8/3, 8/4, 8/5,
9/1, 9/2, 10/1, 10/2, 11/1, 12/1, 12/2, 12/3, 12/4, 12/5, 13/1,
14/1, 14/2, 15/1, 16/1, 16/2, 16/3, 16/4, 16/5, 16/6, 16/7, 16/8,
16/9, 16/10, 16/11, 16/12, 16/13, 16/14, 17/1, 18/1, 18/2, 18/3,
18/4, 18/5, 19/1, 20/1, 20/2, 20/3, 20/4, 20/5, 21/1, 21/2, 22/1,
22/2, 23/1, 24/1, 24/2, 24/3, 24/4, 24/5, 24/6, 24/7, 24/8, 24/9,
24/10, 24/11, 24/12, 24/13, 24/14, 24/15, 25/1, 25/2, 26/1, 26/2,
27/1, 27/2, 27/3, 27/4, 27/5, 28/1, 28/2, 28/3, 28/4, 29/1, 30/1,
30/2, 30/3, 30/4, 31/1, 32/1, 32/2, 32/3, 32/4, 32/5, 32/6, 32/7,
32/8, 32/9, 32/10, 32/11, 32/12, 32/13, 32/14, 32/15, 32/16, 32/17,
32/18, 32/19, 32/20, 32/21, 32/22, 32/23, 32/24, 32/25, 32/26,
32/27, 32/28, 32/29, 32/30, 32/31, 32/32, 32/33, 32/34, 32/35,
32/36, 32/37, 32/38, 32/39, 32/40, 32/41, 32/42, 32/43, 32/44,
32/45, 32/46, 32/47, 32/48, 32/49, 32/50, 32/51 ]

1.2 Operation tables for groups

x PrintTable( G )

PrintTable prints the Cayley table of the group G .

gap> G := GTW4_2;
4/2
gap> PrintTable( G );
Let:
g0 := ()
g1 := (3,4)
g2 := (1,2)
g3 := (1,2)(3,4)

* g0 g1 g2 g3
------------------
g0 g0 g1 g2 g3
g1 g1 g0 g3 g2
g2 g2 g3 g0 g1
g3 g3 g2 g1 g0

Sometimes different symbols for the elements in the would make the table look nicer. For the group 4/2
(Z2 × Z2) one could choose the canonical form as pairs of zeros and ones.
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gap> G := GTW4_2;
4/2
gap> SetSymbols( G, ["(0,0)","(1,0)","(0,1)","(1,1)"] );
gap> PrintTable( G );
Let:
(0,0) := ()
(1,0) := (3,4)
(0,1) := (1,2)
(1,1) := (1,2)(3,4)

* (0,0) (1,0) (0,1) (1,1)
-----------------------------------
(0,0) (0,0) (1,0) (0,1) (1,1)
(1,0) (1,0) (0,0) (1,1) (0,1)
(0,1) (0,1) (1,1) (0,0) (1,0)
(1,1) (1,1) (0,1) (1,0) (0,0)

1.3 Group endomorphisms

x Endomorphisms( G )

Endomorphisms computes all the endomorphisms of the group G . This function is most essential for com-
puting the nearrings on a group. The endomorphisms are returned as a list of group homomorphisms. So
all functions for mappings and homomorphisms are applicable.

gap> G := TWGroup( 4, 2 );
4/2
gap> Endomorphisms( G );
[ [ (1,2), (3,4) ] -> [ (), () ], [ (1,2), (3,4) ] -> [ (), (1,2) ],
[ (1,2), (3,4) ] -> [ (), (3,4) ], [ (1,2), (3,4) ] -> [ (), (1,2)(3,4) ],
[ (1,2), (3,4) ] -> [ (1,2), () ], [ (1,2), (3,4) ] -> [ (3,4), () ],
[ (1,2), (3,4) ] -> [ (1,2)(3,4), () ], [ (1,2), (3,4) ] -> [ (1,2), (1,2) ]
, [ (1,2), (3,4) ] -> [ (3,4), (3,4) ],

[ (1,2), (3,4) ] -> [ (1,2)(3,4), (1,2)(3,4) ],
[ (1,2), (3,4) ] -> [ (1,2), (3,4) ],
[ (1,2), (3,4) ] -> [ (1,2)(3,4), (3,4) ],
[ (1,2), (3,4) ] -> [ (3,4), (1,2) ],
[ (1,2), (3,4) ] -> [ (1,2)(3,4), (1,2) ],
[ (1,2), (3,4) ] -> [ (3,4), (1,2)(3,4) ],
[ (1,2), (3,4) ] -> [ (1,2), (1,2)(3,4) ] ]

1.4 Group automorphisms

x Automorphisms( G )

Automorphisms computes all the automorphisms of the group G . The automorphisms are returned as a list
of group homomorphisms. So all functions for mappings and homomorphisms are applicable.



1–4 Chapter 1. Supportive functions for groups

gap> Automorphisms( GTW4_2 );
[ IdentityMapping( 4/2 ), [ (1,2), (3,4) ] -> [ (1,2)(3,4), (3,4) ],
[ (1,2), (3,4) ] -> [ (3,4), (1,2) ],
[ (3,4), (1,2) ] -> [ (1,2), (1,2)(3,4) ],
[ (3,4), (1,2) ] -> [ (1,2)(3,4), (3,4) ],
[ (3,4), (1,2) ] -> [ (1,2)(3,4), (1,2) ] ]

1.5 Inner automorphisms of a group

x InnerAutomorphisms( G )

InnerAutomorphisms computes all the inner automorphisms of the group G . The inner automorphisms
are returned as a list of group homomorphisms. So all functions for mappings and homomorphisms are
applicable.

gap> InnerAutomorphisms( AlternatingGroup( 4 ) );
[ ^(), ^(2,3,4), ^(2,4,3), ^(1,2)(3,4), ^(1,2,3), ^(1,2,4),
^(1,3,2), ^(1,3,4), ^(1,3)(2,4), ^(1,4,2), ^(1,4,3), ^(1,4)(2,3) ]

1.6 Isomorphic groups

x IsIsomorphicGroup( G, H )

IsIsomorphicGroup determines if the groups G and H are isomorphic. If they are isomorphic, an isomor-
phism between these two groups can be found with IsomorphismGroups.

gap> IsIsomorphicGroup( SymmetricGroup( 4 ), GTW24_12 );
true

1.7 Subgroups of a group

x Subgroups( G )

Subgroups returns a list of all subgroups of the group G , if there are only finitely many subgroups.

gap> Subgroups( TWGroup( 8, 4 ) );
[ Group(()), Group([ (1,3)(2,4) ]), Group([ (2,4) ]), Group([ (1,3) ]),
Group([ (1,2)(3,4) ]), Group([ (1,4)(2,3) ]), Group([ (1,3)(2,4), (2,4) ]),
Group([ (1,3)(2,4), (1,2,3,4) ]), Group([ (1,3)(2,4), (1,2)(3,4) ]),
Group([ (1,3)(2,4), (2,4), (1,2,3,4) ]) ]

1.8 Normal subgroups generated by a single element

x OneGeneratedNormalSubgroups( G )

OneGeneratedSubgroups returns a list of all proper, non-trivial normal subgroups of the group G which are
generated by one element. OneGeneratedSubgroups is a synonym for GeneratorsOfCongruenceLattice.
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gap> OneGeneratedNormalSubgroups( AlternatingGroup(4) );
[ Group([ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ]) ]

1.9 Invariant subgroups

x IsInvariantUnderMaps( G, U , maps )

For a list of mappings, maps on the group G and a subgroup U of G , IsInvariantUnderMaps returns the
truth value of “U is invariant under all mappings in maps”. In the following example this function is used
to compute all fully invariant subgroups of the dihedral group of order 12.

gap> D12 := DihedralGroup( 12 );
<pc group of size 12 with 3 generators>
gap> s := Subgroups( D12 );
[ Group([ ]), Group([ f1 ]), Group([ f1*f3^2 ]), Group([ f1*f3 ]),
Group([ f2*f3 ]), Group([ f1*f2 ]), Group([ f1*f2*f3^2 ]),
Group([ f1*f2*f3 ]), Group([ f3 ]), Group([ f1, f2*f3 ]),
Group([ f1*f3^2, f2*f3 ]), Group([ f1*f3, f2*f3 ]),
Group([ f3, f1 ]), Group([ f3, f2 ]), Group([ f3, f1*f2 ]),
Group([ f3, f1, f2 ]) ]

gap> e := Endomorphisms( D12 );;
gap> f := Filtered( s, sg -> IsInvariantUnderMaps( D12, sg, e ) );
[ Group([ ]), Group([ f3 ]), Group([ f3, f1, f2 ]) ]

x IsCharacteristicSubgroup( G, U )

A subgroup U of the group G is characteristic if it is invariant under all automorphisms on G . For a
subgroup U of the group G , IsCharacteristicSubgroup returns the truth value of “U is a characteristic
subgroup of G”. If the group U is defined as the subgroup of a group G then the function call

x IsCharacteristicInParent( U )

has the same result.

gap> IsCharacteristicInParent( Centre( GTW16_11 ) );
true

x IsFullinvariant( G, U )

A subgroup U of the group G is fully invariant if it is invariant under all endomorphisms on G . For a
subgroup U of the group G , IsFullinvariant returns the truth value of “U is a fully invariant subgroup
of G”.

gap> G := GTW6_2;
6/2
gap> S := Subgroup( G, [(1,2)] );
Group([ (1,2) ])
gap> IsFullinvariant( G, S );
false

If the group U is defined as the subgroup of a group G then the function call

x IsFullinvariantInParent( U )

has the same result.
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gap> IsFullinvariantInParent( Centre( GTW16_11 ) );
true

1.10 Coset representatives

x RepresentativesModNormalSubgroup( G, N )

If G is a group and N is a normal subgroup of G then the function RepresentativesModNormalSubgroup
returns a set of representatives for the congruence classes modulo the normal subgroup N , i.e. a set of
elements of G with exactly one element from each cogruence class modulo N .

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> C := Centre( G );
Group([ f4 ])
gap> RepresentativesModNormalSubgroup( G, C );
[ <identity> of ..., f1, f2, f3, f2*f3, f1*f2*f4, f1*f3*f4,
f1*f2*f3*f4 ]

x NontrivialRepresentativesModNormalSubgroup( G, N )

This function behaves as RepresentativesModNormalSubgroup but it excludes the representative for the
congruence class which contains the neutral element of the group.

gap> G := DihedralGroup( 16 );
<pc group of size 16 with 4 generators>
gap> C := Centre( G );
Group([ f4 ])
gap> NontrivialRepresentativesModNormalSubgroup( G, C );
[ f1, f2, f3, f2*f3, f1*f2*f4, f1*f3*f4, f1*f2*f3*f4 ]

1.11 Nilpotency class

x NilpotencyClass( G )

If G is a nilpotent group then the function NilpotencyClass returns the nilpotency class of G and fail
otherwise.

gap> NilpotencyClass( SymmetricGroup( 7 ) );
fail
gap> NilpotencyClass( GTW32_47 );
3

1.12 Scott length

x ScottLength( G )

The function ScottLength retuns the Scott-length of the group G . For a definition of the Scott-length of a
group and an idea for an algorithm for the general case see [Sco69]. In the case of a class 2 nilpotent finite
group G a faster algorithm described in [Eck98] is used.
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gap> ScottLength( GTW6_2 );
2
gap> ScottLength( GTW16_11 );
4

1.13 Other useful functions for groups

x AsPermGroup( G )

For a group G , AsPermGroup returns a permutation group that is isomorphic to G . In the case of a permu-
tation group this is the group itself.

gap> D24 := DihedralGroup( 24 );
<pc group of size 24 with 4 generators>
gap> D24p := AsPermGroup( D24 );
<permutation group of size 24 with 4 generators>
gap> IsomorphismGroups( D24, D24p );
[ f1, f2, f3, f4 ] ->
[ (1,17)(2,16)(3,18)(4,14)(5,13)(6,15)(7,20)(8,19)(9,21)(10,22)(11,24)(12,23),
(1,11,4,9,2,12,5,7,3,10,6,8)(13,23,16,21,14,24,17,19,15,22,18,20),
(1,4,2,5,3,6)(7,10,8,11,9,12)(13,16,14,17,15,18)(19,22,20,23,21,24),
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) ]

gap> C12 := CyclicGroup( 12 );
<pc group of size 12 with 3 generators>
gap> AsPermGroup( C12 );
Group([ ( 1, 7, 4,10, 2, 8, 5,11, 3, 9, 6,12),
( 1, 4, 2, 5, 3, 6)( 7,10, 8,11, 9,12),
( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12) ])





2 Nearrings

A (left) nearring is a nonempty set N together with two binary operations on N , + and · s.t. (N ,+) is a
group, (N , ·) is a semigroup, and · is left distributive over +, i.e. ∀n1,n2,n3 ∈ N : n1·(n2+n3) = n1·n2+n1·n3.

For more information we suggest [Pil83], [Mel85], and [Cla92].

The functions described in this section can be found in the source files nr.g? and nrconstr.g?.

2.1 Defining a nearring multiplication

x IsNearRingMultiplication( G, mul, [lcs] )

The arguments of the function IsNrMultiplication are a group G , a GAP-function mul which has two
arguments x and y which must both be elements of the group G and returns an element z of G s.t. mul
defines a binary operation on G. As an optional third parameter IsNrMultiplication accepts a list of
control strings lcs.

IsNearRingMultiplication returns true (false) if mul is (is not) a nearring multiplication on G i.e. it
checks whether it is well-defined, associative and left distributive over the group operation of G . The list lcs
may contain one or more of the strings "closed" , "ass" and "rdistr" in which case the according
property is not tested. In this case it is assumed that the user has checked it. This feature should only
be used in cases where it would take too long to check certain laws element by element and the user is
absolutely sure about the correctness.

gap> G := TWGroup( 24, 6 );
24/6
gap> mul_l := function ( x, y ) return y; end;
function ( x, y ) ... end
gap> IsNearRingMultiplication( G, mul_l );
true
gap> mul_r := function ( x, y ) return x; end;
function ( x, y ) ... end
gap> IsNearRingMultiplication( G, mul_r );
#I specified multiplication is not left distributive.
false
gap> IsNearRingMultiplication( G, mul_r, ["closed","ldistr"] );
true

x NearRingMultiplicationByOperationTable( G, table, elmlist )

The function NearRingMultiplicationByOperationTable returns the nearring multiplication on the group
G which is defined by the multiplication table table. Rather than group elements the entries of table are
the positions of the group element in the list elmlist (the first element in elmlist is 1, the second is 2, a.s.o.).
Usually the neutral element of the group will be the first.

IsNearRingMultiplication can be used to check whether the resulting multiplication is indeed a nearring
multiplication on G .
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gap> G := CyclicGroup( 4 );
<pc group of size 4 with 2 generators>
gap> GeneratorsOfGroup( G );
[ f1, f2 ]
gap> a := last[1];
f1
gap> Order( a );
4
gap> # a generates G indeed
gap> elmlist := List( [0..3], x -> a^x );
[ <identity> of ..., f1, f2, f1*f2 ]
gap> # Let: 1 := identity of ..., 2 := f1, 3 := f2, 4 := f1*f2
gap> # Consider the following multiplication table on G:
gap> OT := [[1, 1, 1, 1],
> [1, 4, 3, 2],
> [1, 1, 1, 1],
> [1, 2, 3, 4]];;

gap> mul := NearRingMultiplicationByOperationTable( G, OT, elmlist );
function ( x, y ) ... end
gap> IsNearRingMultiplication( G, mul );
true

2.2 Construction of nearrings

x ExplicitMultiplicationNearRing( G, mul )

The constructor function ExplicitMultiplicationNearRing returns the nearring defined by the group G
and the nearring multiplication mul . (For a detailed explanation of mul see Section 2.1.)

ExplicitMultiplicationNearRing calls IsNearRingMultiplication in order to make sure that mul is
really a nearring multiplication. If the nearring multiplication should not be checked,

x ExplicitMultiplicationNearRingNC( G, mul )

may be called.

gap> n := ExplicitMultiplicationNearRing( GTW18_3, mul_l );
ExplicitMultiplicationNearRing ( 18/3 , multiplication )
gap> n = ExplicitMultiplicationNearRingNC( GTW18_3, mul_l );
true

x IsNearRing( obj )

IsNearRing returns true if the object obj is a nearring and false otherwise.

gap> n := ExplicitMultiplicationNearRingNC( GTW18_3, mul_l );
ExplicitMultiplicationNearRing ( 18/3 , multiplication )
gap> IsNearRing( n );
true
gap> IsNearRing( GroupReduct( n ) );
false

x IsExplicitMultiplicationNearRing( obj )

IsExplicitMultiplicationNearRing returns true, if the object obj is a nearring defined by a group and
a multiplication as with 2.2.
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gap> IsExplicitMultiplicationNearRing( n );
true

2.3 Direct products of nearrings

x DirectProductNearRing( nr1, nr2 )

Given two nearrings nr1 and nr2 , the function DirectProductNearRing constructs the direct product of
these.

gap> n := ExplicitMultiplicationNearRingNC( GTW18_3, mul_l );
ExplicitMultiplicationNearRing ( 18/3 , multiplication )
gap> zero_mul := function ( x, y ) return (); end;
function ( x, y ) ... end
gap> z := ExplicitMultiplicationNearRingNC( GTW12_3, zero_mul );
ExplicitMultiplicationNearRing ( 12/3 , multiplication )
gap> d := DirectProductNearRing( n, z );
DirectProductNearRing( ExplicitMultiplicationNearRing ( 18/3 , multi\
plication ), ExplicitMultiplicationNearRing ( 12/3 , multiplication \
) )
gap> IsExplicitMultiplicationNearRing( d );
true

2.4 Operation tables for nearrings

x PrintTable( nr )

PrintTable prints the additive and multiplicative Cayley tables of the nearring nr . This function works
the same way as for groups.

gap> n := ExplicitMultiplicationNearRingNC( CyclicGroup( 3 ), mul_l );
ExplicitMultiplicationNearRing ( <pc group of size 3 with
1 generators> , multiplication )
gap> SetSymbols( n, ["0","1","2"] );
gap> PrintTable( n );
Let:
0 := (<identity> of ...)
1 := (f1)
2 := (f1^2)

+ 0 1 2
------------
0 0 1 2
1 1 2 0
2 2 0 1

* 0 1 2
------------
0 0 1 2
1 0 1 2
2 0 1 2

Optionally, PrintTable can be used in the form PrintTable( nr, mode ), where mode is a string. If the
letter e is contained in this string, the definitions of the symbols used are printed, if the letter a is contained
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in the string, the addition table is printed, and if the letter m is contained in the string, the multiplication
table of the nearring is printed. Every combination of these three letters in any order is possible.

2.5 Modified symbols for the operation tables

x SetSymbols( nr, symblist )
x SetSymbolsSupervised( nr, symblist )

The function SetSymbols and SetSymbolsSupervised allow you to define a list symblist of strings to be
used when printing the operation tables of the nearring. SetSymbols simply sets the set of strings to the
given value. SetSymbolsSupervised checks, if there are more symbols than the nearring has elements.
In this case the superfluous strings are ignored. If there are less symbols than the nearring has elements,
SetSymbolsSupervised “invents” unique names for the rest of the elements. In any case a warning is
printed. If there are repetitions or holes in the list symblist an error is signaled.

x Symbols( nr )

allows you to look at the set of symbols, which are currently in use.

gap> n := LibraryNearRing( GTW3_1, 4 );
LibraryNearRing(3/1, 4)
gap> Symbols( n );
[ "n0", "n1", "n2" ]
gap> SetSymbolsSupervised( n,

["apple", "banana", "coconut", "donut", "potato"] );
Warning: too many symbols ...ignoring the last 2 symbols
gap> PrintTable( n, "m" );

* apple banana coconut
------------------------------------
apple apple apple apple
banana apple banana coconut
coconut apple banana coconut

2.6 Accessing nearring elements

The elements of a nearring are different from those of its group reduct. In order to make group elements
and nearring elements distinguishable for the user, nearring elements are printed with an extra pair of
parentheses. The two functions AsGroupReductElement and AsNearRingElement can be used to switch
between these two representations.

x AsNearRingElement( nr, grpelm )

returns the representation as a nearring element of an element grpelm of the group reduct of the nearring
nr .

x AsGroupReductElement( nrelm )

returns the representation as an element of the group reduct of the nearring of the nearring element nrelm.
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gap> mul_l := function ( x, y ) return y; end;
function ( x, y ) ... end
gap> n := ExplicitMultiplicationNearRingNC( GTW6_2, mul_l );
ExplicitMultiplicationNearRing ( 6/2 , multiplication )
gap> AsList( n );
[ (()), ((2,3)), ((1,2)), ((1,2,3)), ((1,3,2)), ((1,3)) ]
gap> e := AsNearRingElement( n, (2,3) );
((2,3))
gap> e in n;
true
gap> f := AsNearRingElement( n, (1,3) );
((1,3))
gap> e + f;
((1,3,2))
gap> e * f;
((1,3))
gap> p := AsGroupReductElement( e );
(2,3)
gap> IsPerm( p );
true
gap> p + p;
Error no method found for operation SUM with 2 arguments at
Error( "no method found for operation ", NAME_FUNC( operation ),
" with 2 arguments" );
Entering break read-eval-print loop, you can ’quit;’ to quit to outer l\
oop,
or you can return to continue
brk>

2.7 Nearring elements

There are three different ways to ask for the elements of a nearring.

x AsList( nr )

The function AsList computes the elements of the nearring nr . It returns the elements as a list.

x AsSortedList( nr )

does essentially the same, but returns a set of elements.

x Enumerator( nr )

does essentially the same as AsList, but returns an enumerator for the elements of nr . An enumerator is
an object that is capable of enumerating the elements the nearring one by one. This is especially important
if the nearring is very big and not every element can be stored.
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gap> n := LibraryNearRing( GTW6_2, 39 );
LibraryNearRing(6/2, 39)
gap> e := Enumerator( n );
<enumerator of near ring>
gap> e[1];
(())
gap> x := AsNearRingElement( n, (1,2,3) );
((1,2,3))
gap> Position( e, x );
2
gap> Length(e);
6
gap> l := AsList( n );
[ (()), ((2,3)), ((1,2)), ((1,2,3)), ((1,3,2)), ((1,3)) ]
gap> e[3] = l[3];
false
gap> AsSortedList( n );
[ (()), ((2,3)), ((1,2)), ((1,2,3)), ((1,3,2)), ((1,3)) ]

2.8 Random nearring elements

x Random( nr )

Random returns a random element of the nearring nr .

gap> n := LibraryNearRing( GTW6_2, 39 );
LibraryNearRing(6/2, 39)
gap> Random(n);
((1,3))

2.9 Nearring generators

x GeneratorsOfNearRing( nr )

The function GeneratorsOfNearRing returns a set of (not necessarily additive) generators of the nearring
nr .

gap> n := ExplicitMultiplicationNearRingNC( GTW8_4, mul_l );
ExplicitMultiplicationNearRing ( 8/4 , multiplication )
gap> GeneratorsOfNearRing( n );
[ ((1,2,3,4)), ((2,4)) ]

2.10 Size of a nearring

x Size( nr )

Size returns the number of elements in the nearring nr .
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gap> n := LibraryNearRingWithOne( GTW24_3, 8 );
LibraryNearRingWithOne(24/3, 8)
gap> Size(n);
24

2.11 The additive group of a nearring

x GroupReduct( nr )

The function GroupReduct returns the nearring nr as a (multiplicative) group.

gap> GroupReduct( LibraryNearRingWithOne( GTW24_3, 8 ) );
24/3

2.12 Nearring endomorphisms

x Endomorphisms( nr )

Endomorphisms computes all the endomorphisms of the nearring nr . The endomorphisms are returned as
a list of transformations. In fact, the returned list contains those endomorphisms of the group reduct of nr
which are also nearring endomorphisms.

gap> Endomorphisms ( LibraryNearRing( GTW12_4, 4 ) ) ;
[ [ (1,2,4), (2,3,4) ] -> [ (), () ],
[ (1,2,4), (2,3,4) ] -> [ (1,2,4), (2,3,4) ] ]

gap> Length( Endomorphisms( GTW12_4 ) );
33

2.13 Nearring automorphisms

x Automorphisms( nr )

Automorphisms computes all the automorphisms of the nearring nr . The automorphisms are returned as a
list of transformations. In fact, the returned list contains those automorphisms of the group reduct of nr
which are also nearring automorphisms.

gap> Automorphisms( LibraryNearRing( GTW12_4, 4 ) );
[ IdentityMapping( 12/4 ) ]

2.14 Isomorphic nearrings

x IsIsomorphicNearRing( nr1, nr2 )

The function IsIsomorphicNearRing returns true if the two nearrings nr1 and nr2 are isomorphic and
false otherwise.

gap> IsIsomorphicNearRing( MapNearRing( GTW2_1 ),
> LibraryNearRingWithOne( GTW4_2, 5 ) );
true

2.15 Subnearrings

x SubNearRings( nr )

The function SubNearRings computes all subnearrings of the nearring nr . The function returns a list of
nearrings representing the according subnearrings.
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> SubNearRings( n );
[ ExplicitMultiplicationNearRing ( Group(()) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,4)(2,3) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,2)(3,4) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (2,3,4) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,2,4) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,3,2) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,4,3) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,4)(2,3), (1,3)(2,4)

]) , multiplication ), ExplicitMultiplicationNearRing ( Group(
[ (1,4)(2,3), (1,3)(2,4), (2,3,4) ]) , multiplication ) ]

2.16 Invariant subnearrings

x InvariantSubNearRings( nr )

A subnearring (M ,+, ·) of a nearring (N ,+, ·) is called an invariant subnearring if both, M · N and N ·M
are subsets of M .
The function InvariantSubNearRings computes all invariant subnearrings of the nearring nr . The function
returns a list of nearrings representing the according invariant subnearrings.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> i := InvariantSubNearRings( n );
[ ExplicitMultiplicationNearRing ( Group(()) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,2)(3,4) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (2,3,4) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,4,3) ]) , multiplication ),
ExplicitMultiplicationNearRing ( Group([ (1,4)(2,3), (1,3)(2,4), (2,3,4)

]) , multiplication ) ]

2.17 Constructing subnearrings

x SubNearRingBySubgroupNC( nr, S )

For a subgroup S of the group reduct of the nearring which is closed under the multiplication of nr the
function SubNearRingBySubgroupNC returns the subnearRing of nr , which is induced by this subgroup. The
nr -invariance is not explicitely tested.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> S := Subgroup( GTW12_4, [ (1,2)(3,4) ] );
Group([ (1,2)(3,4) ])
gap> sn := SubNearRingBySubgroupNC( n, S );
ExplicitMultiplicationNearRing ( Group([ (1,2)(3,4) ]) , multiplication )

2.18 Intersection of nearrings

x Intersection( listofnrs )

computes the intersection of the nearrings in the list listofnrs. All of the nearrings in listofnrs must be
subnearrings of a common supernearring.
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gap> n := LibraryNearRingWithOne( GTW27_4, 5 );
LibraryNearRingWithOne(27/4, 5)
gap> si := Filtered( SubNearRings( n ), s -> Identity( n ) in s );
[ ExplicitMultiplicationNearRing ( Group(

[ (1,23,14)(2,13,6)(3,27,22)(4,18,9)(5,20,12)(7,16,26)(8,25,17)(10,21,
19)(11,24,15) ]) , multiplication ),

ExplicitMultiplicationNearRing ( Group(
[ (1,26,27)(2,19,20)(3,14,16)(4,24,25)(5,6,21)(7,22,23)(8,9,11)(10,12,

13)(15,17,18), (1,22,16)(2,12,21)(3,26,23)(4,17,11)(5,19,13)(6,20,
10)(7,14,27)(8,24,18)(9,25,15) ]) , multiplication ),

ExplicitMultiplicationNearRing ( Group(
[ (1,17,5)(2,22,8)(3,4,12)(6,26,18)(7,11,20)(9,19,23)(10,16,25)(13,14,

24)(15,21,27), (1,15,6)(2,7,9)(3,25,13)(4,10,14)(5,27,18)(8,20,23)(11,
19,22)(12,16,24)(17,21,26), (1,2,4)(3,6,11)(5,9,16)(7,13,17)(8,14,
21)(10,18,22)(12,15,23)(19,24,26)(20,25,27) ]) , multiplication ) ]

gap> Intersection( si );
ExplicitMultiplicationNearRing ( Group(
[ (1,23,14)(2,13,6)(3,27,22)(4,18,9)(5,20,12)(7,16,26)(8,25,17)(10,21,19)(11,

24,15) ]) , multiplication )
gap> Size( last );
3

2.19 Identity of a nearring

x Identity( nr )

x One( nr )

The functions Identity and One return the identity of the multiplicative semigroup of the nearring nr if it
exists and fail otherwise.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> Identity( n );
fail
gap> One( n );
fail
gap> n := LibraryNearRingWithOne( GTW24_4, 8 );
LibraryNearRingWithOne(24/4, 8)
gap> Identity( n );
((1,2,3,4,5,6)(7,8))
gap> One( n );
((1,2,3,4,5,6)(7,8))

x IsNearRingWithOne( nr )

The function IsNearRingWithOne returns true if the nearring was constructed as a nearring with one and
false otherwise. To decide whether a nearring has an identity use Identity(nr)=true.
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNearRingWithOne( n );
false
gap> n := LibraryNearRingWithOne( GTW24_4, 8 );
LibraryNearRingWithOne(24/4, 8)
gap> Identity( n );
((1,2,3,4,5,6)(7,8))
gap> IsNearRingWithOne( n );
false

2.20 Units of a nearring

x IsNearRingUnit( nr, x )

An element x of a nearring (N ,+, ·) with identity 1 is called a unit if there exists an element y in N such
that x · y = y · x = 1.

The function IsNearRingUnit returns true if x is a unit in nr and false otherwise.

x NearRingUnits( nr )

NearRingUnits returns the units of the nearring nr either as multiplicative group or list.

gap> n := LibraryNearRingWithOne( GTW24_4, 8 );
LibraryNearRingWithOne(24/4, 8)
gap> NearRingUnits( n );
[ ((1,2,3,4,5,6)(7,8)), ((1,6,5,4,3,2)(7,8)) ]

2.21 Distributivity in a nearring

x Distributors( nr )

An element x of a nearring (N ,+, ·) is called a distributor if x = (n1 +n2) ·n3− (n1 ·n3 +n2 ·n3) for some
elements n1,n2,n3 of N .

The function Distributors returns a list containing the distributors of the nearring nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNearRingWithOne( n );
false
gap> Distributors( n );
[ (()), ((2,3,4)), ((2,4,3)), ((1,2)(3,4)), ((1,2,3)), ((1,2,4)),
((1,3,2)), ((1,3,4)), ((1,3)(2,4)), ((1,4,2)), ((1,4,3)),
((1,4)(2,3)) ]

x DistributiveElements( nr )

An element d of a left nearring (N ,+, ·) is called a distributive element if it is also right distributive over
all elements, i.e. ∀n1,n2 ∈ N : (n1 + n2) · d = n1 · d + n2 · d .

The function DistributiveElements returns a list containing the distributive elements of the nearring nr .
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> DistributiveElements( n );
[ (()) ]

x IsDistributiveNearRing( nr )

A left nearring N is called distributive nearring if its multiplication is also right distributive.

The function IsDistributiveNearRing simply checks if all elements are distributive and returns the ac-
cording boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsDistributiveNearRing( n );
false

2.22 Elements of a nearring with special properties

x ZeroSymmetricElements( nr )

Let (N ,+, ·) be a left nearring and denote by 0 the neutral element of (N ,+). An element n of N is called
a zero-symmetric element if 0 · n = 0.

Remark: note that in a left nearring n · 0 = 0 is true for all elements n.

The function ZeroSymmetricElements returns a list containing the zero-symmetric elements of the nearring
nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> ZeroSymmetricElements( n );
[ (()), ((2,3,4)), ((2,4,3)), ((1,2)(3,4)), ((1,2,3)), ((1,2,4)),
((1,3,2)), ((1,3,4)), ((1,3)(2,4)), ((1,4,2)), ((1,4,3)),
((1,4)(2,3)) ]

x IdempotentElements( nr )

The function IdempotentElements returns a list containing the idempotent elements of the multiplicative
semigroup of the nearring nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IdempotentElements( n );
[ (()), ((1,4)(2,3)) ]

x NilpotentElements( nr )

Let (N ,+, ·) be a nearring with zero 0. An element n of N is called nilpotent if there is a positive integer
k such that nk = 0.

The function NilpotentElements returns a list of sublists of length 2 where the first entry is a nilpotent
element n and the second entry is the smallest k such that nk = 0.
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> NilpotentElements( n );
[ [ (()), 1 ], [ ((2,3,4)), 2 ], [ ((2,4,3)), 2 ],
[ ((1,2)(3,4)), 2 ], [ ((1,2,3)), 2 ], [ ((1,2,4)), 2 ],
[ ((1,3,2)), 2 ], [ ((1,3,4)), 2 ], [ ((1,4,2)), 2 ],
[ ((1,4,3)), 2 ] ]

x QuasiregularElements( nr )

Let (N ,+, ·) be a left nearring. For an element z ∈ N , denote the right ideal generated by the set {n−z ·n|n ∈
N } by Lz . An element z of N is called quasiregular if z ∈ Lz .

The function QuasiregularElements returns a list of all quasiregular elements of a nearring nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> QuasiregularElements( n );
[ (()), ((2,3,4)), ((2,4,3)), ((1,2)(3,4)), ((1,2,3)), ((1,2,4)),
((1,3,2)), ((1,3,4)), ((1,3)(2,4)), ((1,4,2)), ((1,4,3)) ]

x RegularElements( nr )

Let (N ,+, ·) be a nearring. An element n of N is called regular if there is an element x such that n ·x ·n = n.

The function RegularElements returns a list of all regular elements of a nearring nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> RegularElements( n );
[ (()), ((1,3)(2,4)), ((1,4)(2,3)) ]

2.23 Special properties of a nearring

x IsAbelianNearRing( nr )

A nearring is called abelian if its group reduct is abelian.

The function IsAbelianNearRing returns the according boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsAbelianNearRing( n );
false

x IsAbstractAffineNearRing( nr )

A left nearring N is called abstract affine if its group reduct is abelian and its zero-symmetric elements are
exactly its distributive elements.

The function IsAbstractAffineNearRing returns the according boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsAbstractAffineNearRing( n );
false

x IsBooleanNearRing( nr )

A left nearring N is called boolean if all its elements are idempotent with respect to multiplication.
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The function IsBooleanNearRing simply checks if all elements are idempotent and returns the according
boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsBooleanNearRing( n );
false

x IsNilNearRing( nr )

A nearring N is called nil if all its elements are nilpotent.

The function IsNilNearRing checks if all elements are nilpotent and returns the according boolean value
true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNilNearRing( n );
false

x IsNilpotentNearRing( nr )

A nearring N is called nilpotent if there is a positive integer k , s.t. N k = {0}.
The function IsNilpotentNearRing tests if the nearring nr is nilpotent and returns the according boolean
value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNilpotentNearRing( n );
false

x IsNilpotentFreeNearRing( nr )

A nearring N is called nilpotent free if its only nilpotent element is 0.

The function IsNilpotentFreeNearRing checks if 0 is the only nilpotent and returns the according boolean
value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNilpotentFreeNearRing( n );
false

x IsCommutative( nr )

A nearring (N ,+, ·) is called commutative if its multiplicative semigroup is commutative.

The function IsCommutative returns the according value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsCommutative( n );
false

x IsDgNearRing( nr )

A nearring (N ,+, ·) is called distributively generated (d.g.) if (N ,+) is generated additively by the dis-
tributive elements of the nearring.

The function IsDgNearRing returns the according value true or false for a nearring nr .
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsDgNearRing( n );
false

x IsIntegralNearRing( nr )

A nearring (N ,+, ·) with zero element 0 is called integral if it has no zero divisors, i.e. the condition
∀n1,n2 : n1 · n2 = 0 ⇒ n1 = 0 ∨ n2 = 0 holds.

The function IsIntegralNearRing returns the according value true or false for a nearring nr .

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsIntegralNearRing( n );
false

x IsPrimeNearRing( nr )

A nearring (N ,+, ·) with zero element 0 is called prime if the ideal {0} is a prime ideal.

The function IsPrimeNearRing checks if nr is a prime nearring by using the condition for all non-zero ideals
I , J : I · J 6= {0} and returns the according value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsPrimeNearRing( n );
true

x IsQuasiregularNearRing( nr )

A nearring N is called quasiregular if all its elements are quasiregular.

The function IsQuasiregularNearRing simply checks if all elements of the nearring nr are quasiregular
and returns the according boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsQuasiregularNearRing( n );
false

x IsRegularNearRing( nr )

A nearring N is called regular if all its elements are regular.

The function IsRegularNearRing simply checks if all elements of the nearring nr are regular and returns
the according boolean value true or false.

gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsRegularNearRing( n );
false

x IsNearField( nr )

Let (N ,+, ·) be a nearring with zero 0 and denote by N ∗ the set N − {0}. N is a nearfield if (N ,+, ·) has
an identity and (N ∗, ·) is a group.

The function IsNearField tests if nr has an identity and if every non-zero element has a multiplicative
inverse and returns the according value true or false.
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gap> n := LibraryNearRing( GTW12_4, 8 );
LibraryNearRing(12/4, 8)
gap> IsNearField( n );
false

x IsPlanarNearRing( nr )

Let (N ,+, ·) be a left nearring. For a, b ∈ N we define a ≡ b iff a · n = b · n for all n ∈ N . If a ≡ b, then
a and b are called equivalent multipliers. A nearring N is called planar if |N /≡| ≥ 3 and if for any two
non-equivalent multipliers a and b in N , for any c ∈ N , the equation a · x = b · x + c has a unique solution.

The function IsPlanarNearRing returns the according value true or false for a nearring nr .

gap> n := LibraryNearRing( GTW9_2, 90 );
LibraryNearRing(9/2, 90)
gap> IsPlanarNearRing( n );
true

x IsWdNearRing( nr )

A left nearring (N ,+, ·) is called weakly divisible if ∀a, b ∈ N∃x ∈ N : a · x = b or b · x = a.

The function IsWdNearRing returns the according value true or false for the nearring nr .

gap> nr := LibraryNearRing( GTW9_1, 185 );
LibraryNearRing(9/1, 185)
gap> IsWdNearRing( nr );
true





3 The nearring library

The nearring library contains all nearrings up to order 15 and all nearrings with identity up to order 31. All
nearrings in the library are nearrings constructed via ExplicitMultiplicationNearRingNC, so all functions
for these nearrings are applicable to LibraryNearRings.

3.1 Extracting nearrings from the library

x LibraryNearRing( G, num )

LibraryNearRing retrieves a nearring from the nearrings library files. G must be a group of order ≤ 15.
num must be an integer which indicates the number of the class of nearrings on the specified group.

(Remark: due to the large number of nearrings on D12, make sure that you have enough main memory -
say at least 32 MB - available if you want to get a library nearring on D12).

If G is given as a TWGroup, then a nearring is returned whose group reduct is equal to G . Otherwise the
result is a nearring whose group reduct is isomorphic to G , and a warning is issued.

The number of nearrings definable on a certain group G can be accessed via

x NumberLibraryNearRings( G )

x AllLibraryNearRings( G )

returns a list of all nearrings (in the library) that have the group G as group reduct.

gap> l := AllLibraryNearRings( GTW3_1 );
[ LibraryNearRing(3/1, 1), LibraryNearRing(3/1, 2),
LibraryNearRing(3/1, 3), LibraryNearRing(3/1, 4),
LibraryNearRing(3/1, 5) ]

gap> Filtered( l, IsNearField );
[ LibraryNearRing(3/1, 3) ]
gap> NumberLibraryNearRings( GTW14_2 );
1821
gap> LN14_2_1234 := LibraryNearRing( GTW14_2, 1234 );
LibraryNearRing(14/2, 1234)

x LibraryNearRingWithOne( G, num )

LibraryNearRingWithOne retrieves a nearring from the nearrings library files. G must be one of the
predefined groups of order ≤ 31. num must be an integer which indicates the number of the class of
nearrings with identity on the specified group.

The number of nearrings with identity definable on a certain group G can be accessed via

x NumberLibraryNearRingsWithOne( G )

x AllLibraryNearRingsWithOne( G )

returns a list of all nearrings with identity (in the library) that have the group G as group reduct.
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gap> NumberLibraryNearRingsWithOne( GTW24_6 );
0
gap> NumberLibraryNearRingsWithOne( GTW24_4 );
10
gap> LNwI24_4_8 := LibraryNearRingWithOne( GTW24_4, 8 );
LibraryNearRingWithOne(24/4, 8)
gap> AllLibraryNearRingsWithOne( GTW24_6 );
[ ]

3.2 Identifying nearrings

x IdLibraryNearRing( nr )

The function IdLibraryNearRing returns a pair [G , n] such that the nearring nr is isomorphic to the nth
library nearring on the group G .

gap> p := PolynomialNearRing( GTW4_2 );
PolynomialNearRing( 4/2 )
gap> IdLibraryNearRing( p );
[ 8/3, 833 ]
gap> n := LibraryNearRing( GTW3_1, 4 );
LibraryNearRing(3/1, 4)
gap> d := DirectProductNearRing( n, n );
DirectProductNearRing( LibraryNearRing(3/1, 4), LibraryNearRing(3/1, 4)\
)
gap> IdLibraryNearRing( d );
[ 9/2, 220 ]

x IdLibraryNearRingWithOne( nr )

The function IdLibraryNearRingWithOne returns a pair [G , n] such that the nearring nr is isomorphic to
the nth library nearring with identity on the group G . This function can only be applied to nearrings which
have an identity.

gap> l := LibraryNearRingWithOne( GTW12_3, 1 );
LibraryNearRingWithOne(12/3, 1)
gap> IdLibraryNearRing( l ); #this command requires time and memory!!!
[ 12/3, 37984 ]
gap> IdLibraryNearRingWithOne( l );
[ 12/3, 1 ]

3.3 IsLibraryNearRing

x IsLibraryNearRing( nr )

The function IsLibraryNearRing returns true if the nearring nr has been read from the nearring library
and false otherwise.

gap> IsLibraryNearRing( LNwI24_4_8 );
true

3.4 Accessing the information about a nearring stored in the library

x LibraryNearRingInfo( group, list, string )

This function provides information about the specified library nearrings in a way similar to how nearrings
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are presented in the appendix of [Pil??].The parameter group specifies a predefined group; valid names are
exactly those which are also valid for the function LibraryNearrings (cf. Section 3.1).

The parameter list must be a non-empty list of integers defining the classes of nearrings to be printed.
Naturally, these integers must all fit into the ranges described in Section 3.1 for the according groups.

The third parameter string is optional. string must be a string consisting of one or more (or all) of the
following characters: l, m, i, v, s, e, a. Per default, (i.e. if this parameter is not specified), the output is
minimal. According to each specified character, the following is added:

a
list the nearring automorphisms.

c
print the meaning of the letters used in the output.

e
list the nearring endomorphisms.

g
list the endomorphisms of the group reduct.

i
list the ideals.

l
list the left ideals.

m
print the multiplication tables.

r
list the right ideals.

s
list the subnearrings.

v
list the invariant subnearrings.

Examples:

LibraryNearRingInfo( GTW3 1, [ 3 ], "lmivsea" ) will print all available information about the third
class of nearrings on the group Z3.

LibraryNearRingInfo( GTW4 1, [ 1..12 ] ) will provide a minimal output for all classes of nearrings on
Z4.

LibraryNearRingInfo( GTW6 2, [ 5, 18, 21 ], "mi" ) will print the minimal information plus the mul-
tiplication tables plus the ideals for the classes 5, 18, and 21 of nearrings on the group S3.





4
Arbitrary functions

on groups:
EndoMappings

An endomapping is a mapping with equal source and range, say G , where G is a group. An endomapping
on G then acts on G by transforming each element of G into (precisely one) element of G . Endomappings
are special cases of Mappings.

Endomappings are created by the constructor functions EndoMappingByPositionList, EndoMappingBy-
Function, IdentityEndoMapping, ConstantEndoMapping, and are represented as mappings. The functions
described in this section can be found in the file grptfms.g?.

4.1 Defining endo mappings

x EndoMappingByPositionList ( G, list )

The constructor function EndoMappingByPositionList returns the the endomapping that maps the i-th
element of the group (in the ordering given by AsSortedList) to the i-th element of list.

gap> G := GTW4_2;
4/2
gap> t1 := EndoMappingByPositionList ( G, [1, 2, 4, 4] );
<mapping: 4/2 -> 4/2 >

x EndoMappingByFunction( G, fun )

The constructor function EndoMappingByFunction returns the function fun that maps elements of the group
G into G as an endomapping.

gap> t2 := EndoMappingByFunction ( GTW8_2, g -> g^-1 );
<mapping: 8/2 -> 8/2 >
gap> IsGroupHomomorphism ( t2 );
true
gap> t3 := EndoMappingByFunction ( GTW6_2, g -> g^-1 );
<mapping: 6/2 -> 6/2 >
gap> IsGroupHomomorphism ( t3 );
false

EndoMappings and GroupGeneralMappings are different kinds of objects in GAP: GroupGeneralMappings
model homomorphisms between two different groups, whereas EndoMappings model nonlinear functions on
one group. However, GroupGeneralMappings can be transformed into Endomappings if they have equal
source and range.

x AsEndoMapping( map )

The constructor function AsEndoMapping returns the mapping map as an endomapping.
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gap> G1 := Group ((1,2,3), (1, 2));
Group([ (1,2,3), (1,2) ])
gap> G2 := Group ((2,3,4), (2, 3));
Group([ (2,3,4), (2,3) ])
gap> f1 := IsomorphismGroups ( G1, G2 );
[ (1,2,3), (1,2) ] -> [ (2,3,4), (2,3) ]
gap> f2 := IsomorphismGroups ( G2, G1 );
[ (2,3,4), (2,3) ] -> [ (1,2,3), (1,2) ]
gap> AsEndoMapping ( CompositionMapping ( f1, f2 ) );
<mapping: Group( [ (2,3,4), (2,3) ] ) -> Group( [ (2,3,4), (2,3)
] ) >

EndoMappings and GroupGeneralMappings are two completely different kinds of objects in GAP, but they
can be transformed into one another.

x AsGroupGeneralMappingByImages( endomap )

AsGroupGeneralMappingByImages returns the GroupGeneralMappingByImages that acts on the group the
same way as the endomapping endomap. It only makes sense to use this function for endomappings that
are group endomorphisms.

gap> m := IdentityEndoMapping ( GTW6_2 );
<mapping: 6/2 -> 6/2 >
gap> AsGroupGeneralMappingByImages ( m );
[ (1,2), (1,2,3) ] -> [ (1,2), (1,2,3) ]

x IsEndoMapping( obj )

IsEndoMapping returns true if the object obj is an endomapping and false otherwise.

gap> IsEndoMapping ( InnerAutomorphisms ( GTW6_2 ) [3] );
true

x IdentityEndoMapping( G )

IdentitEndoMapping is the counterpart to the GAP standard library function IdentityMapping. It returns
the identity transformation on the group G .

gap> AsList ( UnderlyingRelation ( IdentityEndoMapping ( Group ((1,2,3,4)) ) ) );
[ Tuple( [ (), () ] ), Tuple( [ (1,2,3,4), (1,2,3,4) ] ),
Tuple( [ (1,3)(2,4), (1,3)(2,4) ] ), Tuple( [ (1,4,3,2), (1,4,3,2) ] )
]

x ConstantEndoMapping( G, g )

ConstantEndoMapping returns the endomapping on the group G which maps everything to the group element
g of G .
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gap> C3 := CyclicGroup (3);
<pc group of size 3 with 1 generators>
gap> m := ConstantEndoMapping (C3, AsSortedList (C3) [2]);
MappingByFunction( <pc group of size 3 with
1 generators>, <pc group of size 3 with
1 generators>, function( x ) ... end )
gap> List (AsList (C3), x -> Image (m, x));
[ f1, f1, f1 ]

4.2 Properties of endo mappings

x IsIdentityEndoMapping( endomap )

IsIdentityEndoMapping returns true if endomap is the identity function on a group.

gap> IsIdentityEndoMapping (EndoMappingByFunction (
> AlternatingGroup ( [1..5] ), x -> x^31));
true

x IsConstantEndoMapping( endomap )

IsConstantEndoMapping returns true if the endomapping endomap is constant and false otherwise.

gap> C3 := CyclicGroup ( 3 );
<pc group of size 3 with 1 generators>
gap> IsConstantEndoMapping ( EndoMappingByFunction ( C3, x -> x^3 ));
true

x IsDistributiveEndoMapping( endomap )

A mapping t on an (additively written) group G is called distributive if for all elements x and y in G :
t(x + y) = t(x ) + t(y). The function IsDistributiveEndoMapping returns the according boolean value
true or false.

gap> G := Group ( (1,2,3), (1,2) );
Group([ (1,2,3), (1,2) ])
gap> IsDistributiveEndoMapping ( EndoMappingByFunction ( G, x -> x^3));
false
gap> IsDistributiveEndoMapping ( EndoMappingByFunction ( G, x -> x^7));
true

4.3 Operations for endo mappings

While the composition operator * is applicable to mappings and transformations, the operation + (pointwise
addition of the images) can only be applied to transformations.
The product operator * returns the transformation which is obtained from the transformations t1 and t2
by composition of t1 and t2 (i.e. performing t2 after t1 ).

gap> t1 := ConstantEndoMapping ( GTW2_1, ());
MappingByFunction( 2/1, 2/1, function( x ) ... end )
gap> t2 := ConstantEndoMapping (GTW2_1, (1, 2));
MappingByFunction( 2/1, 2/1, function( x ) ... end )
gap> List ( AsList ( GTW2_1 ), x -> Image ( t1 * t2, x ));
[ (1,2), (1,2) ]

The add operator + returns the endomapping which is obtained from the endomappings t1 and t2 by
pointwise addition of t1 and t2 . (Note that in this context addition means that for every place x in the
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source of t1 and t2 , GAP performs the operation p * q, where p is the image of t1 at x and q is the image
of t2 at x .)

The subtract operator - returns the endomapping which is obtained from the endomappings t1 and t2
by pointwise subtraction of t1 and t2 . (Note that in this context subtraction means performing the GAP
operation p * q^(-1), where p is the image of t1 at a place x and q is the image of t2 at x .)

gap> G := SymmetricGroup ( 3 );
Sym( [ 1 .. 3 ] )
gap> invertingOnG := EndoMappingByFunction ( G, x -> x^-1 );
<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> SymmetricGroup(
[ 1 .. 3 ] ) >
gap> identityOnG := IdentityEndoMapping (G);
<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> SymmetricGroup(
[ 1 .. 3 ] ) >
gap> AsSortedList ( G );
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
gap> List ( AsSortedList (G),
> x -> Image ( identityOnG * invertingOnG, x ));
[ (), (2,3), (1,2), (1,3,2), (1,2,3), (1,3) ]
gap> List ( AsSortedList (G),
> x -> Image ( identityOnG + invertingOnG, x ));
[ (), (), (), (), (), () ]
gap> IsIdentityEndoMapping ( - invertingOnG );
true
gap> - invertingOnG = identityOnG;
true

4.4 Nicer ways to print a mapping

x GraphOfMapping( mapping )

GraphOfMapping returns the set of all pairs (x,m(x)), where x lies in the source of the mapping. In particular,
it returns List (Source (m), x -¿ [x, Image (m, x)]);

gap> G := SymmetricGroup ( 3 );
Sym( [ 1 .. 3 ] )
gap> m := ConstantEndoMapping (G, (1,2,3)) + IdentityEndoMapping( G );
MappingByFunction( Sym( [ 1 .. 3 ] ), Sym( [ 1 .. 3 ] ), function( g ) ... end )
gap> PrintArray( GraphOfMapping( m ) );
[ [ (), (1,2,3) ],
[ (2,3), (1,3) ],
[ (1,2), (2,3) ],
[ (1,2,3), (1,3,2) ],
[ (1,3,2), () ],
[ (1,3), (1,2) ] ]

x PrintAsTerm( mapping )

If mapping is a polynomial function on its source then PrintAsTerm prints a polynomial that induces the
mapping mapping .
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gap> G := SymmetricGroup ( 3 );
Sym( [ 1 .. 3 ] )
gap> p := Random( PolynomialNearRing( G ) );
<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> SymmetricGroup( [ 1 .. 3 ] ) >
gap> PrintAsTerm( p );
g1 - x - 2 * g1 - g2 - x - g1 - g2 + g1 - x - 2 * g1 -
g2 - x - g1 - g2 - 3 * x + g1
gap> GeneratorsOfGroup( G );
[ (1,2,3), (1,2) ]

The expressions g1 and g2 stand for the first and secong generator of the group G respectively. The result
is not necessarily a polynomial of minimal length.





5
Transformation

nearrings

In the previous chapter we introduced mappings on groups, and we called them endomappings. We also
introduced the operation of pointwise addition + for endomappings. Now we are able to use these mappings
together with pointwise addition + and composition * to construct left nearrings. These nearrings satisfy
the distributive law x ∗ (y + z ) = x ∗ y + x ∗ z .

A transformation nearring is a set of mappings on a group G that is closed under pointwise addition of
mappings, under forming the additive inverse and under functional composition. For more information we
suggest [Pil83], [Mel85], and [Cla92],

The algorithms used can be found in [AEN00] and [Aic00].

The elements of a transformation nearring are given as endomappings on the group G (cf. Chapter “Func-
tions on groups that are not necessarily homomorphisms: EndoMappings”).

5.1 Constructing transformation nearrings

x TransformationNearRingByGenerators( G, endomaplist )

For a (possibly empty) list endomaplist of endomappings on a group G , the constructor function Trans-
formationNearRingByGenerators returns the nearring generated by these mappings. All of them must be
endomappings on the group G .

gap> g := AlternatingGroup ( 4 );
Alt( [ 1 .. 4 ] )
gap> AsSortedList ( g );
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),
(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]

gap> t := EndoMappingByPositionList ( g, [1,3,4,5,2,1,1,1,1,1,1,1] );
<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup(
[ 1 .. 4 ] ) >
gap> m := TransformationNearRingByGenerators ( g, [t] );
TransformationNearRingByGenerators(
[ <mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup(

[ 1 .. 4 ] ) > ])
gap> Size (m); # may take a few moments
20736
gap> IsCommutative ( m );
false

x TransformationNearRingByAdditiveGenerators( G, endomaplist )

If a transformation nearring is known to be additively generated by a set of endomappings on a group (as
for example the distributively generated nearrings E (G), A(G) and I (G)), the function Transformation-
NearRingByAdditiveGenerators allows to construct this nearring. The only difference between Trans-
formationNearRingByGenerators and TransformationNearRingByAdditiveGenerators is that Trans-
formationNearRingByAdditiveGenerators is much faster.
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gap> endos := Endomorphisms ( GTW6_2 );
[ [ (1,2), (1,2,3) ] -> [ (), () ], [ (1,2), (1,2,3) ] -> [ (2,3), () ],
[ (1,2), (1,2,3) ] -> [ (1,3), () ], [ (1,2), (1,2,3) ] -> [ (1,2), () ],
[ (1,2), (1,2,3) ] -> [ (2,3), (1,2,3) ],
[ (1,2), (1,2,3) ] -> [ (2,3), (1,3,2) ],
[ (1,2), (1,2,3) ] -> [ (1,2), (1,3,2) ],
[ (1,2), (1,2,3) ] -> [ (1,2), (1,2,3) ],
[ (1,2), (1,2,3) ] -> [ (1,3), (1,2,3) ],
[ (1,2), (1,2,3) ] -> [ (1,3), (1,3,2) ] ]

gap> Endo := TransformationNearRingByAdditiveGenerators ( GTW6_2, endos );
< transformation nearring with 10 generators >
gap> Size ( Endo );
54

5.2 Nearrings of transformations

x MapNearRing( G )

x TransformationNearRing( G )

MapNearRing and TransformationNearRing both return the nearring of all mappings on G .

gap> m := MapNearRing ( GTW32_12 );
TransformationNearRing(32/12)
gap> Size ( m );
1461501637330902918203684832716283019655932542976
gap> NearRingIdeals ( m );
[ < nearring ideal >, < nearring ideal > ]

x IsFullTransformationNearRing( tfmnr )

The function IsFullTransformationNearRing returns true if the transformation nearring tfmnr is the
nearring of all mappings over the group.

gap> g := CyclicGroup ( 4 );
<pc group of size 4 with 2 generators>
gap> m := MapNearRing ( g );
TransformationNearRing(<pc group of size 4 with 2 generators>)
gap> gens := Filtered ( AsList ( m ),
> f -> IsFullTransformationNearRing (
> TransformationNearRingByGenerators ( g, [ f ] )));;
gap> Length(gens);
12

x PolynomialNearRing( G )

PolynomialNearRing returns the nearring of all polynomial functions on G .

gap> P := PolynomialNearRing ( GTW16_6 );
PolynomialNearRing( 16/6 )
gap> Size ( P );
256

x EndomorphismNearRing( G )

EndomorphismNearRing returns the nearring generated by all endomorphisms on G .
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gap> ES4 := EndomorphismNearRing ( SymmetricGroup ( 4 ) );
EndomorphismNearRing( Sym( [ 1 .. 4 ] ) )
gap> Size ( ES4 );
927712935936

x AutomorphismNearRing( G )

AutomorphismNearRing returns the nearring generated by all automorphisms on G .

gap> A := AutomorphismNearRing ( DihedralGroup ( 8 ) );
AutomorphismNearRing( <pc group of size 8 with 3 generators> )
gap> Length(NearRingRightIdeals ( A ));
28
gap> Size (A);
32

x InnerAutomorphismNearRing( G )

InnerAutomorphismNearRing returns the nearring generated by all inner automorphisms on G .

gap> I := InnerAutomorphismNearRing ( AlternatingGroup ( 4 ) );
InnerAutomorphismNearRing( Alt( [ 1 .. 4 ] ) )
gap> Size ( I );
3072
gap> m := Enumerator( I )[1000];
<mapping: AlternatingGroup( [ 1 .. 4 ] ) -> AlternatingGroup( [ 1 .. 4 ] ) >
gap> graph := List ( AsList ( AlternatingGroup ( 4 ) ),
> x -> [x, Image (m, x)] );
[ [ (), () ], [ (2,3,4), (1,4)(2,3) ], [ (2,4,3), (1,4)(2,3) ],
[ (1,2)(3,4), (1,2)(3,4) ], [ (1,2,3), (1,3)(2,4) ],
[ (1,2,4), (1,4)(2,3) ], [ (1,3,2), (1,4)(2,3) ], [ (1,3,4), (1,2)(3,4) ],
[ (1,3)(2,4), (1,3)(2,4) ], [ (1,4,2), () ], [ (1,4,3), (1,4)(2,3) ],
[ (1,4)(2,3), (1,4)(2,3) ] ]

x CompatibleFunctionNearRing( G )

CompatibleFunctionNearRing returns the nearring of all compatible functions on the group G . A function
m : G → G is compatible iff for every normal subgroup N of G and all g , h ∈ G if g and h are in the same
coset of N then their images under m are in the same coset of G .

x ZeroSymmetricCompatibleFunctionNearRing( G )

ZeroSymmetricCompatibleFunctionNearRing returns the nearring of all zerosymmetric compatible func-
tions on the group G . This function is also called by CompatibleFunctionNearRing.

x IsCompatibleEndoMapping( m )

IsCompatibleEndoMapping returns true iff m is a compatible function on its source.

x Is1AffineComplete( G )

A group G is called 1-affine complete, iff every compatible function on G is polynomial. Is1AffineComplete
returns true iff G is 1-affine complete.

x CentralizerNearRing( G, endos )

CentralizerNearRing returns the nearring of all functions m : G → G such that for all endomorphisms e
in endos the equality m ◦ e = e ◦m holds.
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gap> autos := Automorphisms ( GTW8_4 );
[ IdentityMapping( 8/4 ), ^(2,4),
[ (1,2,3,4), (2,4) ] -> [ (1,4,3,2), (1,2)(3,4) ],
[ (1,2,3,4), (2,4) ] -> [ (1,2,3,4), (1,2)(3,4) ], ^(1,4)(2,3),
^(1,2,3,4), [ (1,2,3,4), (2,4) ] -> [ (1,2,3,4), (1,4)(2,3) ],
[ (1,4)(2,3), (1,4,3,2) ] -> [ (2,4), (1,2,3,4) ] ]

gap> C := CentralizerNearRing ( GTW8_4, autos );
CentralizerNearRing( 8/4, ... )
gap> C0 := ZeroSymmetricPart ( C );
< transformation nearring with 4 generators >
gap> Size ( C0 );
32
gap> Is := NearRingIdeals ( C0 );
[ < nearring ideal >, < nearring ideal >, < nearring ideal >,
< nearring ideal >, < nearring ideal >, < nearring ideal >,
< nearring ideal >, < nearring ideal >, < nearring ideal >,
< nearring ideal >, < nearring ideal >, < nearring ideal >,
< nearring ideal > ]

gap> List (Is, Size);
[ 1, 2, 4, 2, 4, 8, 8, 16, 4, 8, 16, 16, 32 ]

x RestrictedEndomorphismNearRing( G, U )

RestrictedEndomorphismNearRing returns the nearring generated by all endomorphisms e on G with
e(G) ⊆ U .

gap> G := GTW16_8;
16/8
gap> U := First ( NormalSubgroups ( G ),
> x -> Size (x) = 2 );
Group([ ( 1, 5)( 2,10)( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) ])
gap> HGU := RestrictedEndomorphismNearRing (G, U);
RestrictedEndomorphismNearRing( 16/8, Group(
[ ( 1, 5)( 2,10)( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) ]) )
gap> Size (HGU);
8
gap> IsDistributiveNearRing ( HGU );
true
gap> Filtered ( AsList ( HGU),
> x -> x = x * x );
[ <mapping: 16/8 -> 16/8 > ]

x LocalInterpolationNearRing( tfmnr, m )

LocalInterpolationNearRing returns the nearring of all mappings on G that can be interpolated at any
set of m places by a mapping in tfmnr , where G is the domain and codomain of the elements in tfmnr .
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gap> P := PolynomialNearRing ( GTW8_5 );
PolynomialNearRing( 8/5 )
gap> L := LocalInterpolationNearRing ( P, 2 );
LocalInterpolationNearRing( PolynomialNearRing( 8/5 ), 2 )
gap> Size ( L ) / Size ( P );
16

5.3 The group a transformation nearring acts on

x Gamma( tfmnr )

The function Gamma returns the group on which the mappings of the nearring tfmnr act.

gap> Gamma ( PolynomialNearRing ( CyclicGroup ( 25 ) ) );
<pc group of size 25 with 2 generators>
gap> IsCyclic (last);
true

5.4 Transformation nearrings and other nearrings

x AsTransformationNearRing( nr )

Provided that nr is not already a transformation nearring, AsTransformationNearRing returns a transfor-
mation nearring that is isomorphic to the nearring nr .

gap> L := LibraryNearRing (GTW8_3, 12);
LibraryNearRing(8/3, 12)
gap> Lt := AsTransformationNearRing ( L );
< transformation nearring with 3 generators >
gap> Gamma ( Lt );
8/3 x C_2

x AsExplicitMultiplicationNearRing( nr )

Provided that nr is not already an explicit multiplication nearring (i. e. a transformation nearring),
AsExplicitMultiplicationNearRing returns an explicit multiplication nearring that is isomorphic to the
nearring nr .

gap> P := PolynomialNearRing ( GTW4_2 );
PolynomialNearRing( 4/2 )
gap> n := AsExplicitMultiplicationNearRing ( P );
ExplicitMultiplicationNearRing ( Group(
[ ( 1, 2)( 5, 6)( 9,10)(13,14), ( 3, 4)( 7, 8)(11,12)(15,16),
( 7, 8)( 9,10)(13,14)(15,16) ]) , multiplication )

5.5 Noetherian quotients for transformation nearrings

x NoetherianQuotient( tfmnr, target, source )

NoetherianQuotient returns the set of all mappings t in tfmnr with t(source) ⊆ target.
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gap> G := SymmetricGroup ( 4 );
Sym( [ 1 .. 4 ] )
gap> V := First ( NormalSubgroups ( G ), x -> Size ( x ) = 4 );
Group([ (1,4)(2,3), (1,3)(2,4) ])
gap> P := InnerAutomorphismNearRing ( G );
InnerAutomorphismNearRing( Sym( [ 1 .. 4 ] ) )
gap> N := NoetherianQuotient ( P, V, G );
NoetherianQuotient( Group([ (1,4)(2,3), (1,3)(2,4) ]) ,Sym(
[ 1 .. 4 ] ) )
gap> Size ( P ) / Size ( N );
54

x CongruenceNoetherianQuotient( P, A, B, C )

CongruenceNoetherianQuotient returns the ideal of all those mappings in P that map every element of
the group Gamma(P) into C , and maps two elements that are congruent modulo B into elements that are
congruent modulo A. Input conditions: (1) P is the nearring of polynomial functions on a group G, (2) A
is a normal subgroup of G, (3) B is a normal subgroup of G, (4) C is a normal subgroup of G, (5) [C,B] is
less or equal to A.

gap> G := GTW8_4;
8/4
gap> P := PolynomialNearRing (G);
PolynomialNearRing( 8/4 )
gap> A := TrivialSubgroup (G);
Group(())
gap> B := DerivedSubgroup (G);
Group([ (1,3)(2,4) ])
gap> C := G;
8/4
gap> I := CongruenceNoetherianQuotient (P, A, B, C);
< nearring ideal >
gap> Size (P/I);
2

x CongruenceNoetherianQuotientForInnerAutomorphismNearRings (I , A, B, C )

CongruenceNoetherianQuotientForInnerAutomorphismNearRings returns the ideal of all those mappings
in I that map every element of the group Gamma(I) into C , and maps two elements that are congruent
modulo B into elements that are congruent modulo A. Input conditions: (1) P is the nearring of polynomial
functions on a group G, (2) A is a normal subgroup of G, (3) B is a normal subgroup of G, (4) C is a normal
subgroup of G, (5) [C,B] is less or equal to A.
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gap> G := GTW8_4;
8/4
gap> I := InnerAutomorphismNearRing (G);
InnerAutomorphismNearRing( 8/4 )
gap> A := TrivialSubgroup (G);
Group(())
gap> B := DerivedSubgroup (G);
Group([ (1,3)(2,4) ])
gap> C := G;
8/4
gap> j := CongruenceNoetherianQuotientForInnerAutomorphismNearRings (I,A,B,C);
< nearring ideal >
gap> Size (I/j);
2

5.6 Zerosymmetric mappings

x ZeroSymmetricPart( tfmnr )

ZeroSymmetricPart returns the nearring of all mappings t in tfmnr with t(0) = 0.

gap> g := GTW8_4;
8/4
gap> P := PolynomialNearRing ( g );
PolynomialNearRing( 8/4 )
gap> Zp := ZeroSymmetricPart ( P );
< transformation nearring with 4 generators >
gap> InnerAutomorphismNearRing ( g ) = Zp;
true





6 Nearring ideals

For an introduction to nearring ideals we suggest [Pil83], [Mel85], and [Cla92].

Ideals of nearrings can either be left, right or twosided ideals. However, all of them are called ideals.
Mathematicians tend to use the expression ideal also for subgroups of the group reduct of the nearring.
GAP does not allow that.

Left, right or twosided ideals in GAP form their own category IsNRI. Whenever a left, right or twosided
ideal is constructed it lies in this category. The objects in this category are what GAP considers as ideals.
We will refer to them as NRIs.

All the functions in this chapter can be applied to all types of nearrings.

The functions described in this chapter can be found in the source files nrid.g?, idlatt.g? and nrcon-
str.g?.

6.1 Construction of nearring ideals

There are several ways to construct ideals in nearrings. NearRingLeftIdealByGenerators, NearRingRight-
IdealByGenerators and NearRingIdealByGenerators can be used to construct (left / right) ideals gener-
ated by a subset of the nearring. NearRingLeftIdealBySubgroupNC, NearRingRightIdealBySubgroupNC
and NearRingIdealBySubgroupNC construct (left / right) ideals from a subgroup of the group reduct of
the nearring which is an ideal. Finally NearRingLeftIdeals, NearRingRightIdeals and NearRingIdeals
compute lists of all (left / right) ideals of a nearring.

x NearRingIdealByGenerators( nr, gens )

The function NearRingIdealByGenerators takes as arguments a nearring nr and a list gens of arbitrarily
many elements of nr . It returns the smallest ideal of nr containing all elements of gens.

x NearRingLeftIdealByGenerators( nr, gens )

The function NearRingLeftIdealByGenerators takes as arguments a nearring nr and a list gens of arbi-
trarily many elements of nr . It returns the smallest left ideal of nr containing all elements of gens.

x NearRingRightIdealByGenerators( nr, gens )

The function NearRingRightIdealByGenerators takes as arguments a nearring nr and a list gens of arbi-
trarily many elements of nr . It returns the smallest right ideal of nr containing all elements of gens.
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gap> n := LibraryNearRing( GTW8_4, 12 );
LibraryNearRing(8/4, 12)
gap> e := AsNearRingElement( n, (1,3)(2,4) );
((1,3)(2,4))
gap> r := NearRingRightIdealByGenerators( n, [e] );
< nearring right ideal >
gap> l := NearRingLeftIdealByGenerators( n, [e] );
< nearring left ideal >
gap> i := NearRingIdealByGenerators( n, [e] );
< nearring ideal >
gap> r = i;
true
gap> l = i;
false
gap> l = r;
false

x NearRingIdealBySubgroupNC( nr, S )

From a nearring nr and a subgroup S of the group reduct of nr , NearRingIdealBySubgroupNC constructs
a (GAP–) ideal of nr . It is assumed (and hence not checked) that S is an ideal of nr . See Section 6.2 for
information how to check this.

x NearRingLeftIdealBySubgroupNC( nr, S )

From a nearring nr and a subgroup S of the group reduct of nr , NearRingLeftIdealBySubgroupNC con-
structs a (GAP–) left ideal of nr . It is assumed (and hence not checked) that S is a left ideal of nr . See
Section 6.2 for information how to check this.

x NearRingRightIdealBySubgroupNC( nr, S )

From a nearring nr and a subgroup S of the group reduct of nr , NearRingRightIdealBySubgroupNC con-
structs a (GAP–) right ideal of nr . It is assumed (and hence not checked) that S is a right ideal of nr . See
Section 6.2 for information how to check this.

gap> a := GroupReduct( n );
8/4
gap> nsgps := NormalSubgroups( a );
[ Group(()), Group([ (1,3)(2,4) ]),
Group([ (1,3)(2,4), (1,2)(3,4) ]), Group([ (1,3)(2,4), (2,4) ]),
Group([ (1,2,3,4), (1,3)(2,4) ]), 8/4 ]

gap> l := Filtered( nsgps,
> s -> IsSubgroupNearRingRightIdeal( n, s ) );
[ Group(()), Group([ (1,3)(2,4), (2,4) ]), 8/4 ]
gap> l := List( l,
> s -> NearRingRightIdealBySubgroupNC( n, s ) );
[ < nearring right ideal >, < nearring right ideal >,
< nearring right ideal > ]

x NearRingIdeals( nr )

NearRingIdeals computes all ideals of the nearring nr . The return value is a list of ideals of nr

For one-sided ideals the functions

x NearRingLeftIdeals( nr )

and
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x NearRingRightIdeals( nr )

can be used.

gap> NearRingIdeals( n );
[ < nearring ideal >, < nearring ideal >, < nearring ideal > ]
gap> NearRingRightIdeals( n );
[ < nearring left ideal >, < nearring left ideal >,
< nearring left ideal > ]

gap> NearRingLeftIdeals( n );
[ < nearring right ideal >, < nearring right ideal >,
< nearring right ideal >, < nearring right ideal > ]

6.2 Testing for ideal properties

x IsNRI( obj )

IsNRI returns true if the object obj is a left ideal, a right ideal or an ideal of a nearring. (Such an object
may be considered as a (one or twosided) GAP – nearring ideal.)

x IsNearRingLeftIdeal( I )

The function IsNearRingLeftIdeal can be applied to any NRI. It returns true if I is a left ideal in its
parent nearring.

x IsNearRingRightIdeal( I )

The function IsNearRingRightIdeal can be applied to any NRI. It returns true if I is a right ideal in its
parent nearring.

x IsNearRingIdeal( I )

The function IsNearRingIdeal can be applied to any NRI. It returns true if I is an ideal in its parent
nearring.

gap> n := LibraryNearRing( GTW6_2, 39 );
LibraryNearRing(6/2, 39)
gap> e := Enumerator(n)[3];
((1,3,2))
gap> l := NearRingLeftIdealByGenerators( n, [e] );
< nearring left ideal >
gap> IsNRI( l );
true
gap> IsNearRingLeftIdeal( l );
true
gap> IsNearRingRightIdeal( l );
true
gap> l;
< nearring ideal >

x IsSubgroupNearRingLeftIdeal( nr, S )

Let (N ,+, ·) be a nearring. A subgroup S of the group (N ,+) is a left ideal of N if for all a, b in N and
s in S : a · (b + s) − a · b in S . IsSubgroupNearRingLeftIdeal takes as arguments a nearring nr and a
subgroup S of the group reduct of nr and returns true if S is a nearring ideal of nr and false otherwise.
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Note, that if IsSubgroupNearRingLeftIdeal returns true this means that S is a left ideal only in the
mathematical sense, not in GAP–sense (it is a group, not a left ideal). You can use NearRingLeftIdealBy-
SubgroupNC (see Section 6.1) to construct the corresponding left ideal.

x IsSubgroupNearRingRightIdeal( nr, S )

Let (N ,+, ·) be a nearring. A subgroup S of the group (N ,+) is a right ideal of N if S · N ⊆ S . IsSub-
groupNearRingRightIdeal takes as arguments a nearring nr and a subgroup S of the group reduct of nr
and returns true if S is a right ideal of nr and false otherwise.
Note, that if IsSubgroupNearRingRightIdeal returns true this means that S is a right ideal only in the
mathematical sense, not in GAP–sense (it is a group, not a right ideal). You can use NearRingRightIdeal-
BySubgroupNC (see Section 6.1) to construct the corresponding right ideal.

gap> n := LibraryNearRing( GTW6_2, 39 );
LibraryNearRing(6/2, 39)
gap> s := Subgroups( GroupReduct( n ) );
[ Group(()), Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]),
Group([ (1,3,2) ]), Group([ (1,2,3), (1,2) ]) ]

gap> List( s, sg -> IsSubgroupNearRingLeftIdeal( n, sg ) );
[ true, false, false, false, true, true ]
gap> List( s, sg -> IsSubgroupNearRingRightIdeal( n, sg ) );
[ true, false, false, false, true, true ]

6.3 Special ideal properties

x IsPrimeNearRingIdeal( I )

An ideal I of a nearring N is prime if for any two ideals J and K of N whenever J · K is contained in I
then at least one of them is contained in I . IsPrimeNearRingIdeal returns true if I is a prime ideal in its
parent nearring and false otherwise.

gap> n := LibraryNearRingWithOne( GTW27_2, 5 );
LibraryNearRingWithOne(27/2, 5)
gap> Filtered( NearRingIdeals( n ), IsPrimeNearRingIdeal );
[ < nearring ideal of size 9 >, < nearring ideal of size 27 > ]

x IsMaximalNearRingIdeal( I )

A proper ideal I of a nearring N is maximal if there is no proper ideal containing I properly. IsMaximal-
NearRingIdeal( I ) returns ‘true if I is a maximal ideal in its parent nearring and false otherwise.

gap> n := LibraryNearRingWithOne( GTW27_2, 5 );
LibraryNearRingWithOne(27/2, 5)
gap> Filtered( NearRingIdeals( n ), IsMaximalNearRingIdeal );
[ < nearring ideal of size 9 > ]

6.4 Generators of nearring ideals

x GeneratorsOfNearRingIdeal( I )

For an NRI I the function GeneratorsOfNearRingIdeal returns a set of elements of the parent nearring of
I that generates I as an ideal.

x GeneratorsOfNearRingLeftIdeal( I )

For an NRI I the function GeneratorsOfNearRingLeftIdeal returns a set of elements of the parent nearring
of I that generates I as a left ideal.
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x GeneratorsOfNearRingRightIdeal( I )

For an NRI I the function GeneratorsOfNearRingRightIdeal returns a set of elements of the parent nearring
of I that generates I as a right ideal.

6.5 Near-ring ideal elements

x AsList( I )

The function AsList computes the elements of the (left / right) ideal I . It returns the elements as a list.

x AsSortedList( I )

does essentially the same, but returns a set of elements.

x Enumerator( I )

does essentially the same as AsList, but returns an enumerator for the elements of nr .

gap> n := LibraryNearRing( GTW8_2, 2 );
LibraryNearRing(8/2, 2)
gap> li := NearRingLeftIdeals( n );
[ < nearring left ideal >, < nearring left ideal >,
< nearring left ideal >, < nearring left ideal >,
< nearring left ideal >, < nearring left ideal > ]

gap> l := li[3];
< nearring left ideal >
gap> e := Enumerator( l );;
gap> e[2];
((1,2)(3,6,5,4))
gap> AsList( e ); AsList( l );
[ (()), ((1,2)(3,6,5,4)), ((3,5)(4,6)), ((1,2)(3,4,5,6)) ]
[ (()), ((1,2)(3,6,5,4)), ((3,5)(4,6)), ((1,2)(3,4,5,6)) ]

6.6 Random ideal elements

x Random( I )

Random returns a random element of the (left / right) ideal I .

gap> Random( l );
((3,5)(4,6))

6.7 Membership of an ideal

For a (left / right) ideal I of a nearring N and an element n of N

x n in I

tests whether n is an element of I .
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gap> Random( n ) in l;
true
gap> Random( n ) in l;
false

6.8 Size of ideals

x Size( I )

Size returns the number of elements of the (left / right) ideal I .

6.9 Group reducts of ideals

x GroupReduct( I )

GroupReduct returns the group reduct of the (left / right) ideal I .

6.10 Comparision of ideals

x I = J

If I and J are (left / right) ideals of the same nearring and consist of the same elements, then true is
returned. Otherwise the answer is false.

6.11 Operations with ideals

The most important operations for nearring (left / right) ideals are meet and join in the lattice. GAP offers
the functions Intersection, ClosureNearRingLeftIdeal, ClosureNearRingRightIdeal and Closure-
NearRingLeftIdeal for this purpose.

x Intersection( ideallist )

computes the intersection of the (left / right) ideals in the list ideallist . All of the (left / right) ideals in
ideallist must be (left / right) ideals of the same nearring.

x Intersection( I1, . . . , In )

computes the intersection of the (left / right) ideals I1 , . . . , In.

In both cases the result is again a (left / right) ideal.

x ClosureNearRingLeftIdeal( L1, L2 )

The function ClosureNearRingLeftIdeal computes the left ideal L1 + L2 of the nearRing N if both L1
and L2 are (left) ideals of N .

x ClosureNearRingRightIdeal( R1, R2 )

The function ClosureNearRingRightIdeal computes the right ideal L1 + L2 of the nearring N if both R1
and R2 are (right) ideals of N .

x ClosureNearRingIdeal( I1, I2 )

The function ClosureNearRingIdeal computes the ideal L1 + L2 of the nearring N if both I1 and I2 are
ideals of N .
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6.12 Commutators

x NearRingCommutator( I , J )

The function NearRingCommutator returns the commutator of the two ideals I and J of a common nearring.

gap> l := LibraryNearRing( GTW6_2, 3 );
LibraryNearRing(6/2, 3)
gap> i := NearRingIdeals( l );
[ < nearring ideal >, < nearring ideal > ]
gap> List( i, Size );
[ 1, 6 ]
gap> NearRingCommutator( i[2], i[2] );
< nearring ideal of size 6 >

The function PrintNearRingCommutatorsTable prints a complete overview over the action of the commu-
tator operator on a group.

gap> l := LibraryNearRing( GTW8_4, 13 );
LibraryNearRing(8/4, 13)
gap> NearRingIdeals( l );
[ < nearring ideal >, < nearring ideal >, < nearring ideal > ]
gap> PrintNearRingCommutatorsTable( l );
[ 1, 1, 1 ]
[ 1, 1, 2 ]
[ 1, 2, 2 ]

6.13 Simple nearrings

x IsSimpleNearRing( nr )

The function IsSimpleNearRing returns true if the nearring nr has no proper (two-sided) ideals.

gap> NumberLibraryNearRings( GTW4_2 );
23
gap> Filtered( AllLibraryNearRings( GTW4_2 ), IsSimpleNearRing );
[ LibraryNearRing(4/2, 3), LibraryNearRing(4/2, 16),
LibraryNearRing(4/2, 17) ]

6.14 Factor nearrings

x FactorNearRing( nr, I )

For a nearring nr and an ideal I of the nearring nr the function FactorNearRing returns the factor nearring
of nr modulo the ideal I . Alternatively,

x nr / I

can be used and has the same effect.

The result is always an ExplicitMultiplicationNearRing, so all functions for such nearrings can be applied
to the factor nearring.
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gap> n := LibraryNearRing( GTW8_2, 2 );
LibraryNearRing(8/2, 2)
gap> e := AsNearRingElement( n, (1,2) );
((1,2))
gap> e in n;
true
gap> i := NearRingRightIdealByGenerators( n, [e] );
< nearring right ideal >
gap> Size(i);
4
gap> IsNearRingLeftIdeal( i );
true
gap> i;
< nearring ideal of size 4 >
gap> f := n/i;
FactorNearRing( LibraryNearRing(8/2, 2), < nearring ideal of size 4 > )
gap> IdLibraryNearRing(f);
[ 2/1, 1 ]



7
Graphic ideal lattices

(X-GAP only)

If you run SONATA under XGAP it is possible to study ideal lattices of nearrings graphically.

x GraphicIdealLattice( nr, string )

The function GraphicIdealLattice computes one- and two-sided nearring ideals and uses XGAP’s graphic
capabilities to draw the ideal lattice of the nearring nr . The string string determines, which ideals are
shown:

If string contains the letter l, left ideals are shown, if string contains the letter r, right ideals are shown,
and if string contains the letter i, two-sided ideals are shown. Any combination of these letters is possible.

Right ideals of the nearring are represented by squares, left ideals by diamonds and two-sided ideals by
circles. It is possible, that two-sided ideals are shown as right or left ideals, if the two-sided ideal property
has not yet been tested.

Left clicking on an ideal allows one to select the ideal and determine more information about the ideal.
Choosing Ideal type from the Ideals-menu determines, whether the selected ideal is two-sided (in which
case its shape changes to a circle immediately). On a right click on an ideal a window opens showing more
information about the ideal, such as its size and the isomorphism class of the factor nearring by the ideal
(if it is two-sided). The information is computed and displayed as soon as you click on the corresponding
entry in the window. Finally clicking on Export ideal to GAP makes the ideal the last output of XGAP’s
main window, where you may then go on working with it.

It is also possible to select several ideals at the same time pressing the Ctrl-key while left clicking on the
ideals. When several ideals are selected it is possible to compute their sums and intersection from the
corresponding Ideals-menu entries. The result of the computation is then indicated by green color.





8 N-groups

In SONATA every N-group is a group, the only difference is, that there is a nearring that acts on the group.
And since in SONATA all nearrings are left distributive, they act on the elements of an N-group from the
right. Note, that the elements of an N-group are added via *, not +.

The functions described in this section can be found in the source files ngroups.g?.

8.1 Construction of N-groups

There is a natural way to construct an N-group. It is to take a group, a nearring and define an action
of the nearring on the group. The function NGroup allows one to do this. The special case, where (the
group reduct of) a nearring is viewed as an N-group over the nearring itself, can be constructed easily via
NGroupByNearRingMultiplication.

x NGroup( G, nr, action )

The function NGroup has three arguments. G must be a group, nr the nearring that acts on the group and
action a binary operation from the direct product of G and nr into G . It returns the N-group.

gap> G := GTW4_2;
4/2
gap> n := MapNearRing( G );
TransformationNearRing(4/2)
gap> action := function ( g, f )
> return Image( f, g );
> end;
function ( g, f ) ... end
gap> gamma := NGroup( G, n, action );
< N-group of TransformationNearRing(4/2) >
gap> IsNGroup( gamma );
true
gap> NearRingActingOnNGroup( gamma );
TransformationNearRing(4/2)
gap> ActionOfNearRingOnNGroup( gamma );
function ( g, f ) ... end
gap> Print( ActionOfNearRingOnNGroup( gamma ) );
function ( g, f )

return Image( f, g );

x NGroupByNearRingMultiplication( nr )

For every (left) nearring (N ,+, ·) the group (N ,+) is an N-group over N with respect to nearring multipli-
cation from the right as the action. The function NGroupByNearRingMultiplication returns this N-group
of the nearring nr .
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gap> n := LibraryNearRing( GTW8_2, 3 );
LibraryNearRing(8/2, 3)
gap> NGroupByNearRingMultiplication( n ) = GTW8_2;
true

x NGroupByApplication( tfmnr )

For a nearring T of transformations on a group G , G is an N-group of T with the application of functions
as the action. The function NGroupByApplication returns this N-group of the nearring tfmnr .

Another way to construct an N-Group is to take a nearring N , a right ideal R and let N act on the factor
N /R in the canonical way. This is accomplished by

x NGroupByRightIdealFactor( nr, R )

The function NGroupByRightIdealFactor has two arguments, a nearring nr and a right ideal R. It returns
the N-group nr/R.

gap> N := LibraryNearRing( GTW4_2, 11 );
LibraryNearRing(4/2, 11)
gap> R := NearRingRightIdeals( N )[ 3 ];
< nearring right ideal >
gap> ng := NGroupByRightIdealFactor( N, R );
< N-group of LibraryNearRing(4/2, 11) >
gap> PrintTable( ng );
Let:
(0,0) := (())
(1,0) := ((3,4))
(0,1) := ((1,2))
(1,1) := ((1,2)(3,4))
--------------------------------------------------------------------
g0 := <identity> of ...
g1 := f1

N = LibraryNearRing(4/2, 11) acts on
G = Group( [ f1 ] )
from the right by the following action:

g0 g1
---------------
(0,0) g0 g0
(1,0) g0 g0
(0,1) g0 g1
(1,1) g0 g1

8.2 Operation tables of N-groups

x PrintTable( G )

The function PrintTable prints out the operation table of the action of a nearring on its N-group G
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gap> n := LibraryNearRing( TWGroup( 8, 2 ), 3 );
LibraryNearRing(8/2, 3)
gap> gamma := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(8/2, 3) >
gap> PrintTable( gamma );
Let:
n0 := (())
n1 := ((3,4,5,6))
n2 := ((3,5)(4,6))
n3 := ((3,6,5,4))
n4 := ((1,2))
n5 := ((1,2)(3,4,5,6))
n6 := ((1,2)(3,5)(4,6))
n7 := ((1,2)(3,6,5,4))
--------------------------------------------------------------------
g0 := ()
g1 := (3,4,5,6)
g2 := (3,5)(4,6)
g3 := (3,6,5,4)
g4 := (1,2)
g5 := (1,2)(3,4,5,6)
g6 := (1,2)(3,5)(4,6)
g7 := (1,2)(3,6,5,4)

N = LibraryNearRing(8/2, 3) acts on
G = Group( [ (1,2), (3,4,5,6) ] )
from the right by the following action:

g0 g1 g2 g3 g4 g5 g6 g7
------------------------------------
n0 g0 g0 g0 g0 g0 g0 g0 g0
n1 g0 g0 g0 g0 g0 g0 g0 g2
n2 g0 g0 g0 g0 g0 g0 g0 g0
n3 g0 g0 g0 g0 g0 g0 g0 g2
n4 g0 g0 g0 g0 g0 g0 g0 g0
n5 g0 g0 g0 g0 g0 g0 g0 g2
n6 g0 g0 g0 g0 g0 g0 g0 g0
n7 g0 g0 g0 g0 g0 g0 g0 g2

8.3 Functions for N-groups

x IsNGroup( G )

For any group G the function IsNGroup tests whether there is a nearring defined that acts on G .

x NearRingActingOnNGroup( G )

The function NearRingActingOnNGroup returns the nearring that acts on the N-group G .
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gap> n := LibraryNearRing( TWGroup( 8, 2 ), 3 );
LibraryNearRing(8/2, 3)
gap> gamma := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(8/2, 3) >
gap> NearRingActingOnNGroup( gamma );
LibraryNearRing(8/2, 3)

x ActionOfNearRingOnNGroup( G )

The function ActionOfNearRingOnNGroup returns the action of the nearring that acts on the N-group G as
a 2-ary GAP-function.

gap> n := LibraryNearRing( TWGroup( 8, 2 ), 3 );
LibraryNearRing(8/2, 3)
gap> gamma := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(8/2, 3) >
gap> ActionOfNearRingOnNGroup( gamma );
function ( g, n ) ... end

8.4 N-subgroups

x NSubgroup( G, gens )

The function NSubgroup returns the N-subgroup of the N-group G generated by gens.

x NSubgroups( G )

The function NSubgroups returns a list of all N-subgroups of the N-group G .

x IsNSubgroup( G, S )

The function IsNSubgroup returns true iff S is an N-subgroup of G .

8.5 N0-subgroups

x N0Subgroups( G )

The function N0Subgroups returns a list of all N0-subgroups of the N-group G .

gap> n := LibraryNearRing(GTW12_3,20465);
LibraryNearRing(12/3, 20465)
gap> ng := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(12/3, 20465) >
gap> Length( N0Subgroups( ng ) );
9

8.6 Ideals of N-groups

x NIdeal( G, gens )

The function NIdeal returns the N-ideal of the N-group G generated by gens.

x NIdeals( G )

The function NGroupIdeals returns a list of all ideals of the N-group G .
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gap> n:=LibraryNearRing(GTW12_3,20465);
LibraryNearRing(12/3, 20465)
gap> ng := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(12/3, 20465) >
gap> NIdeals( ng );
[ < N-group of LibraryNearRing(12/3, 20465) >,
< N-group of LibraryNearRing(12/3, 20465) >,
< N-group of LibraryNearRing(12/3, 20465) > ]

x IsNIdeal( G, I )

The function IsNIdeal returns true iff I is an N-ideal of the N-group G .

x IsSimpleNGroup( G )

The function IsSimpleNGroup returns true if G is a simple N-group and false otherwise.

x IsN0SimpleNGroup( G )

The function IsN0SimpleNGroup returns true if the N-group G is N0-simple and false otherwise.

8.7 Special properties of N-groups

x IsCompatible( G )

The function IsCompatible returns true if the N-group G is compatible and false otherwise.

x IsTameNGroup( G )

The function IsTameNGroup returns true if G is a tame N-group and false otherwise.

x Is2TameNGroup( G )

The function Is2TameNGroup returns true if the N-group G is 2-tame and false otherwise.

x Is3TameNGroup( G )

The function Is3TameNGroup returns true if the N-group G is 3-tame and false otherwise.

x IsMonogenic( G )

The function IsMonogenic returns true if the N-group G is monogenic and false otherwise.

x IsStronglyMonogenic( G )

The function IsStronglyMonogenic returns true if the N-group G is strongly monogenic and false oth-
erwise.

x TypeOfNGroup( G )

The function TypeOfNGroup returns the type of a monogenic N-group G . If N is not monogenic or not of
type 0, 1 or 2 it returns fail.

gap> n:=LibraryNearRing(GTW12_3,20465);
LibraryNearRing(12/3, 20465)
gap> ng := NGroupByNearRingMultiplication( n );
< N-group of LibraryNearRing(12/3, 20465) >
gap> TypeOfNGroup( ng );
fail

8.8 Noetherian quotients

x NoetherianQuotient( nr, ngrp, target, source )

It is assumed that source and target are subsets of the nr -group ngrp. The function NoetherianQuotient
computes the set of all elements f of nr such that source∗f is a subset of target . If target is an nr -ideal
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of ngrp, the Noetherian quotient is returned as a near ring ideal, if target is an nr -subgroup of ngrp, a left
ideal of nr is returned. Otherwise the result is a subset of nr .

In the following example we let a nearring act on its group reduct and compute the noetherian quotient
(I , I )N for an ideal I of N .

gap> N := LibraryNearRing( GTW12_3, 100 );
LibraryNearRing(12/3, 100)
gap> I := NearRingIdeals( N );
[ < nearring ideal >, < nearring ideal >, < nearring ideal > ]
gap> List(I,Size);
[ 1, 6, 12 ]
gap> NN := NGroupByNearRingMultiplication( N );
< N-group of LibraryNearRing(12/3, 100) >
gap> NoetherianQuotient( N, NN, GroupReduct(I[2]), GroupReduct(I[2]) );
< nearring ideal >
gap> Size(last);
12

8.9 Nearring radicals

x NuRadical( nr, nu )

The function NuRadical has two arguments, a nearring nr and a number nu which must be one of 0, 1/2,
1 and 2. It returns the ν-radical for ν = 0, 1/2, 1, 2 respectively.

x NuRadicals( nr )

the function NuRadicals returns a record with the components J 0, J1 2, J1 and J2 with the corresponding
radicals.

gap> f := LibraryNearRing( GTW8_4, 3 );
LibraryNearRing(8/4, 3)
gap> NuRadicals( f );
rec( J2 := < nearring ideal >, J1 := < nearring ideal >,
J1_2 := < nearring right ideal >, J0 := < nearring ideal > )

gap> NuRadical( f, 1/2 );
< nearring right ideal >
gap> Size( NuRadical( f, 0 ) );
8
gap> AsList( NuRadical( f, 1 ) );
[ (()), ((2,4)), ((1,2)(3,4)), ((1,2,3,4)), ((1,3)), ((1,3)(2,4)),
((1,4,3,2)), ((1,4)(2,3)) ]

gap> NuRadical( f, 1/2 ) = NuRadical( f, 2 );
true
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Fixed-point-free

automorphism groups

The functions described in this chapter are purely group-theoretic and are meant to provide solvable fixed-
point-free automorphism groups acting on abelian groups (Frobenius groups with abelian Frobenius kernel
and solvable Frobenius complement) for the construction of centralizer nearrings, planar nearrings, designs,
and so on.
The classification of fixed-point-free automorphism groups in types I - IV follows Zassenhaus’ papers and
[Wol67]. The fixed-point-free automorphism groups acting on abelian groups are constructed from fixed-
point-free representations as described in [May00].

9.1 Fixed-point-free automorphism groups and Frobenius groups

x IsFpfAutomorphismGroup( phi, G )

An automorphism group Φ of a group G acts fixed-point-free (fpf) on G if Φ has more than 1 element and
no automorphism in Φ except the identity mapping has a fixed point besides the group identity of G .
Φ is fpf on G , iff the semidirect product of G and Φ, with Φ acting naturally on G , is a Frobenius group.
The function IsFpfAutomorphismGroup returns the according value true or false for a group of automor-
phisms phi on the group G .

gap> C9 := CyclicGroup( 9 );
<pc group of size 9 with 2 generators>
gap> a := GroupHomomorphismByFunction( C9, C9, x -> x^-1 );;
gap> phi := Group( a );;
gap> Size( phi );
2
gap> IsFpfAutomorphismGroup( phi, C9 );
true

x FpfAutomorphismGroupsMaxSize( G )

FpfAutomorphismGroupsMaxSize returns a list with integers kmax and dmax where kmax is an upper bound
for the size of an fpf automorphism group on the group G ; for example, the order of G is congruent to 1
modulo kmax and kmax is odd for nonabelian groups G . The order of any fpf automorphism group phi on
G divides kmax .
Let phi be a metacyclic fpf automorphism group acting on G . Then phi has a cyclic normal subgroup whose
index in phi divides dmax . Thus, if dmax is 1, then G admits cyclic fpf automorphism groups only.

gap> G := ElementaryAbelianGroup( 49 );;
gap> FpfAutomorphismGroupsMaxSize( G );
[ 48, 2 ]
gap> C15 := CyclicGroup( 15 );;
gap> FpfAutomorphismGroupsMaxSize( C15 );
[ 2, 1 ]

x FrobeniusGroup( phi, G )

FrobeniusGroup constructs the semidirect product of G with the fpf automorphism group phi of G with
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the multiplication (a, g) ∗ (b, h) = (ab, gah) by using the function SemidirectProduct. Thus a Frobenius
group with Frobenius kernel G and Frobenius complement phi where the action of phi on G is the natural
action of automorphisms on the group is returned.

The unique Frobenius group with kernel G = (Z3)2 × (Z5)2 and quaternion complement is constructed as
follows:

gap> aux := FpfAutomorphismGroupsMetacyclic( [3,3,5,5], 4, -1 );
[ [ [ [ f1, f2, f3, f4 ] -> [ f1^2, f2^3, f3*f4, f3*f4^2 ],

[ f1, f2, f3, f4 ] -> [ f2^4, f1, f4^2, f3 ] ] ],
<pc group of size 225 with 4 generators> ]

gap> phi := Group( aux[1][1] );
<group with 2 generators>
gap> G := aux[2];
<pc group of size 225 with 4 generators>
gap> FrobeniusGroup( phi, G );
<pc group of size 1800 with 7 generators>

9.2 Fixed-point-free representations

x IsFpfRepresentation( matrices, F )

Let π be a representation of the group Φ over the finite field F . If for all ϕ ∈ Φ except for the identity the
matrix π(ϕ) does not have 1 as an eigenvalue, then π is said to be fpf.

Let π be an fpf representation of Φ over F with degree d . Then π is faithful, the order of Φ and the
characteristic of F are coprime and π is a sum of irreducible faithful fpf F -representations. The matrix
group π(Φ) acts fpf on the vectorspace F d .

For a list of d × d matrices, matrices, over the field F , the function IsFpfRepresentation returns true if
the group generated by matrices acts fpf on the d -dimensional vectorspace over F , and false otherwise.

gap> F := GF(5);;
gap> A := [[2,0],[0,3]]*One(F);
[ [ Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^3 ] ]
gap> IsFpfRepresentation( [A], F );
true

x DegreeOfIrredFpfRepCyclic( p, m )

returns the degree of the irreducible fpf representations of the cyclic group of order m over GF(p), where m
and p are coprime.

Note, that all irreducible fpf representations of the cyclic group of order m over GF(p) have the same degree,
the multiplicative order of p modulo m, OrderMod( p, m ).

gap> DegreeOfIrredFpfRepCyclic( 5, 9 );
6

x DegreeOfIrredFpfRepMetacyclic( p, m, r )

returns the degree of the irreducible fpf representations of the metacyclic group Φ determined by parameters
m and r over GF(p). If the parameters are not feasible, then an error is returned. See FpfRepresenta-
tionsMetacyclic for a presentation of this group.

All irreducible fpf representations of the metacyclic group over GF(p) have the same degree, namely the
size of multiplicative group generated by p and r modulo m.

We determine the degree of the irreducible fpf representation of the quaternion group over GF(5):
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gap> DegreeOfIrredFpfRepMetacyclic( 5, 4, -1 );
2

x DegreeOfIrredFpfRep2( p, m, r, k )

returns the degree of the irreducible fpf representations of the type-II-group Φ determined by parameters
m, r , and k over GF(p). If the parameters are not feasible or if the parameters describe the presentation of
a metacyclic group, then an error is returned. See FpfRepresentations2 for a presentation of this group.

All irreducible fpf representations of Φ over GF(p) have the same degree, namely the size of the multiplicative
group generated by p, r , and k modulo m.

We determine the degree of the irreducible fpf representation of the smallest, not metacyclic type-2-group
(order 120) over the field GF(7):

gap> DegreeOfIrredFpfRep2( 7, 30, 11, -1 );
8

x DegreeOfIrredFpfRep3( p, m, r )

returns the degree of the irreducible fpf representations of the type-III-group Φ determined by parameters m
and r over GF(p). If the parameters are not feasible, then an error is returned. See FpfRepresentations3
for a presentation of this group.

All irreducible fpf representations of this group over GF(p) have the same degree.

We determine the degree of the irreducible fpf representation of SL(2,3) over GF(5):

gap> DegreeOfIrredFpfRep3( 5, 3, 1 );
2

x DegreeOfIrredFpfRep4( p, m, r, k )

returns the degree of the irreducible fpf representations of the type-IV-group Φ determined by parameters m,
r , and k over GF(p). If the parameters are not feasible, then an error is returned. See FpfRepresentations4
for a presentation of this group.

All irreducible fpf representations of Φ over GF(p) have the same degree.

We determine the degree of the irreducible fpf representation of the smallest type-4-group, the binary
octahedral group of order 48, over GF (5):

gap> DegreeOfIrredFpfRep4( 5, 3, 1, -1 );
4

x FpfRepresentationsCyclic( p, m )

Let a generate a cyclic group of order m. For p and m coprime FpfRepresentationsCyclic returns a list of
matrices {Ai |i in indexlist} over GF(p) as well as the list indexlist . For all i in indexlist the representation
a 7→ Ai is irreducible and fpf. The Ai with i in indexlist describe all irreducible fpf representations up
to equivalence; each irreducible fpf representation is equivalent to one a 7→ Ai and no two representations
a 7→ Ai , a 7→ Aj with i 6= j and i , j in indexlist are equivalent.

Note, that every faithful irreducible representation of a cyclic group is fpf. The number of nonequivalent
faithful irreducible representations over GF(p) is given as φ(m)/d , where the degree d is given as the
multiplicative order of p modulo m and φ(m) denotes the number of residues coprime to m.

We determine the irreducible matrix representations of the cyclic group of size 8 over GF (5):



9–4 Chapter 9. Fixed-point-free automorphism groups

gap> aux := FpfRepresentationsCyclic( 5, 8 );
[ [ [ [ Z(5)^3, Z(5)^2 ], [ Z(5), Z(5) ] ],

[ [ Z(5)^2, Z(5) ], [ Z(5)^0, Z(5)^0 ] ] ], [ 1, 7 ] ]
gap> mats := aux[1];
[ [ [ Z(5)^3, Z(5)^2 ], [ Z(5), Z(5) ] ],
[ [ Z(5)^2, Z(5) ], [ Z(5)^0, Z(5)^0 ] ] ]

gap> indexlist := aux[2];
[ 1, 7 ]

x FpfRepresentationsMetacyclic( p, m, r )

Let Φ be a metacyclic group (i.e., Φ has a cyclic normal subgroup with cyclic factor) admitting an fpf
representation. Then Φ fulfills one of the following two presentations, I or II. Both presentations are
determined by integers m and r satisfying certain conditions:

Type I. Presentation of an fpf metacyclic group Φ with all Sylow subgroups cyclic. Let m and r satisfy the
following conditions:

(a) m and r are coprime.

(b) Let n be the multiplicative order of r modulo m. Then each prime divisor of n divides m.

(c) Let m ′ be maximal such that m ′ divides m and m ′ is coprime to n. Then r = 1 mod (m/m ′).

Type II. Presentation of an fpf metacyclic group Φ with generalized quaternion 2-Sylow subgroup. Let m
and r satisfy the following conditions:

(a) m and r are coprime.

(b) Let n be the multiplicative order of r modulo m. Then n is 2 times an odd number and each prime
divisor of n divides m.

(c) Let s be maximal such that 2s divides m. Then 2s ≥ 4 and r = −1 mod 2s .

(d) Let m ′ be maximal such that m ′ divides m/2 and m ′ is coprime to n/2. Then r = 1 mod (m/m ′).

Then the group Φ with 2 generators a, b satisfying the relations am = 1, bn = am′
, b−1ab = ar is metacyclic

and fpf and has size mn.

A group satisfying presentation I is of type I in the notation of Zassenhaus, Wolf; presentation II gives a
type-II-group.

Let m, r be as above, and let p coprime to m. Additionally, we require that m does not divide r -1.
(Otherwise, Φ = 〈a, b|am = 1, bn = am′

, b−1ab = ar 〉 would be cyclic.) Then FpfRepresentationsMeta-
cyclic returns a list of matrices {(Ai ,Bi )|i in indexlist} over GF(p) as well as the list indexlist . The
GF(p)-representations determined by a 7→ Ai and b 7→ Bi are all irreducible and fpf representations of
Φ = 〈a, b|am = 1, bn = am′

, b−1ab = ar 〉 up to equivalence.

We determine the irreducible matrix representation of the quaternion group (parameters m = 4, r = −1)
over GF (7):

gap> aux := FpfRepresentationsMetacyclic( 7, 4, -1 );
[ [ [ [ [ Z(7)^2, Z(7) ], [ Z(7), Z(7)^5 ] ],

[ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, 0*Z(7) ] ] ] ], [ 1 ] ]
gap> mats := aux[1];
[ [ [ [ Z(7)^2, Z(7) ], [ Z(7), Z(7)^5 ] ],

[ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, 0*Z(7) ] ] ] ]

x FpfRepresentations2( p, m, r, k )

The presentation of a type-II-group which is not metacyclic is determined by integers m, r , k satisfying the
following conditions:



Section 2. Fixed-point-free representations 9–5

(a) m and r are coprime, m and k are coprime.

(b) Let n be the multiplicative order of r modulo m. Then n is 2 times an odd number and each prime
divisor of n divides m.

(c) Let m ′ be maximal such that m ′ divides m and m ′ is coprime to n. Then r = 1 mod (m/m ′).

(d) Let 2s−1 be maximal such that 2s−1 divides m. Define l = −1 mod 2s−1 and l = 1 mod (nm/(2s−1m ′)).
Then k = l mod (m/m ′).

(e) The multiplicative order of k modulo m equals 2 and k 6= r (n/2) mod m.

Then the group Φ with generators a, b, q satisfying the relations am = 1, bn = am′
, b−1ab = ar and further-

more q−1aq = ak , q−1bq = b l is fpf of type II and has size 2mn.

a, b generate a metacyclic group with all Sylow subgroups cyclic (see conditions (a), (b), (c)) of index 2 in
Φ.

For m, r , k as above and p coprime to m FpfRepresentations2 returns a list of matrices {(Ai ,Bi ,Qi )|i in
indexlist} over GF(p) as well as the list indexlist . The GF(p)-representations determined by a 7→ Ai , b 7→ Bi
and q 7→ Qi are all irreducible, fpf representations of Φ upto equivalence.

We determine the irreducible matrix representations of the smallest type-II-group which is not metacyclic
(parameters m = 30, r = 11, k = -1, size 120) over the field GF(11) and obtain 2 nonequivalent fpf
representations, each of degree 4:

gap> DegreeOfIrredFpfRep2( 11, 30, 11, -1 );
4
gap> aux := FpfRepresentations2( 11, 30, 11, -1 );
[ [ [ <block matrix of dimensions (2*2)x(2*2)>,

<block matrix of dimensions (2*2)x(2*2)>,
<block matrix of dimensions (2*2)x(2*2)> ],

[ <block matrix of dimensions (2*2)x(2*2)>,
<block matrix of dimensions (2*2)x(2*2)>,
<block matrix of dimensions (2*2)x(2*2)> ] ], [ 1, 13 ] ]

x FpfRepresentations3( p, m, r )

A group Φ admitting an fpf representation is said to be of type III if Φ is the semidirect product of the
quaternion group and a metacyclic fpf group H of odd size, with the quaternion group normal and H
permuting the 3 subgroups of order 4.

The presentation of a type-III-group is determined by integers m and r , describing the metacyclic group H
and its action on the normal quaternion subgroup. The following conditions have to be satisfied for m, r :

(a) 3 divides m; m is odd; m and r are coprime.

(b) Let n be the multiplicative order of r modulo m. Then each prime divisor of n divides m.

(c) Let m ′ be maximal such that m ′ divides m and m ′ is coprime to n. Then r = 1 mod (m/m ′).

Let p, q with relations p4 = 1, q2 = p2, q−1pq = p−1 generate the quaternion group. Let a, b generate a
metacyclic group determined by m and r (See FpfRepresentationsMetacyclic).

If 3 divides n, then let a commute with p, q and let b−1pb = q , b−1qb = pq .

If 3 does not divide n, then let b commute with p, q and let a−1pa = q , a−1qa = pq

Then the group Φ with generators p, q , a, b is of type III and has size 8mn.

For r 6= 1 mod m, FpfRepresentations3 returns a list of matrices {(P ,Q ,Ai ,Bi )|i in indexlist} over GF(p)
as well as the list indexlist .
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For r = 1 mod m, the group H is cyclic and FpfRepresentations3 returns {(P ,Q ,Ai )|i in indexlist} over
GF(p) and indexlist .
The GF(p)-representations determined by p 7→ P , q 7→ Q and a 7→ Ai , b 7→ Bi are all irreducible, fpf
representations of Φ upto equivalence.
We determine the irreducible matrix representation of the smallest type-III-group, namely SL(2,3), (param-
eters m = 3, r = 1, size 24) over the field GF(5):

gap> aux := FpfRepresentations3( 5, 3, 1 );
[ [ [ [ [ Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^3 ] ],

[ [ 0*Z(5), Z(5)^2 ], [ Z(5)^0, 0*Z(5) ] ],
[ [ Z(5)^3, Z(5)^0 ], [ Z(5), Z(5)^0 ] ] ] ], [ 1 ] ]

x FpfRepresentations4( p, m, r, k )

A group Φ = 〈p, q , a, b, z 〉 admitting an fpf representation is said to be of type IV, if it has a normal subgroup
H = 〈p, q , a, b〉 of type III and index 2.
The presentation of a type-IV-group is determined by integers m, r , k satisfying the following conditions:

(a) Let s be maximal such that 3s divides m. Then s ≥ 1; m is odd; m and r are coprime.
(b) Let n be the multiplicative order of r modulo m. Then 3 does not divide n; each prime divisor of n

divides m.
(c) Let m ′ be maximal such that m ′ divides m and m ′ is coprime to n. Then r = 1 mod (m/m ′).
(d) k = −1 mod 3s , k = 1 mod (m/m ′) and k2 = 1 modulo m.

Let p, q , a, b generate a type-III-group determined by m, r with relations as given in Section FpfRepresen-
tations3. Additionally, let z 2 = p2, z−1pz = qp, z−1qz = q−1 and z−1az = ak , z−1bz = b.
Then the group Φ with generators p, q , a, b and z is of type IV and has size 16mn.
For r 6= 1 mod m, FpfRepresentations4 returns a list of matrices {(P ,Q ,Ai ,Bi ,Zi )|i in indexlist} over
GF(p) as well as the list indexlist .
For r = 1 mod m, the function FpfRepresentations4 returns {(P ,Q ,Ai ,Zi )|i in indexlist} over GF(p)
and indexlist .
The GF(p)-representations determined by p 7→ P , q 7→ Q and a 7→ Ai , b 7→ Bi , z 7→ Zi are all irreducible,
fpf representations of Φ upto equivalence.
We determine the 2 nonequivalent irreducible matrix representations of the smallest type-IV-group (binary
octahedral group, m = 3, r = 1, k = -1, size 48) over the field GF(7):

gap> aux := FpfRepresentations4( 7, 3, 1, -1 );
[ [ [ [ [ Z(7)^2, Z(7) ], [ Z(7), Z(7)^5 ] ],

[ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, 0*Z(7) ] ],
[ [ Z(7)^2, 0*Z(7) ], [ Z(7)^0, Z(7)^4 ] ],
[ [ Z(7)^5, Z(7) ], [ Z(7), Z(7)^2 ] ] ],

[ [ [ Z(7)^2, Z(7) ], [ Z(7), Z(7)^5 ] ],
[ [ 0*Z(7), Z(7)^3 ], [ Z(7)^0, 0*Z(7) ] ],
[ [ Z(7)^2, 0*Z(7) ], [ Z(7)^0, Z(7)^4 ] ],
[ [ Z(7)^2, Z(7)^4 ], [ Z(7)^4, Z(7)^5 ] ] ] ],

[ [ 1, 1 ], [ -1, 1 ] ] ]

9.3 Fixed-point-free automorphism groups

x FpfAutomorphismGroupsCyclic( ints, m )

If AbelianGroup(ints) admits a cyclic fpf automorphism group of size m, then FpfAutomorphismGroup-
sCyclic determines one representative for each conjugacy class of such fpf automorphism groups. Conjugacy
is determined within the whole automorphism group of AbelianGroup(ints).
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ints has to be a list of prime power integers and is sorted in the function, according to the order pi ≤ q j ⇔
p < q or (p = q and j < i).

AbelianGroup(ints) admits a cyclic fpf automorphism group of size m iff the multiplicity of each prime
power pi in ints is divisible by DegreeOfIrredFpfRepCyclic( p, m ).

A list of generators of the nonconjugate fpf automorphism groups is returned together with the group
AbelianGroup(ints), on which the automorphisms act. Here ints is sorted with the order above.

The generators, as, of the 2 nonconjugate cyclic fpf automorphism groups of order 4 on Z25×Z5 are computed
as follows:

gap> aux := FpfAutomorphismGroupsCyclic( [25,5], 4 );
[ [ [ f1, f3 ] -> [ f1^2*f2, f3^2 ],

[ f1, f3 ] -> [ f1^2*f2, f3^3 ] ],
<pc group of size 125 with 2 generators> ]

gap> as := aux[1];
[ [ f1, f3 ] -> [ f1^2*f2, f3^2 ], [ f1, f3 ] -> [ f1^2*f2, f3^3 ] ]
gap> G := aux[2];
<pc group of size 125 with 2 generators>

x FpfAutomorphismGroupsMetacyclic( ints, m, r )

If AbelianGroup(ints) admits a metacyclic fpf automorphism group determined by parameters m and r that
is not cyclic (see FpfRepresentationsMetacyclic for a presentation), then FpfAutomorphismGroupsMeta-
cyclic determines one representative for each conjugacy class of such fpf automorphism groups. Conjugacy
is determined within the whole automorphism group of AbelianGroup(ints).

ints has to be a list of prime power integers and is sorted in the function, according to the order pi ≤ q j ⇔
p < q or (p = q and i ≥ j ).

Moreover, the multiplicity of each prime power pi in ints has to be divisible by DegreeOfIrredFpfRepMeta-
cyclic( p, m, r ), which is a multiple of the multiplicative order of r modulo m.

A list of pairs of generators (a, b satisfying b−1ab = ar , am = 1 and bn = am′
) of the nonconjugate fpf

automorphism groups is returned together with the group AbelianGroup(ints), on which the automorphisms
act. Here ints is sorted with the order above.

For G = (Z3)2 × (Z5)2 the quaternion fpf automorphism group of size 8 (parameters m = 4, r = −1) is
computed as follows:

gap> aux := FpfAutomorphismGroupsMetacyclic( [3,3,5,5], 4, -1 );
[ [ [ [ f1, f2, f3, f4 ] -> [ f1^2, f2^3, f3*f4, f3*f4^2 ],

[ f1, f2, f3, f4 ] -> [ f2^4, f1, f4^2, f3 ] ] ],
<pc group of size 225 with 4 generators> ]

gap> fs := aux[1];
[ [ [ f1, f2, f3, f4 ] -> [ f1^2, f2^3, f3*f4, f3*f4^2 ],

[ f1, f2, f3, f4 ] -> [ f2^4, f1, f4^2, f3 ] ] ]
gap> phi := Group( fs[1] );
<group with 2 generators>
gap> G := aux[2];
<pc group of size 225 with 4 generators>

On G = (Z7)2 × (Z17)2 there are 2 nonconjugate fpf automorphism groups isomorphic to the generalized
quaternion group of size 16 (parameters m = 8, r = −1):
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gap> aux := FpfAutomorphismGroupsMetacyclic( [7,7,17,17], 8, -1 );;
gap> fs := aux[1];
[ [ [ f1, f2, f3, f4 ] -> [ f1^9, f2^2, f3^4*f4^2, f3*f4^6 ],

[ f1, f2, f3, f4 ] -> [ f2^16, f1, f3^4*f4^5, f3^5*f4^3 ] ],
[ [ f1, f2, f3, f4 ] -> [ f1^9, f2^2, f3^3*f4^5, f3^6*f4 ],

[ f1, f2, f3, f4 ] -> [ f2^16, f1, f3^3*f4^4, f3*f4^4 ] ] ]
gap> phis := List( fs, Group );
[ <group with 2 generators>, <group with 2 generators> ]
gap> G := aux[2];
<pc group of size 14161 with 4 generators>

x FpfAutomorphismGroups2( ints, m, r, k )

If AbelianGroup(ints) admits an fpf automorphism group of type II, determined by parameters m, r ,
k that is not metacyclic (see FpfRepresentations2 for a presentation), then FpfAutomorphismGroups2
determines one representative for each conjugacy class of such fpf automorphism groups. Conjugacy is
determined within the whole automorphism group of AbelianGroup(ints).
ints has to be a list of prime power integers and is sorted in the function, according to the order pi ≤ q j ⇔
p < q or (p = q and i ≥ j ).
Note, that the degree of an irreducible fpf representation of a type-II-group which is not metacyclic is divisible
by 4 and that the multiplicity of each prime power pi in ints has to be divisible by DegreeOfIrredFpfRep2(
p, m, r, k ).
A list of triples of generators (a, b, z satisfying b−1ab = ar , am = 1 and z−1az = ak ) of the nonconjugate fpf
automorphism groups is returned together with the group AbelianGroup(ints), on which the automorphisms
act. Here ints is sorted with the order above.
Upto conjugacy there is only one fpf automorphism group of type II with parameters m = 30, r = 11, k = −1,
size 120 on the elementary abelian group of size 114:

gap> aux := FpfAutomorphismGroups2( [11,11,11,11], 30, 11, -1 );
[ [ [ [ f1, f2, f3, f4 ] -> [ f1^5*f2^4, f1^3*f2^10, f3^2*f4^8,

f3^6*f4 ],
[ f1, f2, f3, f4 ] -> [ f1^3*f2^10, f1^10*f2^8, f3^8*f4,

f3*f4^3 ],
[ f1, f2, f3, f4 ] -> [ f3^10, f4^10, f1, f2 ] ] ],

<pc group of size 14641 with 4 generators> ]
gap> phi := Group( aux[1][1] );
<group with 3 generators>
gap> G := aux[2];
<pc group of size 14641 with 4 generators>

x FpfAutomorphismGroups3( ints, m, r )

If AbelianGroup(ints) admits an fpf automorphism group of type III determined by parameters m and r (see
FpfRepresentations3 for a presentation), then FpfAutomorphismGroups3 determines one representative
for each conjugacy class of such fpf automorphism groups. Conjugacy is determined within the whole
automorphism group of AbelianGroup(ints).
ints has to be a list of prime power integers and is sorted in the function, according to the order pi ≤ q j ⇔
p < q or (p = q and i ≥ j ).
Moreover, the multiplicity of each prime power pi in ints has to be divisible by DegreeOfIrredFpfRep3(
p, m, r ), which is a multiple of 2n where n is the multiplicative order of r modulo m.
A list of tuples of generators, [p,q,a,b] , (p, q generating the quaternion group, a, b satisfying b−1ab =
ar , am = 1 and bn = am′

) of the nonconjugate fpf automorphism groups is returned together with the group
AbelianGroup(ints), on which the automorphisms act. Here ints is sorted with the order above.
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For G = (Z5)2 the fpf automorphism type-III-group isomorphic to SL(2,3) is computed as follows (parameters
m = 3, r = 1):

gap> aux := FpfAutomorphismGroups3( [5,5], 3, 1 );
[ [ [ [ f1, f2 ] -> [ f1^2, f2^3 ], [ f1, f2 ] -> [ f2^4, f1 ],

[ f1, f2 ] -> [ f1^3*f2, f1^2*f2 ] ] ],
<pc group of size 25 with 2 generators> ]

gap> phi := Group( aux[1][1] );
<group with 3 generators>
gap> G := aux[2];
<pc group of size 25 with 2 generators>

x FpfAutomorphismGroups4( ints, m, r, k )

If AbelianGroup(ints) admits an fpf automorphism group of type IV determined by parameters m, r , k (see
FpfRepresentations4 for a presentation), then FpfAutomorphismGroups4 determines one representative
for each conjugacy class of such fpf automorphism groups. Conjugacy is determined within the whole
automorphism group of AbelianGroup(ints).

ints has to be a list of prime power integers and is sorted in the function, according to the order pi ≤ q j ⇔
p < q or (p = q and i ≥ j ).

Moreover, the multiplicity of each prime power pi in ints has to be divisible by DegreeOfIrredFpfRep4(
p, m, r ), which is a multiple of 2n where n is the multiplicative order of r modulo m.

A list of tuples of generators, [p,q,a,b,z] , of the nonconjugate fpf automorphism groups is returned together
with the group AbelianGroup(ints), on which the automorphisms act. Here ints is sorted with the order
above. If r = 1 mod m, then a list of tuples, [p,q,a,z] , is returned instead.

For G = (Z7)2 the fpf automorphism type-IV-group isomorphic the binary octahedral group of size 48
(parameters m = 3, r = 1, k = −1) is computed as follows:

gap> aux := FpfAutomorphismGroups4( [7,7], 3, 1, -1 );
[ [ [ [ f1, f2 ] -> [ f1^2*f2^3, f1^3*f2^5 ],

[ f1, f2 ] -> [ f2^6, f1 ], [ f1, f2 ] -> [ f1^2, f1*f2^4 ],
[ f1, f2 ] -> [ f1^5*f2^3, f1^3*f2^2 ] ] ],

<pc group of size 49 with 2 generators> ]
gap> phi := Group( aux[1][1] );
<group with 4 generators>
gap> G := aux[2];
<pc group of size 49 with 2 generators>
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Nearfields, planar
nearrings and

weakly divisible
nearrings

A nearfield is a nearring with 1 where each nonzero element has a multiplicative inverse. The (additive)
group reduct of a finite nearfield is necessarily elementary abelian. For an exposition of nearfields we refer
to [Wäh87].

Let (N ,+, ·) be a left nearring. For a, b ∈ N we define a ≡ b iff a · n = b · n for all n ∈ N . If a ≡ b, then
a and b are called equivalent multipliers. A nearring N is called planar if |N /≡| ≥ 3 and if for any two
non-equivalent multipliers a and b in N , for any c ∈ N , the equation a · x = b · x + c has a unique solution.
See [Cla92] for basic results on planar nearrings.

All finite nearfields are planar nearrings.

A left nearring (N ,+, ·) is called weakly divisible if ∀a, b ∈ N∃x ∈ N : a · x = b or b · x = a.

All finite integral planar nearrings are weakly divisible.

10.1 Dickson numbers

x IsPairOfDicksonNumbers( q, n )

A pair of Dickson numbers (q ,n) consists of a prime power integer q and a natural number n such that for
p = 4 or p prime, p|n implies p|q − 1.

gap> IsPairOfDicksonNumbers( 5, 4 );
true

10.2 Dickson nearfields

x DicksonNearFields( q, n )

All finite nearfields with 7 exceptions can be obtained via socalled coupling maps from finite fields. These
nearfields are called Dickson nearfields.

The multiplication map of such a Dickson nearfield is given by a pair of Dickson numbers (q ,n) in the
following way:

Let F = GF (qn) and w be a primitive element of F . Let H be the subgroup of (F \{0}, ·) generated by wn .
Then {w (q i−1)/(q−1)|0 ≤ i ≤ n − 1} is a set of coset representatives of H in F \ {0}. For f ∈ Hw (q i−1)/(q−1)

and x ∈ F define f ∗ x = f · x q i
and 0 ∗ x = 0. Then ∗ is a nearfield multiplication on the additive group

(F ,+).
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Note that a Dickson nearfield is not uniquely determined by (q ,n), since w can be chosen arbitrarily.
Different choices of w may yield isomorphic nearfields.

DicksonNearFields returns a list of the non-isomorphic Dickson nearfields determined by the pair of Dickson
numbers (q ,n)

gap> DicksonNearFields( 5, 4 );
[ ExplicitMultiplicationNearRing ( <pc group of size 625 with

4 generators> , multiplication ),
ExplicitMultiplicationNearRing ( <pc group of size 625 with
4 generators> , multiplication ) ]

x NumberOfDicksonNearFields( q, n )

NumberOfDicksonNearFields returns the number of non-isomorphic Dickson nearfields which can be ob-
tained from a pair of Dickson numbers (q ,n). This number is given by Φ(n)/k . Here Φ(n) denotes the
number of relatively prime residues modulo n and k is the multiplicative order of p modulo n where p is
the prime divisor of q .

gap> NumberOfDicksonNearFields( 5, 4 );
2

10.3 Exceptional nearfields

x ExceptionalNearFields( q )

There are 7 finite nearfields which cannot be obtained from finite fields via a Dickson process. They are of
size p2 for p = 5, 7, 11, 11, 23, 29, 59. (There exist 2 exceptional nearfields of size 121.)

ExceptionalNearFields returns the list of exceptional nearfields for a given size q .

gap> ExceptionalNearFields( 25 );
[ ExplicitMultiplicationNearRing ( <pc group of size 25 with

2 generators> , multiplication ) ]

x AllExceptionalNearFields()

There are 7 finite nearfields which cannot be obtained from finite fields via a Dickson process. They are of
size p2 for p = 5, 7, 11, 11, 23, 29, 59. (There exist 2 exceptional nearfields of size 121.)

AllExceptionalNearFields without argument returns the list of exceptional nearfields.
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gap> AllExceptionalNearFields();
[ ExplicitMultiplicationNearRing ( <pc group of size 25 with

2 generators> , multiplication ),
ExplicitMultiplicationNearRing ( <pc group of size 49 with
2 generators> , multiplication ),

ExplicitMultiplicationNearRing ( <pc group of size 121 with
2 generators> , multiplication ),

ExplicitMultiplicationNearRing ( <pc group of size 121 with
2 generators> , multiplication ),

ExplicitMultiplicationNearRing ( <pc group of size 529 with
2 generators> , multiplication ),

ExplicitMultiplicationNearRing ( <pc group of size 841 with
2 generators> , multiplication ),

ExplicitMultiplicationNearRing ( <pc group of size 3481 with
2 generators> , multiplication ) ]

10.4 Planar nearrings

x PlanarNearRing( G, phi, reps )

A finite Ferrero pair is a pair of groups (N ,Φ) where Φ is a fixed-point-free automorphism group of (N ,+).

Starting with a Ferrero pair (N ,Φ) we can construct a planar nearring in the following way, [Cla92]: Select
representatives, say e1, . . . , et , for some or all of the non-trivial orbits of N under Φ. Let C = Φ(e1) ∪ . . . ∪
Φ(et). For each x ∈ N we define a ∗ x = 0 for a ∈ N \ C , and a ∗ x = φa(x ) for a ∈ Φ(ei ) ⊂ C and
φa(ei ) = a. Then (N ,+, ∗) is a (left) planar nearring.

Every finite planar nearring can be constructed from some Ferrero pair together with a set of orbit repre-
sentatives in this way.

PlanarNearRing returns the planar nearring on the group G determined by the fixed-point-free automor-
phism group phi and the list of chosen orbit representatives reps.

gap> C7 := CyclicGroup( 7 );;
gap> i := GroupHomomorphismByFunction( C7, C7, x -> x^-1 );;
gap> phi := Group( i );;
gap> orbs := Orbits( phi, C7 );
[ [ <identity> of ... ], [ f1, f1^6 ], [ f1^2, f1^5 ],
[ f1^3, f1^4 ] ]

gap> # choose reps from the orbits
gap> reps := [orbs[2][1], orbs[3][2]];
[ f1, f1^5 ]
gap> n := PlanarNearRing( C7, phi, reps );
ExplicitMultiplicationNearRing ( <pc group of size 7 with
1 generators> , multiplication )

x OrbitRepresentativesForPlanarNearRing( G, phi, i )

Let (N ,Φ) be a Ferrero pair, and let E = {e1, . . . , es} and F = {f1, . . . , ft} be two sets of non-zero orbit
representatives. The nearring obtained from N ,Φ,E by the Ferrero construction (see PlanarNearRing)
is isomorphic to the nearring obtained from N ,Φ,F iff there exists an automorphism α of (N ,+) that
normalizes Φ such that {α(e1), . . . , α(es)} = {f1, . . . , ft}.
The function OrbitRepresentativesForPlanarNearRing returns precisely one set of representatives of
cardinality i for each isomorphism class of planar nearrings which can be generated from the Ferrero pair (
G , phi ).
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gap> C7 := CyclicGroup( 7 );;
gap> i := GroupHomomorphismByFunction( C7, C7, x -> x^-1 );;
gap> phi := Group( i );;
gap> reps := OrbitRepresentativesForPlanarNearRing( C7, phi, 2 );
[ [ f1, f1^2 ], [ f1, f1^5 ] ]
gap> n1 := PlanarNearRing( C7, phi, reps[1] );;
gap> n2 := PlanarNearRing( C7, phi, reps[2] );;
gap> IsIsomorphicNearRing( n1, n2 );
false

10.5 Weakly divisible nearrings

x WdNearRing( G, psi, phi, reps )

Every finite (left) weakly divisible nearring (N ,+, ·) can be constructed in the following way:
(1) Let ψ be an endomorphism of the group (N ,+) such that Ker ψ = Image ψr−1 for some integer r , r > 0.
(Let ψ0 := id.)
(2) Let Φ be an automorphism group of (N ,+) such that ψΦ ⊆ Φψ and Φ acts fixed-point-free on N \ Image
ψ. (That is, for each ϕ ∈ Φ there exists ϕ′ ∈ Φ such that ψϕ = ϕ′ψ and for all n ∈ N \ Image ψ the equality
nϕ = n implies ϕ = id. Note that our functions operate from the right just like GAP-mappings do.)
(3) Let E ⊆ N be a complete set of orbit representatives for Φ on N \ Image ψ, such that for all e1, e2 ∈ E ,
for all ϕ ∈ Φ and for all 1 ≤ i ≤ r − 1 the equality eϕψ

i

1 = eψ
i

2 implies ϕψi = ψi .

Then for all n ∈ N ,n 6= 0, there are i ≥ 0, ϕ ∈ Φ and e ∈ E such that n = eϕψ
i
; furthermore, for fixed n,

the endomorphism ϕψi is independent of the choice of e and ϕ in the representation of n.
For all x ∈ N , e ∈ E , ϕ ∈ Φ and i ≥ 0 define 0 · x := 0 and

eϕψ
i
· x := xϕψ

i

Then (N ,+, ·) is a zerosymmetric (left) wd nearring.
WdNearRing returns the wd nearring on the group G as defined above by the nilpotent endomorphism psi ,
the automorphism group phi and a list of orbit representatives reps where the arguments fulfill the conditions
(1) to (3).

gap> C9 := CyclicGroup( 9 );;
gap> psi := GroupHomomorphismByFunction( C9, C9, x -> x^3 );;
gap> Image( psi );
Group([ f2, <identity> of ... ])
gap> Image( psi ) = Kernel( psi );
true
gap> a := GroupHomomorphismByFunction( C9, C9, x -> x^4 );;
gap> phi := Group( a );;
gap> Size( phi );
3
gap> orbs := Orbits( phi, C9 );
[ [ <identity> of ... ], [ f2 ], [ f2^2 ], [ f1, f1*f2, f1*f2^2 ],
[ f1^2, f1^2*f2^2, f1^2*f2 ] ]

gap> # choose reps from the orbits outside of Image( psi )
gap> reps := [orbs[4][1], orbs[5][1]];
[ f1, f1^2 ]
gap> n := WdNearRing( C9, psi, phi, reps );
ExplicitMultiplicationNearRing ( <pc group of size 9 with
2 generators> , multiplication )
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Although the functions described in this section were initially meant to investigate designs generated from
nearrings, they can also be applied to other incidence structures. In principal a design is represented as a set
of points and a set of blocks, a subset of the powerset of the points, with containment as incidence relation.

11.1 Constructing a design

x DesignFromPointsAndBlocks( points, blocks )

DesignFromPointsAndBlocks returns the design with the set of points points and the set of blocks blocks,
a subset of the powerset of points.

gap> points := [1..7];;
gap> blocks := [[1,2,3],[1,4,5],[1,6,7],[2,4,7],[2,5,6],[3,5,7],
> [3,4,6]];;
gap> D := DesignFromPointsAndBlocks( points, blocks );
<an incidence structure with 7 points and 7 blocks>

x DesignFromIncidenceMat( M ) ;

DesignFromIncidenceMat returns the design with incidence matrix M , The rows of M are labelled by the
set of points 1 to v , the columns represent the blocks. If the (i , j ) entry of the matrix M is 1, then the point
i is incident with the j -th block, i.e. the j -th block consists of those points i for which the entry (i , j ) of M
is 1. All other entries have to be 0.

gap> M := [[1,0,1,1],
> [1,1,0,0],
> [1,1,1,0]];;
gap> DesignFromIncidenceMat( M );
<an incidence structure with 3 points and 4 blocks>

x DesignFromPlanarNearRing( N , type )

DesignFromPlanarNearRing returns a design obtained from the planar nearring N following the construc-
tions of James R. Clay [Cla92].

If type = "*", DesignFromPlanarNearRing returns the design (N ,B∗,∈) in the notation of J. R. Clay with
the elements of N as set of points and {N ∗ · a + b|a, b ∈ N , a 6= 0} as set of blocks. Here N ∗ is the set of
elements x ∈ N satisfying x ·N = N .

If type = " " (blank), DesignFromPlanarNearRing returns the design (N ,B ,∈) in the notation of J. R.
Clay with the elements of N as set of points and {N · a + b|a, b ∈ N , a 6= 0} as set of blocks.
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gap> n := LibraryNearRing( GTW9_2, 90 );
LibraryNearRing(9/2, 90)
gap> IsPlanarNearRing( n );
true
gap> D1 := DesignFromPlanarNearRing( n, "*" );
<a 2 - ( 9, 4, 3 ) nearring generated design>
gap> D2 := DesignFromPlanarNearRing( n, " " );
<a 2 - ( 9, 5, 5 ) nearring generated design>

x DesignFromFerreroPair( G, phi, type )

DesignFromFerreroPair returns a design obtained from the group G , and a group of fixed-point-free au-
tomorphisms phi acting on G following the constructions of James R. Clay [Cla92].

If type = "*", DesignFromFerreroPair returns the design (G ,B∗,∈) in the notation of J. R. Clay with the
elements of G as set of points and the nonzero orbits of G under phi and their translates by group-elements
as set of blocks.

If type = " " (blank), DesignFromFerreroPair returns the design (G ,B ,∈) in the notation of J. R. Clay
with the elements of G as set of points and the nonzero orbits of G under phi joined with the zero of G and
their translates by group-elements as set of blocks.

gap> aux := FpfAutomorphismGroupsCyclic( [3,3], 4 );
[ [ [ f1, f2 ] -> [ f1*f2, f1*f2^2 ] ],
<pc group of size 9 with 2 generators> ]

gap> f := aux[1][1];
[ f1, f2 ] -> [ f1*f2, f1*f2^2 ]
gap> phi := Group( f );
<group with 1 generators>
gap> G := aux[2];
<pc group of size 9 with 2 generators>
gap> D3 := DesignFromFerreroPair( G, phi, "*" );
<a 2 - ( 9, 4, 3 ) nearring generated design>
gap> # D3 is actually isomorphic to D1

x DesignFromWdNearRing( N )

DesignFromWdNearring returns a design obtained from the weakly divisible nearring N with cyclic additive
group of prime power order. Following the constructions of A. Benini, F. Morini and S. Pellegrini, we take
the elements of N as set of points and {N · a + b|a ∈ C , b ∈ N } as set of blocks. Here C is the set of
elements a ∈ N such that a ·N = N .

gap> n := LibraryNearRing( GTW9_1, 202 );
LibraryNearRing(9/1, 202)
gap> IsWdNearRing( n );
true
gap> DesignFromWdNearRing( n );
<a 1 - ( 9, 5, 10 ) nearring generated design>

11.2 Properties of a design

x PointsOfDesign( D )

PointsOfDesign returns the actual list of points of the design D , not their positions, no matter how the
points of the design D may be represented. To get the representation of those points, whose positions in
the list of all points are given by the list pointnrs, one can use PointsOfDesign( D ){pointnrs}.
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gap> D1;
<a 2 - ( 9, 4, 3 ) nearring generated design>
gap> PointsOfDesign( D1 );
[ (()), ((4,5,6)), ((4,6,5)), ((1,2,3)), ((1,2,3)(4,5,6)),
((1,2,3)(4,6,5)), ((1,3,2)), ((1,3,2)(4,5,6)), ((1,3,2)(4,6,5)) ]

gap> PointsOfDesign( D1 ){[2,4]};
[ ((4,5,6)), ((1,2,3)) ]
gap> # returns the points in position 2 and 4

x BlocksOfDesign( D )

BlocksOfDesign returns the actual list of blocks of the design D , not their positions. Blocks are represented
as lists of points. A point is incident with a block if the point is an element of the block. To get the
representation of those blocks, whose positions in the list of all blocks are given by the list blocknrs, one can
use BlocksOfDesign( D ){blocknrs}.

gap> Length( BlocksOfDesign( D1 ) );
18
gap> BlocksOfDesign( D1 ){[3]};
[ [ ((4,6,5)), (()), ((1,2,3)(4,5,6)), ((1,3,2)(4,5,6)) ] ]
gap> # returns the block in position 3 as a list of points

x DesignParameter( D )

DesignParameter returns the set of paramaters t , v , b, r , k , λ of the design D . Here v is the size of the set
of points PointsOfDesign, b is the size of the set of blocks PointsOfDesign, every point is incident with
precisely r blocks, every block is incident with precisely k points, every t distinct points are together incident
with precisely λ blocks.

gap> DesignParameter( D1 );
[ 2, 9, 18, 8, 4, 3 ]
gap> # t = 2, v = 9, b = 18, r = 8, k = 4, lambda = 3

x IncidenceMat( D )

IncidenceMat returns the incidence matrix of the design D , where the rows are labelled by the positions of
the points in PointsOfDesign, the columns are labelled by the positions of the blocks in BlocksOfDesign. If
the point in position i is incident with the block in position j , then the (i , j ) entry of the matrix IncidenceMat
is 1, else it is 0.

gap> M1 := IncidenceMat( D1 );
[ [ 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1 ],
[ 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1 ],
[ 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 ],
[ 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1 ],
[ 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1 ],
[ 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0 ],
[ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0 ],
[ 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0 ],
[ 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0 ] ]

x PrintIncidenceMat( D )

PrintIncidenceMat prints only the entries of the incidence matrix IncidenceMat of the design without
commas. If the point in position i is incident with the block in position j , then there is 1 in the i -th row,
j -th column, else there is ’.’, a dot.
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gap> PrintIncidenceMat( D1 );
..1.1.1..1.11..1.1
1...1..11..1.11..1
1.1....1.11..1.11.
1..1.1..1.1.1..1.1
.11..11...1..11..1
.1.11.1.1....1.11.
1..1.11..1.1..1.1.
.11..1.11..11...1.
.1.11..1.11.1.1...

x BlockIntersectionNumbers( D )
x BlockIntersectionNumbersK( D, blocknr )

In the first form BlockIntersectionNumbers returns the list of cardinalities of the intersection of each block
with all other blocks of the design D . In the second form BlockIntersectionNumbers returns the list of
cardinalities of the intersection of the block in position blocknr with all other blocks of the design D .

gap> BlockIntersectionNumbers( D1, 2 );
[ 0, 4, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1 ]
gap> # the second has empty intersection with the first block
gap> # and intersects all others in at most 2 points

x IsCircularDesign( D )

IsCircularDesign returns true if the design D is circular and false otherwise. The design D has to be
the result of DesignFromPlanarNearRing or DesignFromFerreroPair, since IsCircularDesign assumes
the particular structure of such a nearring-generated design.

A design D is circular if every two distinct blocks intersect in at most two points.

IsCircularDesign calls the function BlockIntersectionNumbers.

gap> IsCircularDesign( D1 );
true

11.3 Working with the points and blocks of a design

x IsPointIncidentBlock( D, pointnr, blocknr )

IsPointIncidentBlock returns true if the point whose position in the list PointsOfDesign( D ) is given
by pointnr is incident with the block whose position in the list BlocksOfDesign( D ) is given by blocknr ,
that is, the point is contained in the block as an element in a set.

gap> IsPointIncidentBlock( D1, 3, 1 );
true
gap> # point 3 is incident with block 1
gap> IsPointIncidentBlock( D1, 3, 2 );
false

x PointsIncidentBlocks( D, blocknrs )

PointsIncidentBlocks returns a list of positions of those points of the design D which are incident with
the blocks, whose positions are given in the list blocknrs.
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gap> PointsIncidentBlocks( D1, [1, 4] );
[ 4, 7 ]
gap> # block 1 and block 4 are together incident with
gap> # points 4 and 7

x BlocksIncidentPoints( D, pointnrs )

BlocksIncidentPoints returns a list of positions of the blocks of the design D which are incident with
those points, whose positions are given in the list pointnrs.

gap> BlocksIncidentPoints( D1, [2, 7] );
[ 1, 12, 15 ]
gap> # point 2 and point 7 are together incident with
gap> # blocks 1, 12, 15
gap> BlocksOfDesign( D1 ){last};
[ [ ((4,5,6)), ((4,6,5)), ((1,2,3)), ((1,3,2)) ],
[ ((1,3,2)), ((1,3,2)(4,5,6)), (()), ((4,5,6)) ],
[ ((1,3,2)(4,6,5)), ((1,3,2)), ((4,5,6)), ((1,2,3)(4,5,6)) ] ]

gap> # the actual point sets of blocks 1, 12, and 15
gap> BlocksIncidentPoints( D1, [2, 3, 7] );
[ 1 ]
gap> # points 2, 3, 7 are together incident with block 1
gap> PointsIncidentBlocks( D1, [1] );
[ 2, 3, 4, 7 ]
gap> # block 1 is incident with points 2, 3, 4, 7
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Page numbers are given in the form chapter–page within chapter . A page number in italics refers to a
whole section which is devoted to the indexed subject. Some index entries refer to exercises, whose an-
swers in appendix A should then also be read. Keywords are sorted with case and spaces ignored, e.g.,
“PermutationCharacter” comes before “permutation group”.
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