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The conjecture that the orbit-counting generating function for to-
tally symmetric plane partitions can be written as an explicit prod-
uct formula, has been stated independently by George Andrews
and David Robbins around 1983. We present a proof of this long-
standing conjecture.
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1 Proemium

In the historical conference Combinatoire Énumerative that
took place at the end of May 1985 in Montréal, Richard

Stanley raised some intriguing problems about the enumera-
tion of plane partitions (see below), which he later expanded
into a fascinating article [11]. Most of these problems con-
cerned the enumeration of “symmetry classes” of plane parti-
tions that were discussed in more detail in another article of
Stanley [12]. All of the conjectures in the latter article have
since been proved (see David Bressoud’s modern classic [3]),
except one, which until now resisted the efforts of some of
the greatest minds in enumerative combinatorics. It concerns
the proof of an explicit formula for the q-enumeration of to-
tally symmetric plane partitions, conjectured around 1983 in-
dependently by George Andrews and David Robbins ([12], [11]
conj. 7, [3] conj. 13, and already alluded to in [1]). In the
present article we finally turn this conjecture into a theorem.

A plane partition π is an array π = (πi,j)1≤i,j , of non-
negative integers πi,j with finite sum |π| =

P
πi,j , which is

weakly decreasing in rows and columns so that πi,j ≥ πi+1,j

and πi,j ≥ πi,j+1. A plane partition π is identified with
its 3D Ferrers diagram which is obtained by stacking πi,j
unit cubes on top of the location (i, j). This gives a left-,
back-, and bottom-justified structure in which we can re-
fer to the locations (i, j, k) of the individual unit cubes. If
the diagram is invariant under the action of the symmet-
ric group S3 on the coordinate axes then π is called a to-
tally symmetric plane partition (TSPP). In other words, π
is called totally symmetric if whenever a location (i, j, k) in
the diagram is occupied then all its up to 5 permutations
{(i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i)} are occupied as well.
Such a set of cubes, i.e., all cubes to which a certain cube can
be moved via S3 is called an orbit; the set of all orbits of π
forms a partition of its diagram (see Figure 1).

In 1995, John Stembridge [13] proved Ian Macdonald’s
conjecture that the number of totally symmetric plane parti-
tions with largest part at most n, i.e., those whose 3D Ferrers
diagram is contained in the cube [0, n]3, is given by the elegant
product-formula Y

1≤i≤j≤k≤n

i+ j + k − 1

i+ j + k − 2
.

Ten years after Stembridge’s completely human-generated
proof, Andrews, Peter Paule and Carsten Schneider [2] came
up with a computer-assisted proof based on an ingenious ma-
trix decomposition, but since no q-analog of their decomposi-
tion was found, their proof could not be extended to a proof
for the q-case. A third proof of Stembridge’s theorem [8, 9],

even more computerized, was recently found in the context
of our investigations of the q-TSPP conjecture. We have now
succeeded in completing all the required computations for an
analogous proof of the q-TSPP conjecture, and can therefore
announce:

Theorem 1. Let π/S3 denote the set of orbits of a totally sym-
metric plane partition π under the action of the symmetric
group S3. Then the orbit-counting generating function ([3,
p. 200], [12, p. 106]) is given by

X
π∈T (n)

q|π/S3| =
Y

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

where T (n) denotes the set of totally symmetric plane parti-
tions with largest part at most n.

Proof sketch. Our proof is based on a result by Soichi
Okada [10] who has shown that the theorem is implied by a
certain—conjectured—determinant evaluation. These prelim-
inaries are stated accurately in the next section, followed by a
description of the holonomic ansatz [16] that we are going to
pursue. This approach relies on a kind of oracle that tells us a
description of a certificate function cn,j ; the odyssey how this
function has been “guessed” is described in the following sec-
tion. Once cn,j is known, the determinant evaluation reduces
further to proving the three identities [1], [2], and [3] stated
below. Finally we come full circle by proving these identities.
Technical details of the proof and our computations as well
as the explicit certificates are provided electronically on our
website

http://www.risc.uni-linz.ac.at/people/ckoutsch/qtspp/.
Further details which are suppressed here can be found in the
detailed description of the proof for the case q = 1 which
proceeds along the same lines [8, 9].

Our proof is noteworthy not only for its obvious signifi-
cance in enumerative combinatorics, where it settles a long-
standing conjecture, attempted by many people. It is note-
worthy also for computational reasons, as the computations
we performed went far beyond what has been thought to be
possible with currently known algebraic algorithms, software
packages, and computer hardware.
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2 The Telemachiad
In order to prove the q-TSPP conjecture, we exploit an ele-
gant reduction by Okada [10] to the problem of evaluating a
certain determinant. This determinant is also listed as Con-
jecture 46 in Christian Krattenthaler’s essay [7] on the art of
determinant evaluation.

Let, as usual, δi,j be the Kronecker delta function and let,
also as usual,"

n

k

#
=

(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)

denote the q-binomial coefficient. Define the discrete function
ai,j for i, j ≥ 1 by

qi+j−1

 "
i+ j − 2

i− 1

#
+ q

"
i+ j − 1

i

#!
+ (1 + qi)δi,j − δi,j+1.

Okada’s crucial insight is that Theorem 1 holds if

det(ai,j)1≤i,j≤n =
Y

1≤i≤j≤k≤n

„
1− qi+j+k−1

1− qi+j+k−2

«2

=: bn (n ≥ 1).

So for proving the q-TSPP conjecture, it is sufficient to prove
this conjectured determinant evaluation. For this purpose we
apply a computational approach originally proposed in [16]
which is applicable to identities of the form

det(ai,j)1≤i,j≤n = bn (n ≥ 1)

where ai,j and bn (with bn 6= 0 for all n ≥ 1) are given explic-
itly (as it is the case here).

The approach rests on the following induction argument
on n. For n = 1, the identity is trivial. Suppose the identity
holds for n− 1; then the linear system0BB@

a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

an−1,1 · · · an−1,n−1 an−1,n

0 · · · 0 1

1CCA
0BB@

cn,1
...

cn,n−1

cn,n

1CCA =

0BB@
0
...
0
1

1CCA
has a unique solution (cn,1, . . . , cn,n). The component cn,j
of this solution is precisely the (n, j)-cofactor divided by the
(n, n)-cofactor of the n×n-determinant. The division is mean-
ingful because the (n, n)-cofactor is just the (n− 1)× (n− 1)-
determinant, which by induction hypothesis is equal to bn−1,
which by general assumption is nonzero. Since the n × n-
determinant can be expressed in terms of the matrix entries
an,j and the normalized cofactors cn,j via

bn−1

nX
j=1

cn,jan,j ,

the induction step is completed by showing that this sum eval-
uates to bn.

The difficulty is that this last summation involves the
function cn,j (of the discrete variables n and j) for which
we do not have an explicit expression for general n and j.
In order to achieve our goal, we guess a suitable description
of a function cn,j and then prove that it satisfies the three
identities

cn,n = 1 (n ≥ 1), [1]
nX
j=1

cn,jai,j = 0 (1 ≤ i < n), [2]

nX
j=1

cn,jan,j =
bn
bn−1

(n ≥ 1). [3]

Once this is done, then by the argument given before the cn,j
must be precisely the normalized (n, j)-cofactors of the n×n-
determinant and the determinant evaluation follows as a con-
sequence. So in a sense, the function cn,j plays the rôle of a
certificate for the determinant identity.

3 The Odyssey
In our setting the certificate function cn,j will be described
implicitly by a system of linear recurrence equations in n
and j with coefficients depending polynomially on q, qj

and qn. Such recurrence equations can be phrased as the
elements of some noncommutative operator algebras such as
Q(q, qn, qj)[Sn, Sj ] where the symbols Sx represent the shifts
x 7→ x + 1. If a function is annihilated by certain operators
(viz. it satisfies certain recurrence equations), then it is also
annihilated by all the elements in the (left) ideal generated by
those operators. We speak of an annihilating ideal and repre-
sent such ideals by (left) Gröbner bases, so that for instance
ideal membership can be decided effectively.

The annihilating ideals we use for representing functions
are such that they uniquely determine the function up to
some finitely many initial values which we can list explic-
itly. Technically, this means that the ideals have dimen-
sion zero and that some particular polynomial coefficients
appearing in the recurrence system must not vanish simul-
taneously for infinitely many points (n, j). These recurrence
systems are similar but somewhat simpler than q-holonomic
systems [15], which satisfy some additional requirements that
are not needed for our proof. We have checked that all the
ideals arising in our proof are indeed of the desired form, but
in the interest of clarity we suppress a more detailed descrip-
tion of these checks here. For a complete analysis including
all technical details we refer to the supplementary material
on our website. Also in the interest of clarity, we will from
now on identify recurrence equations with their corresponding
operators. The details are to a large extent analogous to the
special case q = 1, which as mentioned in the introduction
has been written up in detail in [8, 9].

A priori, there is no reason why the normalized cofactors
cn,j should admit a recursive description of the kind we are
aiming at, but there is also no reason why they should not. It
turns out that they do, and this is fortunate because for func-
tions described in this way, techniques are known by which the
required identities [1], [2] and [3] can be proven algorithmi-
cally [15, 14, 5, 4]. In order to find a recursive description
for cn,j , we first computed explicitly the normalized cofactors
cn,j ∈ Q(q) for a few hundred specific indices n and j by di-
rectly solving the linear system quoted in the previous section.
Using an algorithm reminiscent of polynomial interpolation,
we then constructed a set of recurrences compatible with the
values of cn,j at the (finitely many) indices we computed.

Polynomial interpolation applied to a finite sample
u1, . . . , uk of an infinite sequence un will always deliver some
polynomial p of degree at most k−1 which matches the given
data. If it turns out that this polynomial matches some fur-
ther sequence terms uk+1, uk+2, . . . , then it is tempting to
conjecture that un = p(n) for all n. The more specific points n
are found to match, the higher is the evidence in favor of this
conjecture.

Very much analogously, it is possible to extract recurrence
equations from some finite number of values cn,j . The equa-
tions become trustworthy if they also hold for points (n, j)
which were not used for their construction. In this way, we
have discovered a system of potential recurrence equations for
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the cn,j , which, despite being respectable in size (about 30
Megabytes), appears to be a rather plausible candidate for
a recursive description of the normalized cofactors cn,j . The
system is available for download on our website. It consists
of three equations involving shifts of order up to four (with
respect to both n and j), with polynomial coefficients of de-
grees up to 52 (with respect to qn) and 24 (with respect to qj).
Some further statistics on the set of operators can be found
in a preliminary version of this article [6].

4 The Nostos
Now we switch our point of view. We discard the definition
that cn,j be the normalized (n, j)-cofactor and redefine the
discrete function cn,j as the unique solution of the guessed
recurrence system whose (finitely many) initial values agree
with the normalized (n, j)-cofactor. If we succeed in proving
that cn,j defined in this way satisfies the identities [1], [2] and
[3], then we are done. For this purpose we provide operators
which belong to the annihilating ideal of cn,j or related ideals
and have certain features which imply the desired identities.
So in a sense, these operators play the rôle of certificates for
the identities under consideration.

Because of their astronomical size (up to 7 Gigabytes;
equivalent to more than one million printed pages; corre-
sponding to about 2.5 tons of paper), these certificates are
not included explicitly in this article but provided only elec-
tronically on our website. Also because of their size, it was
not possible to construct them by simply applying the stan-
dard algorithms from [15, 14, 4, 5]. A detailed explanation of
how exactly we found the certificates is beyond the scope of
this article and will be given in a separate publication. But
this lack of explanation does not at all affect the soundness
of our proof, because the correctness of the certificates can be
checked independently by simply performing ideal member-
ship tests. Our certificates are so big that even this “simple”
calculation is not quite trivial, but a reader with a sufficient
amount of patience and programming expertise will be able
to do it.

We proceed by explaining the properties of the certificates
provided on our website and why they imply [1], [2] and [3].

A certificate for [1]. To certify that cn,n = 1 for all n ≥ 1,
we provide a recurrence in the annihilating ideal of cn,j which
is of the special form

p7(q, qj , qn)cn+7,j+7 + p6(q, qj , qn)cn+6,j+6 + · · ·
· · ·+ p1(q, qj , qn)cn+1,j+1 + p0(q, qj , qn) = 0.

By virtue of the substitution j 7→ n, it translates into a recur-
rence for the diagonal sequence cn,n. It is a relatively cheap
computation to check that this recurrence contains the oper-
ator Sn − 1 annihilating the constant sequence 1 as a (right)
factor. This implies that cn,n and the constant sequence 1
both satisfy the same 7th order recurrence. Therefore, after
checking c1,1 = c2,2 = · · · = c7,7 = 1 and observing that
p7(q, qn, qn) 6= 0 for all n ∈ N, it can be concluded that
cn,n = 1 for all n.

Similarly, we showed that cn,0 = 0 for all n ≥ 1 and that
cn,j = 0 for all j > n. This knowledge greatly simplifies the
following proofs of the summation identities.

Certificates for [2]. In order to prove the first summation
identity, we translate [2] into the equivalent formulation

nX
j=1

qi+j−1(qi+j + qi − q − 1)

qi − 1

"
i+ j − 2

i− 1

#
cn,j

= cn,i−1 − (qi + 1)cn,i (1 ≤ i < n), [2′ ]

taking into account that cn,0 = 0. We provide certificates
for [2′ ].

To this end, let c′n,i,j be the summand of the sum on the
left-hand side. A recursive description for c′n,i,j can be com-
puted directly from the defining equations of cn,j and the fact
that the rest of the summand is a q-hypergeometric factor.
In the corresponding operator ideal I ′ we were able to find
two different recurrence equations for c′n,i,j which are of the
special form

p0,3c
′
n,i+3,j + p1,2c

′
n+1,i+2,j + p0,2c

′
n,i+2,j

+ p2,0c
′
n+2,i,j + p0,1c

′
n,i+1,j + p0,0c

′
n,i,j

= un,i,j+1 − un,i,j

and

r4,0c
′
n+4,i,j + r2,1c

′
n+2,i+1,j + r0,2c

′
n,i+2,j

+ r2,0c
′
n+2,i,j + r0,1c

′
n,i+1,j + r0,0c

′
n,i,j

= vn,i,j+1 − vn,i,j

respectively, where the pµ,ν and rµ,ν are certain rational func-
tions in Q(q, qi, qn) and un,i,j and vn,i,j are Q(q, qi, qj , qn)-
linear combinations of certain shifts of c′n,i,j which are deter-
mined by the Gröbner basis of I ′ as described in [4]. Next
observe that c′n,i,j = 0 for j ≤ 0 (because of the q-binomial
coefficient) and also for j > n (because cn,j = 0 for j > n).
When summing the two recurrence equations for j from −∞
to +∞, the right-hand side telescopes to 0 and the left-hand
side turns into a recurrence for the sum in [2′ ]. This method
is known as creative telescoping. Finally we obtain two anni-
hilating operators P1 and P2 for the left-hand side of [2′ ].

For the right-hand side of [2′ ], we can again construct
an ideal of recurrences from the defining equations of cn,j . It
turns out that this ideal contains P1 and P2, so that both sides
of [2′ ] are annihilated by these two operators. Additionally,
P1 and P2 have been constructed such that they require only
finitely many initial values to produce a uniquely determined
bivariate sequence (and this finite number of needed values is
known explicitly). The proof was completed by checking that
the two sides of [2′ ] agree at these finitely many points (n, j).

The certificate for [3]. To certify the final identity, we rewrite
[3] equivalently into

(1 + qn)− cn,n−1

+
nX
j=1

qn+j−1(qn+j + qn − q − 1)

qn − 1

"
n+ j − 2

n− 1

#
cn,j

=
(q2n; q)2n
(qn; q2)2n

(n ≥ 1) [3′ ]

where (a; q)n := (1− a)(1− qa) · · · (1− qn−1a) denotes the q-
Pochhammer symbol. As before, we use creative telescoping
to provide a certified operator P which annihilates the sum
on the left-hand side. In the present case, a single operator is
sufficient because the sum depends only on a single variable n
(there is no i there). Using the operator P and the defining
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equations for cn,j , we then construct a recurrence for the en-
tire left-hand side, which turns out to have order twelve. This
recurrence is a left multiple of the second order operator

(qn + 1)2(qn+1 + 1)2(q2n+1 − 1)2(q2n+3 − 1)2S2
n

− (qn+1 + q2n+2 + 1)2(q3n+1 − 1)2(q3n+5 − 1)2

which can be seen to annihilate the right-hand side, and its
leading coefficient does not vanish for any index n. There-
fore the proof of Theorem 1 is completed by checking [3′ ] for
n = 1, 2, . . . , 12. Quod erat demonstrandum.

5 Epilogue
Paul Erdős famously believed that every short and elegant
mathematical statement has a short and elegant “proof from

The Book”, and if humans tried hard enough, they would
eventually find it. Kurt Gödel, on the other hand, meta-
proved that there exist many short and elegant statements
whose shortest possible proof is very long. It is very possible
that the q-TSPP theorem does have a yet-to-be-found proof
from The Book, but it is just as possible that it does not, and
while we are sure that the present proof is not the shortest-
possible (there were lots of random choices in designing the
proof), it may well be the case that the shortest-possible proof
is still very long, and would still require heavy-duty computer
calculations.
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Fig. 1. A totally symmetric plane partition with largest part 8. The dark cubes form an

orbit of size 6 (corresponding to all permutations of (2, 3, 6)). Each cube belongs to exactly

one orbit. An orbit may consist of one, three, or six cubes.

Footline Author PNAS Issue Date Volume Issue Number 5


