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Problems:
e How are such series supposed to be “given”?

e Bilateral formal infinite series cannot be multiplied in general.
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Thus the positive part of a univariate rational function is a
univariate rational function.
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Idea: Allow more general formal power series rings in place of
Kilx1y .oy xildl.

Fact: For every closed line-free cone C C Rk the set
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Kelbvcooxidli={ Y angmd X

N1yeeeyN=—00

(nh-'-vnk) €C2> Anq,.ny :0}

forms a ring. (But not a field.)
Fact: A series f € Kcl[x1,...,xi] is invertible iff [x$...x0]f # 0.

Special case: The cone C generated by the unit vectors gives the
usual formal power series ring.
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For any fixed choice <, there is a unique meaning of [x1Z . -xf]f
for every f € K(x1,...,%x).

. > > . . . .
However, in general [x]— . -x];]f will not be rational, even if f is.

But it is still D-finite. In fact, when f € K<((x1,...,%x)) is
D-finite, then so is its positive part. (Lipshitz)
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Observe: The positive part can be expressed as Hadamard product.
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Observe also: For any two cones A, B C R* and any two series
f e Kal(x1y...,xk)) and g € Kg((x1,...,xk)) the Hadamard
product f ® g is well-defined.
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fOg=resy, .y Yy - ’y?f(;%, e ;‘;)9(91,...,%)
and the expression on the right is meaningful.
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The multivariate version of this calculation gives rise to a new
proof that taking positive parts preserves D-finiteness.
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Example If f,;; is the number of lattice walks in N? starting at
(0,0), ending at (i,j), and consisting of n steps, where each step
is one of {«—, T,—, |}, then
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