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ABSTRACT
We propose a differential analog of the notion of integral
closure of algebraic function fields. We present an algorithm
for computing the integral closure of the algebra defined
by a linear differential operator. Our algorithm is a direct
analog of van Hoeij’s algorithm for computing integral bases
of algebraic function fields.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Differential Operators, Holonomic Functions

1. INTRODUCTION
The notion of integrality is a classical concept in the the-

ory of algebraic field extensions. If R is an integral domain
and k a field containing R and if K is an algebraic extension
of k, then an element α of K is called integral if its monic
minimal polynomial M has coefficients in R. While K forms
a k-vector space of dimension deg(M), the set of all integral
elements of K forms an R-module, called the integral clo-
sure (or normalization) of R in K, and commonly denoted
by OK . A k-vector space basis of K which at the same time
generates OK as R-module is called an integral basis. For
example, when R = Z, k = Q, and K = Q(α) with α = 3

√
4,

then the canonical vector space basis {1, α, α2} of K is not
an integral basis, because 1

2
α2 = 3

√
2 is an integral element
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of K (its minimal polynomial is X3 − 2) but not a Z-linear
combination of 1, α, α2. An integral basis in this example is
{1, α, 1

2
α2}.

The concept of integral closure has been studied in rather
general domains [9, 6]. To compute an integral basis for an
algebraic number field, special algorithms have been devel-
oped [7, 5]. At least two different approaches are known
for algebraic function fields, i.e., the case when R = C[x]
for some field C, k = C(x), and K = k[Y ]/〈M〉 for some
irreducible polynomial M ∈ k[Y ]. The algorithm derived by
Trager [10] in his thesis is an adaption of an algorithm for
number fields, and the algorithm by van Hoeij [12] is based
on the idea of successively canceling lower order terms of
Puiseux series.

The theory of algebraic functions parallels in many ways
the theory of D-finite functions, i.e., the theory of solutions
of linear differential operators. It is therefore natural to ask
what corresponds to the notion of integrality in this latter
theory. In the present paper, we propose such a definition
and give an algorithm which computes integral bases accord-
ing to this definition. Our algorithm and the arguments un-
derlying its correctness are remarkably similar to van Hoeij’s
algorithm for computing integral bases of algebraic function
fields.

In view of the key role that integral bases play for in-
definite integration (Hermite reduction) of algebraic func-
tions [10, 3, 2], we have hope that results presented below
will help to develop new algorithms for indefinite integration
of D-finite functions. An example pointing in this direction
is given in the end.

2. INTEGRAL FUNCTIONS,
INTEGRAL CLOSURE, AND
INTEGRAL BASES

Throughout this paper, let C be a computable field of
characteristic zero, C̄ an algebraically closed field contain-
ing C (not necessarily the smallest), and x transcendental
over C̄. When R is a subring of C̄(x), we write R[D] for the
algebra of differential operators with coefficients in R, i.e.,
the algebra of all (formal) polynomials `0 + `1D+ · · ·+ `rD

r

with `0, . . . , `r ∈ R. This algebra is equipped with the natu-
ral addition and the unique noncommutative multiplication
respecting the commutation rules Dc = cD for all c ∈ R∩ C̄
and Dx = xD + 1. Typical choices of R will be C[x], C̄[x],
C(x), or C̄(x) in the following.

For an operator L = `0 + `1D + · · · + `rD
r ∈ C̄[x][D]

with `r 6= 0 we denote by ord(L) = r the order of L. Recall



that such an operator with x - `r admits a fundamental sys-
tem of formal power series, i.e., the vector space V ⊆ C̄[[x]]
consisting of all the power series f with L · f = 0 has di-
mension r. When x | `r 6= 0, there is still always a fun-
damental system of generalized series solutions of the form
exp(p(x−1/s))xνa(x1/s, log(x)) for some s ∈ N, p ∈ C̄[x],
ν ∈ C̄, a ∈ C̄[[x]][y]. (This notation is not meant to imply
that a has a nonzero constant term, so the series in general
does not start at xν but at xν+i where i ∈ N is such that xi

is the lowest order term of a.) We restrict our attention here
to the case where p = 0, s = 1 and ν ∈ C, i.e., to operators L
which admit a fundamental system in

⋃
ν∈C x

νC̄[[x]][log x].
It is well known [8] how to determine the first terms of a
basis of such solutions for a given operator L ∈ C̄[x][D]. By
a linear change of variables, the same techniques can also
be used to find the first terms of a fundamental system in⋃
ν∈C(x − α)νC̄[[x − α]][log(x − α)], for any given α ∈ C̄.

More precisely, if L belongs to C[x][D] and α ∈ C̄, then
there is a fundamental system in

⋃
ν∈C(x − α)νC(α)[[x −

α]][log(x − α)]. For a field K with C ⊆ K ⊆ C̄ we will use
the notation

K[[[x− α]]] :=
⋃
ν∈C

(x− α)νK[[x− α]][log(x− α)].

Observe that this is not a ring or a K-vector space. Also
observe that the exponents ν are restricted to the small
field C ⊆ K, although the dependence on the choice of C
is not reflected by the notation. We hope that the intended
field C will always be clear from the context.

An operator L ∈ C̄[x][D] shall be considered integral if
all the terms in all its series solutions remain above a cer-
tain threshold. In the algebraic case, where series solutions
involve at worst only fractional exponents, the stipulation
of having only nonnegative exponents in all the solutions
happens to be equivalent to the requirement that the monic
minimal polynomial has polynomial coefficients. In the dif-
ferential case however, where irrational exponents as well as
logarithmic terms can appear, and where solutions involving
fractional exponents cause factors in the leading coefficient
of the operator regardless of whether the exponents are pos-
itive or negative, it is less clear which constraints on the
exponents should be used to define integrality. Fortunately,
it turns out that we can partly leave the choice to the reader.

Definition 1. Let ι : C/Z×N→ C be a function such that

1. ι(ν + Z, j) ∈ ν + Z for every ν ∈ C and j ∈ N,

2. ι(ν1 +Z, j1) + ι(ν2 +Z, j2)− ι(ν1 + ν2 +Z, j1 + j2) ≥ 0
for every ν1, ν2 ∈ C and j1, j2 ∈ N,

3. ι(Z, 0) = 0.

A series f ∈ C̄[[[x− α]]] is called integral with respect to ι
if for all terms (x−α)µ log(x−α)j occurring with a nonzero
coefficient in f we have µ− ι(µ+ Z, j) ≥ 0.

The function ι(·, j) specifies for each Z-orbit of C the
smallest element ν such that xν log(x)j should be considered
integral. If ι(ν +Z, j) = ν, then xν log(x)j , xν+1 log(x)j , . . .
are integral and xν−1 log(x)j , xν−2 log(x)j , . . . are not. The
condition ι(Z, 0) = 0 implies that formal Laurent series are
integral if and only if they are in fact formal power series.

Example 2. A natural choice for C ⊆ C is perhaps ι(z +
Z, 0) = z for all z ∈ C with 0 ≤ <(z) < 1, and ι(z+Z, j) = z

for all z ∈ C with 0 < <(z) ≤ 1 when j ≥ 1. With this

convention, 1, x
√
−1, x log(x) all are integral, in accordance

with the fact that the corresponding functions are bounded in

a small neighborhood of the origin while x−1, x
√
−1−1, log(x)

are not. Unless otherwise stated, we shall always assume this
choice of ι in the examples given below.

Proposition 3. Let α ∈ C̄ and let R be the set of all C̄-
linear combinations of series in (x−α)νC̄[[x−α]][log(x−α)],
ν ∈ C. Then:

1. In every series f ∈ R there are at most finitely many
terms (x− α)µ log(x− α)j which are not integral.

2. The set R together with the natural addition and mul-
tiplication forms a ring, and { f ∈ R | f is integral }
forms a subring of R.

Proof. 1. First consider the case when f ∈ (x− α)νC̄[[x−
α]][log(x − α)] for some ν ∈ C. Let deg(f) denote the
highest power of log(x − α) in f . Then the only possible
non-integral terms in f can be (x − α)ν+i log(x − α)j for
j ∈ {0, . . . , deg(f)} and i ∈ {0, . . . , ι(ν + Z, j) − ν − 1}.
These are finitely many. In general, if f is a linear combi-
nation of some series in (x− α)νC̄[[x− α]][log(x− α)] with
possibly distinct ν ∈ C, the set of all non-integral terms is
still a finite union of finite sets of non-integral terms, and
therefore finite.

2. It is clear that R is a ring. To see that the integral
elements form a subring, let f, g ∈ R be integral. Then the
series f + g cannot contain any term which is not present
in at least one of the two summands, so all terms of f + g
are integral and f + g as a whole is integral. Now consider
multiplication: for any term (x − α)µ log(x − α)j in f · g
there must be some terms τ in f and σ in g such that στ =
(x − α)µ log(x − α)j , say τ = (x − α)µ1 log(x − α)j1 and
σ = (x − α)µ2 log(x − α)j2 . Since f and g are integral, we
have µ1 − ι(µ1 + Z, j1) ≥ 0 and µ2 − ι(µ2 + Z, j2) ≥ 0. The
assumption on ι in Definition 1 implies that (µ1 + µ2) −
ι(µ1 + µ2 + Z, j1 + j2) = µ − ι(µ + Z, j) ≥ 0. Hence all
terms of f ·g are integral, so also the product of two integral
elements is integral.

Definition 4. Let L ∈ C̄(x)[D] and ι be as in Definition 1.

1. We call L regular if it has a fundamental system in
C̄[[[x− α]]] for every α ∈ C̄.

2. L is called (locally) integral at α with respect to ι if
it admits a fundamental system in C̄[[[x − α]]] whose
elements all are integral.

3. L is called (globally) integral with respect to ι if it is
locally integral at α in the sense of part 1 for every
α ∈ C̄.

Of course part 2 of this definition is independent of the
choice of the fundamental system. In fact, L is locally inte-
gral at α iff all its series solutions in x− α are integral and
form a C̄-vector space of dimension ord(L).

Example 5. 1. The operator (2−x)+2(2−2x+x2)D+
4(x − 1)xD2 ∈ Q[x][D] is locally integral at α = 0,
because its two linearly independent solutions

1− 1
2
x− 1

24
x3 − 7

384
x4 − 53

3840
x5 + O(x6),



x2 + 1
6
x3 + 1

6
x4 + 13

120
x5 + O(x6)

are both integral. It is also locally integral at α = 1,
because its two linearly independent solutions

(x−1)1/2 + O((x−1)6),

1− 1
2
(x−1) + 1

8
(x−1)2 − 1

48
(x−1)3 + O((x−1)4)

are integral as well.

The operator is also globally integral because at all α ∈
C\{0, 1} it has a fundamental system of formal power
series, and formal power series are always integral.

2. The operator 1 + xD ∈ Q[x][D] is not locally integral
at α = 0, because it has the non-integral solution 1

x
. It

is therefore also not globally integral.

3. The operator (−1− 2x) + (x+ 2x2)D+ (x3 + x4)D2 ∈
Q[x][D] is not locally integral at α = 0 although all
its series solutions are. The reason is that it has only
one series solution in C[[[x]]] while our definition re-
quires that the number of linearly independent series
solutions must match the order of the operator. In
other words, generalized series solutions involving ex-
ponential terms, like the solution exp( 1

x
) in the present

example, are always considered as not integral.

Let L = `0+· · ·+`rDr ∈ C[x][D] with `r 6= 0 and consider
the quotient algebra C̄(x)[D]/〈L〉, where 〈L〉 := C(x)[D]L
denotes the left ideal generated by L in C(x)[D]. The al-
gebra C̄(x)[D]/〈L〉 generated as a C̄(x)-vector space by the
basis {1, D, . . . ,Dr−1}. It is also a C̄(x)[D]-left module, and
we can interpret its elements as all those “functions” which
can be reached by letting an operator P ∈ C̄(x)[D] act on
a “generic solution” of L, very much like the elements of an
algebraic extension field C(x)[Y ]/〈M〉 can be described as
those objects which can be reached by applying a polyno-
mial P ∈ C(x)[Y ] to a “generic root” of M . A difference
in this analogy is that in the algebraic case there are only
finitely many roots while in the differential case we have a
finite dimensional C̄-vector space of solutions.

Definition 6. Let L = `0+· · ·+`rDr ∈ C[x][D] with `r 6= 0
be a regular operator and let ι be as in Definition 1.

1. An element P ∈ A = C̄(x)[D]/〈L〉 is called integral
(with respect to ι) if P · f is integral (with respect to ι)
for every series solution f of L.

2. The C̄[x]-left module OL of all integral elements of A
is called the integral closure of C̄[x] in A.

3. A C̄(x)-vector space basis

{B1, . . . , Br} ⊆ C̄(x)[D]/〈L〉

is called an integral basis if it also generates OL as
C̄[x]-left module.

It is easy to see that OL is a C̄[x]-left module. Note
however that OL is in general not a C̄[x][D]-left module,
because the application of D may turn integral elements
into non-integral ones (for example, D ·x1/2 = 1

2
x−1/2 when

ι( 1
2

+ Z, 0) = 1
2
).

Example 7. 1. The operator L = 1 − D ∈ Q[x][D] has
for every α ∈ C one solution of the form f = 1 +
O(x − α). Since f is integral we have 1 ∈ OL. Since
(x − α)−1f is not integral for any α, we have in fact
that {1} is an integral basis.

2. The operator L = 1 + xD has the solution f = 1
x

. It
is integral for every α 6= 0, but not integral at α = 0.
However, xf = 1 is integral, hence x ∈ OL, and in
fact {x} is an integral basis.

3. Whenever L has power series solutions at every α ∈ C̄,
we clearly have {1, D, . . . ,Dr−1} ⊆ OL. However,
there may still be integral elements that are not C[x]-
linear combinations of these. For example, observe
that for the operator L = (x−1)+D−xD2, which has
two solutions 1 + x + 1

2
x2 + O(x3) and x2 + O(x3) at

α = 0, we have the nontrivial element 1
x

(1−D) ∈ OL.

4. It can also happen that 1 ∈ OL but D 6∈ OL. For
example, for L = (−1 + 2x) + (1 − 4x)D + 2xD2 we

have two solutions 1 + x + 1
2
x2 + O(x3) and x1/2 +

x3/2 + 1
2
x5/2 + O(x3) at α = 0. Since both are integral

(and there are two linearly independent power series
solutions for every α 6= 0) we have 1 ∈ OL. However,
D 6∈ OL, because the derivative of the second solution
is 1

2
x−1/2+ 3

2
x1/2+ 5

4
x3/2+O(x2), which is not integral

since it involves the term x−1/2. An integral basis in
this case turns out to be {1, xD}.

5. We have produced a prototype implementation in Math-
ematica of the algorithm described below. The code is
available on the homepage of the first author. For the
operator L = x3D3 +xD− 1, it finds the integral basis
{1, xD, xD2 −D + 1

x
}. A fundamental system of L is

{x, x log(x), x log(x)2}.

6. Let L = 24x3D3 − 134x2D2 + 373xD − 450. This op-
erator has the solutions x3/2, x10/3, and x15/4. Our
code finds the integral basis{ 1

x
,

1

x2
D − 3

2x3
,

1

x
D2 − 7

2x2
D +

9

2x3

}
.

In the analogy with algebraic functions, the integral op-
erators from Definition 4 correspond to the monic minimal
polynomials with coefficients in a ring, and the integral ele-
ments of Definition 6 correspond to integral elements of an
algebraic function field. Definitions 4 and 6 are obviously
connected as follows.

Proposition 8. Let L ∈ C[x][D] and L̃ ∈ C̄(x)[D] be regu-
lar and assume that there exists P ∈ C̄(x)[D] such that for
every α ∈ C̄ we have

{ f | L̃ · f = 0 } = {P · f | L · f = 0 }

where f runs over C̄[[[x−α]]] on both sides. Then P +〈L〉 ∈
C̄(x)[D]/〈L〉 is integral in the sense of Definition 6 if and

only if L̃ is integral in the sense of Definition 4.

Lemma 9. Let L = `0 + · · ·+ `rD
r ∈ C̄[x][D] with `r 6= 0

be a regular operator. Let p0, . . . , pr−1 ∈ C̄(x) and let p =
x − α ∈ C̄[x] be a factor of the common denominator of
p0, . . . , pr−1. If p0 + · · ·+ pr−1D

r−1 ∈ OL then p | `r.

Proof. After performing a change of variables, we may as-
sume that p = x. By a classical result about linear differen-
tial equations (e.g., [8]), x - `r implies that L admits a fun-
damental system b0, . . . , br−1 in C[[x]] with bi = xi + O(xr)
for i = 0, . . . , r−1. Then Djbi = i(i−1) · · · (i− j+1)xi−j +
O(xr−j) for i = 0, . . . , r − 1 and j = 0, . . . , r − 1. Let ei
be the largest integer such that xei divides the denominator



of pi, let e = max{e0, . . . , er−1}, and let i ∈ {0, . . . , r−1} be
some index with ei = e. Then piD

ibi = i!x−e + O(x−e+1)
and pjD

jbi = O(x−e+1) for all j 6= i. Hence (p0 + p1D +
· · · + pr−1D

r−1) · bi = i!x−e + O(x−e+1) is not integral be-
cause −e− ι(−e+Z, 0) = −e− ι(Z, 0) = −e < 0, and hence
p0 + p1D + · · ·+ pr−1D

r−1 6∈ OL.

3. ALGORITHM OUTLINE
We shall now discuss how to construct an integral basis
{B0, . . . , Br−1} for a given regular operator L ∈ C[x][D].
The key observation is that van Hoeij’s algorithm for com-
puting integral bases for algebraic function fields as well
as the arguments justifying its correctness and termination
carry over almost literally to the present setting. The re-
mainder of this paper therefore follows closely the corre-
sponding sections of van Hoeij’s paper.

The algorithm computes the basis elements B0, . . . , Br−1

in order, at each stage d ∈ {0, . . . , r−1} starting with an ini-
tial conservative guess for Bd and refining it repeatedly until
an operator Bd is found which together with B0, . . . , Bd−1

generates the C̄[x]-left module consisting of all the elements
of OL corresponding to operators of order d or less. Al-
though parts of the calculation take place in the large field C̄,
it will be shown that the elements Bi in the resulting inte-
gral basis always have coefficients in the small field C, in
which the coefficients of the input operator L live.

It is not hard to find a suitable B0: For each root α ∈ C̄
of the leading coefficient `r of L, compute the first terms of
a basis {b1, . . . , br} of solutions in C̄[[[x − α]]]. Determine
the smallest integer eα such that (x− α)eαbi is integral for
every i according to the chosen ι. Then B0 can be set to the
product of (x − α)eα over all α. Since eα = eα̃ whenever α̃
is a conjugate of α, it follows that B0 belongs to C(x).

The outline of the rest of the algorithm is as follows.

Algorithm 10.
INPUT: A regular operator L = `0 + · · · + `rD

r ∈ C[x][D]
with `r 6= 0
OUTPUT: {B0, . . . , Br−1} ⊆ C(x)[D]/〈L〉, an integral basis
of C̄(x)[D]/〈L〉.
1 Set s to the squarefree part of `r.

2 Set B0 to the zero-order operator described above.

3 For d = 1, . . . , r − 1, do the following:

4 Set Bd = sDBd−1. (Also Bd = sdDdB0 would work.)
Define

E = {A ∈ OL : ord(A) ≤ d }\
(
C̄[x]B0 + · · ·+ C̄[x]Bd

)
.

5 While E 6= ∅, do the following:

6 Construct A ∈ E of the form

A =
1

p

(
a0B0 + · · ·+ ad−1Bd−1 +Bd

)
with a0, . . . , ad−1, p ∈ C[x].

7 We have

C̄[x]B0 + · · ·+ C̄[x]Bd−1 + C̄[x]Bd

( C̄[x]B0 + · · ·+ C̄[x]Bd−1 + C̄[x]A ⊆ OL.

Replace Bd by A, and update E accordingly. (This
makes E strictly smaller.)

8 Return {B0, . . . , Br−1}.
In order to justify this algorithm, three issues have to be

addressed:

• Termination of the loop in lines 5–7. See Section 4.

• The existence and construction of an element A with
the properties requested in step 6 whenever E 6= ∅.
Section 5 has the existence argument, and Section 6
the construction.

• How to decide E
?
= ∅ for recognizing the termination

of the loop in lines 5–7. This will also be discussed in
Section 6.

Except for these three points, the correctness of the algo-
rithm is obvious.

4. TERMINATION
The termination of van Hoeij’s algorithm [12] is estab-

lished by the observation that the degree of a certain poly-
nomial, starting with the discriminant ResY

(
M, ∂M

∂Y

)
, de-

creases in each iteration of the main loop. In the case of
D-finite functions, the role of the discriminant is played by
the Wronskian and a generalized version of it. Recall that
the Wronskian of the functions f1(x), . . . , fr(x) is defined as
the determinant

W =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fr(x)
f ′1(x) f ′2(x) · · · f ′r(x)

...
...

. . .
...

f
(r−1)
1 (x) f

(r−1)
2 (x) · · · f

(r−1)
r (x)

∣∣∣∣∣∣∣∣∣ . (1)

Definition 11. Let L ∈ C̄[x][D] be regular and let b1, . . . , br
be a fundamental system of L in C̄[[[x−α]]] for some α ∈ C̄.
For B0, . . . , Br−1 ∈ C̄(x)[D]/〈L〉 we define the generalized
Wronskian at α, as

wrL,α(B0, . . . , Br−1) :=

∣∣∣∣∣∣∣
B0 · b1 · · · B0 · br

...
. . .

...
Br−1 · b1 · · · Br−1 · br

∣∣∣∣∣∣∣ .
Note that the generalized Wronskian wrL,α(B0, . . . , Br−1)

belongs to C̄[[[x − α]]] and that the choice of a different
fundamental system instead of b1, . . . , br only changes its
value by a nonzero multiplicative constant, which will be
irrelevant for our purpose.

For the special choice Bi = Di, the generalized Wron-
skian wrL,α(1, D, . . . ,Dr−1) reduces to the Wronskian (1)
with fi = bi. It is well-known and easy to check that the
classical Wronskian (1) of b1, . . . , br satisfies the first-order
equation `rDW+`r−1W = 0 and hence is hyperexponential.
Since the generalized Wronskian can be obtained from the
usual Wronskian by elementary row operations over C(x),
it is clear that also the generalized Wronskian is hyperexpo-
nential.

Theorem 12. Algorithm 10 terminates.

Proof. First observe that during the whole execution of the
algorithm, B0, . . . , Br−1 ∈ C(x)[D]/〈L〉 are integral, i.e.,
B0 · f, . . . , Br−1 · f are integral for any series solution f
of L according to Definition 6. (Actually, the Bd’s are
constructed one after the other, but they can be initialized
with Bd = sdDdB0.) This means that, at any time and for
any α ∈ C̄, the generalized Wronskian wrL,α(B0, . . . , Br−1)
is integral, as it is the sum of products of integral series
(see Proposition 3). Since it is hyperexponential, it follows



that it has no logarithmic terms. Every nonzero term of
wrL,α(B0, . . . , Br−1) is therefore of the form (x − α)µ with
µ = ι(µ + Z, 0) + m for some nonnegative integer m. For
each α ∈ C̄ let mα be the smallest such integer. Now let n =∑
α∈Qmα where Q is defined as in step 5a. Each time Bd

is updated in the algorithm (either in step 4 or in step 7d),
none of the mα can increase and exactly one of them strictly
decreases, so also n decreases. More precisely, if for exam-
ple Bd is replaced by 1

p

(
a0B0 + · · · + ad−1Bd−1 + Bd

)
in

step 7, then wrL,α(B0, . . . , Bd) is divided by p (recall that
p is a non-constant polynomial in C[x]). But the mα can-
not become negative as this would violate the integrality of
wrL,α(B0, . . . , Br−1). Therefore the algorithm must termi-
nate.

5. EXISTENCE OF A IF E 6= ∅
The arguments in this section are almost identical to those

in [12]. However, for sake of completeness we nevertheless
formulate them here for the differential case.

In the d-th iteration of the algorithm we can assume by
induction that B0, . . . , Bd−1 form a C̄[x]-left module ba-
sis of all integral elements of order up to d − 1. We con-
sider the case where the current choice of Bd, together with
B0, . . . , Bd−1, does not generate all integral elements of or-
der up to d, i.e., E 6= ∅. Recall that

E = {A ∈ OL : ord(A) ≤ d } \
(
C̄[x]B0 + · · ·+ C̄[x]Bd

)
.

We need to show that there exists an integral element A ∈ E
which can be written in the form 1

p

(
a0B0 + · · ·+adBd

)
with

a0, . . . , ad, p ∈ C[x] and ad = 1. The idea is as follows:
starting from an arbitrary element A ∈ E, we construct, in
several steps, simpler elements in E until we obtain one with
the desired properties.

Lemma 13. If E 6= ∅, then there exists A ∈ E of the form

A =
1

x− α
(
a0B0 + · · ·+ ad−1Bd−1 + adBd

)
(2)

with α ∈ C̄, a0, . . . , ad−1, ad ∈ C̄[x].

Proof. Let A ∈ E, say A = a0B0 + · · · + adBd for some
ai ∈ C̄(x). Since A 6∈ C̄[x]B0 + · · · + C̄[x]Bd, at least one
ai must be in C̄(x) \ C̄[x]. Let p ∈ C̄[x] be the common
denominator of all the ai, and let α ∈ C̄ be a root of p.
Then p

x−αA has the required form. To see that it belongs

to E, notice that p
x−α ∈ C̄[x] and OL is a C̄[x]-module, and

that p
x−αA 6∈ C̄[x]B0 + · · ·+ C̄[x]Bd.

Lemma 14. If A ∈ E and P ∈ C̄[x]B0 + · · ·+ C̄[x]Bd, then
A+ P ∈ E.

Proof. A ∈ E ⊆ OL and P ∈ C̄[x]B0 + · · · + C̄[x]Bd ⊆ OL
implies that A+P ∈ OL. It is also clear that ord(A+P ) ≤ d,
because ord(A) ≤ d and ord(P ) ≤ d. Finally, to show that
A+P 6∈ C̄[x]B0+· · ·+C̄[x]Bd, assume otherwise. Then also
A = (A+ P )− P ∈ C̄[x]B0 + · · ·+ C̄[x]Bd in contradiction
to A ∈ E.

Lemma 15. If E contains an element of the form (2), then
it also contains such an element with a0, . . . , ad−1 ∈ C̄ and
ad = 1.

Proof. Let A = 1
x−α

(
a0B0 + · · · + adBd

)
∈ E be of the

form (2). For each i = 0, . . . , d, write ai = (x − α)pi + a′i
with pi ∈ C̄[x] and a′i ∈ C̄. By Lemma 14, A ∈ E implies
A′ ∈ E for A′ := 1

x−α

(
a′0B0+ · · ·+a′d−1Bd−1+a′dBd

)
. Since

B0, . . . , Bd−1 are assumed to generate the submodule of all
the elements of OL of order at most d− 1, we have a′d 6= 0.
Dividing A′ by a′d yields an element of E of the requested
form.

Lemma 16. If E contains an element of the form (2) with
a0, . . . , ad−1 ∈ C̄ and ad = 1, then it also contains such an
element with a0, . . . , ad−1 ∈ C(α) and ad = 1.

Proof. Let A ∈ E be of the form (2) with a0, . . . , ad−1 ∈ C̄
and ad = 1. Since C̄ is necessarily a C(α)-vector space, there
are some C(α)-linearly independent elements e0, . . . , en of C̄
such that a0, . . . , ad all belong to V = e0C(α)+· · ·+enC(α).
We may assume e0 = 1. Consider a fundamental system
b1, . . . , br ∈ C(α)[[[x− α]]] of L. Then each A · bj has coef-
ficients in V and, since A ∈ E ⊆ OL, only involves integral
terms. By the linear independence of the ei over C(α), also
the series [ei]

(
A · bj

)
= ([ei]A) · bj obtained from A · bj by re-

placing each coefficient by its ei-coordinate will be integral.
In particular, the operator A0 = [e0]A ∈ C(α)[x][D] must
belong to E. Because of [e0]ad = [e0]1 = 1, it meets all the
requirements.

Lemma 17. If E contains an element of the form (2) with
a0, . . . , ad−1 ∈ C(α) and ad = 1, then it also contains such
an element with a0, . . . , ad−1 ∈ C[x] and ad = 1.

Proof. For every n > 0 we have x − α | xn − αn in C̄[x],
and thus also x − α | p(x) − p(α) for p ∈ C̄[x] \ C̄. There-
fore, if we view the ai ∈ C(α) as polynomials in α, then
replacing α in them by x amounts to adding some polyno-
mial multiple of (x − α) to them. This change means for
A = 1

x−α (a0B0 + · · ·+ ad−1Bd−1 + Bd) that adding a suit-

able element P ∈ C(α)[x]B0+· · ·+C(α)[x]Bd−1 ⊆ OL turns
A into an operator of the requested form. By Lemma 14,
this new operator also belongs to E.

Theorem 18. If E 6= ∅, then there exists an element A ∈ E
of the form

A =
1

p

(
a0B0 + · · ·+ ad−1Bd−1 +Bd

)
with p ∈ C[x] an irreducible factor of `r and a0, . . . , ad−1 ∈
C[x] such that deg(ai) < deg(p) for all i.

Proof. The assumption E 6= ∅ in combination with Lem-
mas 13, 15, 16, and 17 implies that E contains an element of
the form (2) with a0, . . . , ad−1 ∈ C[x] and ad = 1. Further-
more, Lemma 9 implies that α is a root of `r. Let p | `r be
the minimal polynomial of α. We claim that A := 1

p
B ∈ E

where B := a0B0 + · · ·+ ad−1Bd−1 +Bd.
To prove this, we have to show that for every α̃ ∈ C̄

and every solution b̃ ∈ C(α̃)[[[x − α̃]]] of L we still have

that A · b̃ is integral. When α̃ is not a root of p, this is
clear because 1/p admits an expansion in C[[x − α̃]], and

multiplication of the integral series B · b̃ by a formal power
series preserves integrality by Proposition 3. When α̃ = α,
write p = (x−α)q for some q ∈ C̄[x] with x−α - q and note

that 1/q admits an expansion in C̄[[x− α]] and 1
x−αB · b̃ is

integral, so 1
p
B · b̃ is integral too. When α̃ is a conjugate



of α, note that 1
x−α̃B · b̃ must be integral, because if it were

not, then for the series b ∈ C(α)[[[x − α]]] obtained from b̃
via the conjugation map that sends α̃ to α we would have
that 1

x−αB · b is also not integral, in contradiction to our
choice of a0, . . . , ad. Therefore the same argument as in the
case α̃ = α applies.

This completes the proof of the claim. To complete the
proof of the theorem, note that the claimed degree bounds
on ai can be ensured by Lemma 14.

6. CONSTRUCTION OF A IN STEP 6
In the previous section we have demonstrated that in

step 6 of the algorithm it suffices to search for an integral
element A of the form

A =
1

p

(
a0B0 + · · ·+ ad−1Bd−1 +Bd

)
where a0, . . . , ad−1, p ∈ C[x], p | `r. Conversely, this means
that if no such A exists, the set E is empty.

For each irreducible factor p of `r one can set up an ansatz
for A with undetermined coefficients a0, . . . , ad−1. We want
to find a0, . . . , ad−1 such that A · f is integral for all solu-
tions f of L. Note that we need to enforce integrality only
for series solutions in x−α where α is a root of p. Choosing
a fundamental system b1, . . . , br of such solutions, comput-
ing the first terms of Bj · bi, plugging them into the ansatz,
and equating the coefficients of all non-integral terms to zero
yields a linear system for a0, . . . , ad−1. If this system does
not admit a solution, one knows that no such A with de-
nominator p exists.

In summary, the loop in lines 5–7 of Algorithm 10 can be
described in more detail as follows.

5a Let Q ⊆ C̄ be a set containing exactly one root α ∈ C̄
for each irreducible factor p of `r.

5b While Q 6= ∅, do the following:

5c For all α ∈ Q, do the following:

6a Let b1, . . . , br be a fundamental system of L in
C(α)[[[x− α]]].

6b With variables a0, . . . , ad−1, form the series(
a0B0 + · · ·+ ad−1Bd−1 +Bd

)
bi

for i = 1, . . . , r.

6c Construct a linear system for a0, . . . , ad−1 by equat-
ing the coefficients of all the non-integral terms in
these series to zero.

7a If the system has a solution (a0, . . . , ad−1) ∈ C(α)d:

7b Let p be the minimal polynomial of α over C.

7c Replace each ai ∈ C(α) = C[x]/〈p〉 by the corre-
sponding polynomial in C[x] of degree less than
deg(p).

7d Replace Bd by 1
p
(a0B0 + · · ·+ ad−1Bd−1 +Bd).

7e Otherwise

7f discard α from Q.

Despite being more detailed than the listing given in Al-
gorithm 10, these lines are still somewhat conceptual. An
actual implementation cannot just “let” bi be some infinite
series object, and it does not need to. What we need are only
the terms of bi that give rise to some non-integral terms of(
a0B0 + · · · + ad−1Bd−1 + Bd)bi. These are only finitely

many by Proposition 3, and in the next section we address
the question how many terms of bi we need to compute.

7. BOUNDS
In the algebraic case, van Hoeij [12] derives a-priori bounds

on the orders to which the bi have to be calculated. He then
computes their terms once and for all at the very begin-
ning of the algorithm to avoid their recomputation inside
the loop. He also suggests that the terms of Bj · bi for j < d
should not be recomputed but cached.

Nowadays, in an object-oriented programming environ-
ment, the algorithm can be implemented in such a way that
recomputations of series terms are avoided even when no
a-priori bound on the truncation order is available, via the
paradigm of lazy series [4, 11].

Nevertheless it is desirable to have a-priori bounds avail-
able also in the D-finite case. A rough bound follows imme-
diately from the discussion in Section 4: as we have seen,
the Wronskian wrL,α

(
B0, sDB0, . . . , s

r−1Dr−1B0

)
gives a

denominator bound for the elements of the integral basis.
More refined bounds are elaborated in the following.

Let α ∈ C̄ be a root of the leading coefficient `r and
{b1, . . . , br} ⊂ C(α)[[[x−α]]] be a fundamental system of L:

bi =

∞∑
k=0

bi,k
(

log(x− α)
)

(x− α)νi+k, bi,0 6= 0, (3)

where bi,k ∈ C(α)[log(x− α)] are polynomials in log(x− α)
such that for each i the degrees of bi,0, bi,1, . . . are bounded
by some integer di. According to step 5c, we have to consider
each α ∈ Q separately, so for the rest of this section we fix
such an α.

In step 6a we want to replace b1, . . . , br by truncated series
t1, . . . , tr of the form

ti =

Ni∑
k=0

bi,k
(

log(x− α)
)

(x− α)νi+k with Ni ∈ N. (4)

The bounds Ni must be chosen such that this replacement
does not change the result of the algorithm. The only criti-
cal step is when b1, . . . , br are used to test the integrality of
certain elements from the algebra C(x)[D]/〈L〉, which are
not known in advance. Theorem 20 gives a sufficient condi-
tion that allows us to use ti instead of bi in the integrality
test, by asserting that its answer does not change, what-
ever element of C(x)[D]/〈L〉 we consider. For brevity, let R
denote the ring C(α)[[x − α]][log(x − α)] in the subsequent
reasoning.

Lemma 19. Let {b1, . . . , br} ⊂ C(α)[[[x − α]]] be a fun-
damental system of the form (3) with νi as above, and let
Wb = (Dj · bi)1≤i≤r,0≤j<r. Then there exists an m ∈ N such
that

det(Wb) =
∞∑
k=0

wk (x− α)ν1+···+νr−r(r−1)/2+m+k

with w0 6= 0.

Proof. For the (i, j)-entry of Wb we have

(Wb)i,j = Dj−1 · bi ∈ (x− α)νi−j+1R

and therefore

det(Wb) ∈ (x− α)ν1+···+νr−r(r−1)/2R.



Note that det(Wb) 6= 0 because it is precisely the Wronskian
of b1, . . . , br. It follows that a unique m ≥ 0 with the desired
property exists.

Theorem 20. Let L ∈ C(x)[D] be an operator of order r
and {b1, . . . , br} ⊂ C(α)[[[x − α]]] be a fundamental system
of L with νi and di as above. Moreover, let m ∈ N be as in
Lemma 19 and let N1, . . . , Nr ∈ N be given by

Ni = m + max
1≤j≤r

0≤k<di+r

(
ι(νi − νj + Z, k)− (νi − νj)

)
.

If ti is the truncation (4) of bi at order Ni, for 1 ≤ i ≤ r,
then for all B ∈ C(x)[D]/〈L〉 we have the equivalence:

∀i : B · bi is integral ⇐⇒ ∀i : B · ti is integral. (5)

Proof. We introduce the matrix Wb = (Dj · bi)1≤i≤r,0≤j<r
as before, and the short notation B · b = (B · b1, . . . , B · br).
Analogously we define Wt and B · t. A vector resp. matrix
is called integral if all its entries are integral. If c is the
coefficient vector of B, i.e., c · (1, D, . . . ,Dr−1) = B, then
we have B · b = Wb c and B · t = Wt c. Combining these two
equations we get

B · t = WtW
−1
b (B · b). (6)

Setting Z = Wb −Wt yields

WtW
−1
b = Idr − ZW−1

b . (7)

The proof is split into two parts, according to the two
directions of the equivalence (5).

Part 1: If we assume that B ·b is integral, then (6) exhibits
that the integrality of WtW

−1
b is a sufficient condition to

conclude that also B · t is integral, using Proposition 3. By
(7) it suffices to show that ZW−1

b is integral. First of all we
have to argue that W−1

b ∈ C(α)[[[x−α]]]r×r since otherwise
Definition 1 would not be applicable. In Section 4 we have
remarked that the Wronskian det(Wb) is hyperexponential.
In particular, it involves no logarithmic terms and therefore
is invertible in C(α)[[[x− α]]]. Using Cramer’s rule we find
that(

W−1
b

)
i,j

= (−1)i+j
detW

[j,i]
b

detWb
∈ (x− α)i−νj−m−1R,

where W
[j,i]
b is the matrix obtained by deleting row j and

column i from Wb. So the entries of W−1
b are series in

C(α)[[[x − α]]]. The fact that detW
[j,i]
b satisfies a differ-

ential equation of order less than or equal to r implies that
the highest power of log(x−α) that can appear in the entries
of W−1

b is r − 1. On the other hand, it is easy to see that

Zi,j ∈ (x− α)νi+Ni−j+2R, so it follows that(
ZW−1

b

)
i,j
∈ (x− α)νi−νj+Ni−m+1R, (8)

and that herein log(x − α) appears with exponent at most
di + r − 1. By our choice of Ni the series in (8) is integral
for all 1 ≤ i, j ≤ r and therefore the whole matrix ZW−1

b .
Part 2: Now assume that B · b is not integral. Then from

B · t =
(
Idr − ZW−1

b

)
(B · b) = B · b−

(
ZW−1

b

)
(B · b)

it follows that B · t is non-integral as well. To see this,
let n be the largest integer such that a term of the form
(x−α)ι(µ+Z,k)−n log(x−α)k appears in B ·b for some µ ∈ C
and k ∈ N. Let i be an index such that a term of the given

form appears in B · bi with nonzero coefficient. This term
cannot be canceled in

B · ti = B · bi −
r∑
j=1

(
ZW−1

b

)
i,j

(
B · bj

)
because all terms of the series (ZW−1

b

)
i,j

are of the form

(x − α)ι(νi−νj+Z,k)+` log(x − α)k with ` ≥ 1 by our choice
of Ni. So also B · t is not integral.

8. COMPARISON WITH THE
ALGEBRAIC CASE

We have shown that the underlying ideas of van Hoeij’s
algorithm for computing integral bases of algebraic function
fields apply in a more general context. Indeed, it is fair to
regard van Hoeij’s algorithm as a special case of our algo-
rithm, since every algebraic function is also D-finite. Recall
that an algebraic function field C(x)[Y ]/〈M〉 with some ir-
reducible polynomial M of degree d becomes a differential
field if we set D · c = 0 for all c ∈ C, D · x = 1, and

D · Y := −
d
dx
M

d
dY
M

mod M.

Since C(x)[Y ]/〈M〉 is also a C(x)-vector space of dimen-
sion d, it is clear that any d + 1 elements must be C(x)-
linearly dependent. This implies the existence of an opera-
tor L ∈ C(x)[D] of order at most d with L · Y = 0. Usu-
ally there is no such operator of lower order, which means
that Y,D ·Y, . . . , Dd−1 ·Y are C(x)-linearly independent and
thus a basis of C(x)[Y ]/〈M〉. In this case, a vector space
basis {B1, . . . , Bd} ⊆ C(x)[Y ]/〈L〉 is an integral basis in the
sense of Definition 6 if and only if {B1 · Y, . . . , Bd · Y } ⊆
C(x)[Y ]/〈M〉 is an integral basis of the algebraic function
field in the classical sense.

When Y ∈ C(x)[Y ]/〈M〉 is annihilated by an operator L
of order less than d, we can compute the minimal-order op-
erators L0, . . . , Ld−1 which annihilate Y 0, . . . , Y d−1, respec-
tively, and take L = lclm(L0, . . . , Ld−1). Then the C(x)-
vector space generated by all solutions of L is the whole
field C(x)[Y ]/〈M〉, and if {B1, . . . , Bn} is an integral basis
for L, then {Bi ·Y j : i = 1, . . . , n, j = 0, . . . , d−1} generates
the C[x]-module of all integral elements of C(x)[Y ]/〈M〉.

As a less brutal approach, we can simply replace Y by
some other generator of the field. In practice, most field
generators will have an annihilating operator of order d, but
none of smaller order.

Example 21. An integral basis for the field Q(x)[Y ]/〈M〉
with M = Y 3 − x2 is

{
1, Y, 1

x
Y 2
}

. The lowest-order differ-
ential operator annihilating Y is L = 3xD− 2, which is not
useful because its order is less than the degree of M .

Instead, let us try Z = 1 +Y +Y 2 as generator. We have
Q(x)[Y ]/〈M〉 = Q(x)[Z]/〈N〉, where N = Z3−3Z2−3(x2−
1)Z − x4 + 2x2 − 1 is the minimal polynomial of Z. Given
N instead of M as input, van Hoeij’s algorithm finds the
following integral basis for Q(x)[Z]/〈N〉:{

1, Z,
Z2

x(x− 1)(x+ 1)
− (x2 + 2)Z

x(x− 1)(x+ 1)
− 1

x

}
. (9)

The lowest order annihilating operator of Z is L = 9x2D3 +
9xD2 −D. It has the right order and our Mathematica im-



plementation returns the integral basis{
1, xD, xD2 +

1

3
D
}
.

We can rewrite the derivatives of Z as polynomials in Z:

D · Z =
−2Z2 + 2(2x2 + 1)Z

3x(x2 − 1)

D2 · Z =
−6Z2 + 2(2x2 + 7)Z + 8(x2 − 1)

9x2(x2 − 1)
.

Plugging these expressions into (9) yields the following inte-
gral basis for the algebraic function field Q(x)[Z]/〈N〉:{
Z,
−2Z2 + 2(2x2 + 1)Z

3(x− 1)(x+ 1)
,

8(−Z2 + (x2 + 2)Z + x2 − 1)

9x(x− 1)(x+ 1)

}
Applying a change of basis with the unimodular matrix

1

8

8 −12 9x
8 0 0
0 0 −9


gives the integral basis (9) computed by Maple.

One of the features of integral bases for algebraic function
fields is that they allow an extension of the classical Hermite
reduction for integration of rational functions to the case
of algebraic functions. This was observed by Trager [10].
In order to make this work, Trager requires that both the
integral basis as well as the integrand should be “normal at
infinity”. This corresponds to the condition in the rational
case that the rational function to be integrated must not
have a polynomial part. Trager shows that normality of
the integrand can always be achieved by applying a suitable
change of variables, and he gives an algorithm that turns an
arbitrary integral basis into one that is normal at infinity.
After that, the Hermite reduction process looks very similar
to the rational case. We give here an example for a non-
algebraic D-finite function.

Example 22. Let L = (2x+1)−(4x2 +1)D+2(2x−1)xD2

and write y for a solution of L. An integral basis of OL
is given by {1, 1

2x−1
(2xD − 1)}. Let ω0 := y and ω1 :=

1
2x−1

(2xD − 1) · y and consider the function

f =
a0ω0 + a1ω1

uvm

where a0 = 4x2 + 37x − 11, a1 = −28x3 + 40x2 − x − 1,
u = 4, v = (x− 1)x, m = 2.

Hermite reduction consists in finding b0, b1, c0, c1 ∈ Q[x]
with

a0ω0 + a1ω1

uvm
=
( b0ω0 + b1ω1

vm−1

)′
+
c0ω0 + c1ω1

uvm−1
.

After working out the differentiation, multiplying by uvm,
and taking the whole equation mod v we are left with the
constraint

a0ω0 + a1ω1 ≡ b0uvm
( ω0

vm−1

)′
+ b1uv

m
( ω1

vm−1

)′
mod v

For the derivatives of ω0 and ω1 we have

Dω0 =
1

2x
ω0 −

1− 2x

2x
ω1, Dω1 = ω1,

so that the previous constraint can be rewritten to

a0ω0 + a1ω1 ≡ − 1
2
b0u
(
3ω0 + ω1)− 2b1uω1 mod v.

Plugging in a0, a1 and u and comparing coefficients of ωi
leads to the linear system(

41x− 11
11x− 1

)
=

(
2− 6x 2− 2x

0 4− 8x

)(
b0
b1

)
mod v

which has the solution b0 = 1
2
(4x+11), b1 = 5

2
(2x−1). Next

we find that

f −
( b0ω0 + b1ω1

vm−1

)′
=
c0ω0 + c1ω1

uvm−1

for c0 = 0, c1 = 0. Consequently, we have found that∫
f =

(11 + 4x)ω0 + 5(2x− 1)ω1

8(1− x)2x2
=

5

x− 1
y′ − 2x+ 3

(x− 1)x
y.

The same answer could have been found using an algorithm
of Abramov and van Hoeij [1], using a completely different
approach.
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