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'(x) =

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at &, then & is also a
singularity of the equation.

e The converse is not true: The equation may have singularities
where all solutions are regular.
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Solutions in this case:

exp(x/3),  —
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apparent singularity

(x + 1)f(x) + (2 — 10/+ 7)f(x)

3(x—5)(x—2)

'(x) =

Solutions in this case:
1
exp(x/3),
Xx—>5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?
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(7x—17)(x—6)f(x—1) — 4(x—7) (x—2)f(x—2)

flx) = 3(x—5)(x—2)

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at & and not at every point in
&+ Z, then & 4 Z must contain a singularity of the equation.

e The converse is not true: The equation may have a singularity
at & even though all solutions are regular at all points in &+ Z.
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(x+3)f(x+1)— (x+4)f(x) =0 }_
(x+4)f(x+2)— (x+5)f(x+1)=0

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x) =0



Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0

(x+4)f(x+2)— (x+5)f(x+1)=0 }_

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x) =0
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Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0

(x+4)f(x+2) — (x+5)f(x+1) = 0 }_

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x)
f(x +2)=2f(x+1)+f(x) =0

0

For recurrences, removable and apparent are “almost equivalent”
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Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1
(c=id, § =&)

e For recurrence operators, we have 0x = (x +1)0
(o(x) =x+1,86=0)

e More generally, we just assume to have 0x = o(x)0 + 6(x) for
certain given maps 0, 6: C[x] — C[x].

The maps 0,6 uniquely determine the Ore algebra C[x][0].
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Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

q is called removable “at order n" if ord(Q) < n.

Examples.
e In the differential case, let L = (x — 1)x0 — (x — 2). The
factor g = x is removable using Q = %62.
e In the recurrence case, let L = (x +3)0 — (x +4). The factor

q = (x + 3) is removable using Q = Xﬁ(a —1).
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e For differential operators, it is known since ~1890 how to
decide removability.

e For recurrence operators, algorithms have been given by
Abramov and van Hoeij in the 1990s.

e We give an algorithm which is more simple and more general,
but which only decides removability at order . for a given n.
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The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).
Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of 1c(L).
Case 2. L has a power series solution x¢ 4 - - - for every starting degree
ec{0,...,r—1}. Then x {lc(L).
Case 3. L has r power series solutions x€ + - - - at least one of which
has a starting degree e > r. Then x | lc(L) is removable.

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.
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— 0+ 0x+ 0x2+ 00+ 0xP+ T+ 0x° 4
_l’_

X+ 0xT 4+ 0%+ 0x + 0x°+ Tx° 4+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.
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Theorem (Fuchs). Let L be a differential operator and suppose
that x | 1c(L) is removable.
If x¢1,...,x°™ are the missing monomials, let

M = lelm(x0 — ey, ..., X0 — em).

Then lelm(L, M) is an x-removed left multiple of L.
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Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let V C C™ be the set of all points (mg, mi,...,My_1) € C™ such
that for

M:=0"+my 10" +my 0™+ -+

the operator lclm(L, M) is not a g-removed left multiple of L.
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Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let V C C™ be the set of all points (mg, mi,...,My_1) € C™ such
that for

M:=0"+my 10" +my 0™+ -+

the operator lclm(L, M) is not a g-removed left multiple of L.

Then V is (contained in) a proper algebraic subset of C™.
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Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).
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Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).
Features:

e With high probability, this will remove all the removable
factors in one stroke, not just a given factor .

e |t can be detected a posteriori whether the choice of M was
unlucky. (And there is a deterministic version too.)

e The case where a factor with higher multiplicity cannot be
removed but its multiplicity can be lowered.

e In the recurrence and differential case, bounds for n are can
be obtained as in the known algorithms.
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Removing factors is crucial for the contraction problem: Given
L € C[x][0], consider the ideal £ = (L) generated by L in C(x)[0].

The ideal
£1 = £nCKx[0]

is called the contraction of £.
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Removing factors is crucial for the contraction problem: Given
L € C[x][0], consider the ideal £ = (L) generated by L in C(x)[0].
The ideal

£1 = £nCKx[0]

is called the contraction of £.

As a consequence of our theorem, we have that £ | is generated as
ideal of C[x][0] by L and lclm(L, M), for almost every M of
sufficiently high order.
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Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:

16



Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:
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basis of
L1l =2nCxy...,xml[01,...,0m]

by joining a basis of £ and a basis of £ NN, for almost every left
ideal 9.
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Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:

For a left ideal £ C C(x1,...,Xm)[01,...,0m] we may hope that a
basis of
L1l =2nCxy...,xml[01,...,0m]

by joining a basis of £ and a basis of £ NN, for almost every left
ideal 9.

Experiments suggest that this works indeed. We don’t have a
proof yet, but we are working on it.
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