Desingularization of Ore Operators

Manuel Kauers

joint work with Shaoshi Chen and Michael Singer

. (x + Df(x) + (x> — 10x + 7)f'(x)
f7(x) =

3(x —5)(x—2)

(x + Df(x) + (x> — 10x + 7)f'(x)
3(x —5)(x—2)

'(x) =

e The roots of the denominator are called the singularities of
the equation.

(x + Df(x) + (x> — 10x + 7)f'(x)
3(x —5)(x—2)

'(x) =

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at &, then & is also a
singularity of the equation.

(x + Df(x) + (x> — 10x + 7)f'(x)
3(x —5)(x—2)

'(x) =

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at &, then & is also a
singularity of the equation.

e The converse is not true: The equation may have singularities
where all solutions are regular.

. (x + Df(x) + (x> — 10x + 7)f'(x)
f7(x) =

3(x —5)(x—2)
Solutions in this case:

exp(x/3), —

x—5

apparent singularity

£(x) = (x + Df(x) + (x* — 10)4— 7)f'(x)

3(x—5)(x—2)

Solutions in this case:

exp(x/3), —

x—5

non-apparent singularity apparent singularity

(x + (%) + (x* — 10X + 7)f'(x)
3(x —5)(x —2)

'(x) =

Solutions in this case:

exp(x/3), —

x—5

apparent singularity

(x + 1)f(x) + (2 — 10/+ 7)f(x)

3(x—5)(x—2)

'(x) =

Solutions in this case:
1
exp(x/3),
Xx—>5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

(x)

f)

(x—2)

(x — 1

(x)

f)

(x—2)

(x — 1

(x —Dxf'(x) — (x —2)f(x) =0

(x —Dxf'(x) — (x —2)f(x) =0

(x — Dxf"(x)+ (x+ 1)f'(x) —f(x) =0

(x—])Xf/(X)—(X_Z)f(X) =0 ‘ d%c

(x = 1 £7(x) 4+ (x + NF'(x) = f(x) =0 | £

(x—])Xf/(X)—(X_Z)f(X) =0 ‘ d%c
(x = 1 £7(x) 4+ (x + NF'(x) = f(x) =0 | £

(2x—=1) " (%) 4+ (x—=1)xf" (%) 4" (x)+ (x4+T1) " (x) =" (x)=0

(x —Dxf'(x) — (x —2)f(x) =0 ‘ d%

(x = 1 £7(x) 4+ (x + NF'(x) = f(x) =0 | £

(x —)x " (x) +3xf"(x) =0

(x —Dxf'(x) — (x —2)f(x) =0 ‘

(x =)xf"(x) + (x+ 1)f'(x) —f(x) =0 ‘

(x —)xf"(x) +3xf"(x) =0 |

(x —Dxf'(x) — (x —2)f(x) =0 ‘

(x =)xf"(x) + (x+ 1)f'(x) —f(x) =0 ‘

(x —)xf"(x) +3xf"(x) =0 |

(x =1 f"(x) +3f"(x) =0

removable singularity

(x—1x)—(x—2)f(x)=0 |

(x =)xf"(x) + (x+ 1)f'(x) —f(x) =0 ‘

(x —)xf"(x) +3xf"(x) =0 |

(x =1 f"(x) +3f"(x) =0

non-removable singularity
removable singularity

(x — Tjx[f'(x) — (x — 2)f(x) =0

(x = DX f"(x) + (x+ D (x) = f(x) =0 | &

(x —)x " (x) +3xf"(x) =0
(x — D" (x) +31"(x) =0

|ZX

removable singularity

(x—]x)—(x—Z)f(x):O ‘

(x =)xf"(x) + (x+ 1)f'(x) —f(x) =0 ‘

(x —)xf"(x) +3xf"(x) =0 |

(x =1 f"(x) +3f"(x) =0

Obvious: removable = apparent

removable singularity

(x—]x)—(x—Z)f(x)zO |

(x =)xf"(x) + (x+ 1)f'(x) —f(x) =0 ‘

(x —)xf"(x) +3xf"(x) =0 |

(x =1 f"(x) +3f"(x) =0

Obvious: removable = apparent

Also true: apparent = removable

fix) = (7x=17)(x=6)f(x—1) — 4(x—7) (x—2)f(x—2)

3x—5)(x—2)

(7x—17)(x—6)f(x—1) — 4(x—7) (x—2)f(x—2)

flx) = 3(x—5)(x—2)

e The roots of the denominator are called the singularities of
the equation.

(7x—17)(x—6)f(x—1) — 4(x—7) (x—2)f(x—2)

flx) = 3(x—5)(x—2)

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at & and not at every point in
&+ Z, then & 4 Z must contain a singularity of the equation.

(7x—17)(x—6)f(x—1) — 4(x—7) (x—2)f(x—2)

flx) = 3(x—5)(x—2)

e The roots of the denominator are called the singularities of
the equation.

e If a solution f has a singularity at & and not at every point in
&+ Z, then & 4 Z must contain a singularity of the equation.

e The converse is not true: The equation may have a singularity
at & even though all solutions are regular at all points in &+ Z.

(7x—17)(x—6)f(x—1) — 4(x—7) (x—2)f(x—2)
HE=

3(x—5)(x—2)
Solutions in this case:

OV —

x—>5

(7x—17) (x— 6)

apparent singularity

— 4 (xA7)(x—2)f(x—2)

HE=

Solutions in this case:

(4/3)%,

5)(x —2)

apparent singularity

fx) = (7x—17)(x—6)f(x—1) — 4(x47)(f(x—2)

) —
3(x—5)(x—2)
Solutions in this case:

(4/3)%,

Singularities of recurrences can also be removable:

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0
(x+4)f(x+2)— (x+5)f(x+1)=0

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0 }_
(x+4)f(x+2)— (x+5)f(x+1)=0

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0 }_
(x+4)f(x+2)— (x+5)f(x+1)=0

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x) =0

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0

(x+4)f(x+2)— (x+5)f(x+1)=0 }_

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x) =0
f(x +2)=2f(x+1)+f(x) =0

Singularities of recurrences can also be removable:

(x+3)f(x+1)— (x+4)f(x) =0

(x+4)f(x+2) — (x+5)f(x+1) = 0 }_

(x+4)f(x +2) — 2(x+4)f(x + 1) + (x+4)f(x)
f(x +2)=2f(x+1)+f(x) =0

0

For recurrences, removable and apparent are “almost equivalent”

Write differential equations in operator notation:

pr ()7 (x) + -+ 4+ 1) (x) + po(x)flx) =0

Write differential equations in operator notation:

()0 + -+ P1(x)d + po(x) - Fx) = 0

Write differential equations in operator notation:

()0 + -+ P1(x)d + po(x) - Fx) = 0

Similarly, for recurrence operators:

Write differential equations in operator notation:

()0 + -+ P1(x)d + po(x) - Fx) = 0

Similarly, for recurrence operators:

pr)f(x +7) 4+ pr(X)f(x + 1) + po(x)f(x) =0

Write differential equations in operator notation:

()0 + -+ P1(x)d + po(x) - Fx) = 0

Similarly, for recurrence operators:

()0 +- -+ p1(x)d + po(x)) - F(x) = 0

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1

e For recurrence operators, we have 0x = (x +1)0

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1
e For recurrence operators, we have 0x = (x +1)0

e More generally, we just assume to have 0x = o(x)0 + 6(x) for
certain given maps 0, 6: C[x] — C[x].

Define multiplication of operators in such a way that it corresponds
to composition:

(Li L) - f(x) =Ly - (Ly - f(x))
Write C[x][0] for the algebra of all these operators.
e For differential operators, we have 0x =x0 + 1

e For recurrence operators, we have 0x = (x +1)0

e More generally, we just assume to have 0x = o(x)0 + 6(x) for
certain given maps 0, 6: C[x] — C[x].

The maps 0,6 uniquely determine the Ore algebra C[x][0].

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1
(c=id, § =&)
e For recurrence operators, we have 0x = (x +1)0

e More generally, we just assume to have 0x = o(x)0 + 6(x) for
certain given maps 0, 6: C[x] — C[x].

The maps 0,6 uniquely determine the Ore algebra C[x][0].

Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L) - f(x) = Ly - (Ly - f(x))

Write C[x][0] for the algebra of all these operators.

e For differential operators, we have 0x =x0 + 1
(c=id, § =&)

e For recurrence operators, we have 0x = (x +1)0
(o(x) =x+1,86=0)

e More generally, we just assume to have 0x = o(x)0 + 6(x) for
certain given maps 0, 6: C[x] — C[x].

The maps 0,6 uniquely determine the Ore algebra C[x][0].

Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

q is called removable “at order n" if ord(Q) < n.

Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

q is called removable “at order n" if ord(Q) < n.

Examples.

Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

q is called removable “at order n" if ord(Q) < n.

Examples.

e In the differential case, let L = (x — 1)x0 — (x — 2). The
factor g = x is removable using Q = %62.

Definition. Let L € C[x][0]. A factor q € C[x] of I¢(L) is called
removable if
1

3Q e C(x)[d]: QL € C[x][d] and 1c(QL) = 0od(Q)(q)

le(L).

q is called removable “at order n" if ord(Q) < n.

Examples.
e In the differential case, let L = (x — 1)x0 — (x — 2). The
factor g = x is removable using Q = %62.
e In the recurrence case, let L = (x +3)0 — (x +4). The factor

q = (x + 3) is removable using Q = Xﬁ(a —1).

e For differential operators, it is known since ~1890 how to
decide removability.

e For differential operators, it is known since ~1890 how to
decide removability.

e For recurrence operators, algorithms have been given by
Abramov and van Hoeij in the 1990s.

e For differential operators, it is known since ~1890 how to
decide removability.

e For recurrence operators, algorithms have been given by
Abramov and van Hoeij in the 1990s.

e We give an algorithm which is more simple and more general,
but which only decides removability at order . for a given n.

The classical desingularization algorithm for differential operators:

10

The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).

10

The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).

Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of 1c(L).

10

The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).

Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of 1c(L).

Case 2. L has a power series solution x¢ 4 - - - for every starting degree
ec{0,...,r—1}. Then x {lc(L).

10

The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).

Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of 1c(L).

Case 2. L has a power series solution x¢ 4 - - - for every starting degree
ec{0,...,r—1}. Then x {lc(L).

Case 3. L has r power series solutions x€ + - - - at least one of which
has a starting degree e > r. Then x | lc(L) is removable.

10

The classical desingularization algorithm for differential operators:

Let L € C[x][0] and v = ord(L).
Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of 1c(L).
Case 2. L has a power series solution x¢ 4 - - - for every starting degree
ec{0,...,r—1}. Then x {lc(L).
Case 3. L has r power series solutions x€ + - - - at least one of which
has a starting degree e > r. Then x | lc(L) is removable.

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O+ O+ O+ O + OxP + - --
+0x+ 12+ + O+ O +Ox® + - -
+0x+ 0+ 13+ O+ O +Ox® + - -
+0x+ 0x*+ 0+ 0x" 4+ 0%+ 1x0+ -+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O+ + O + O + Ox® + - -
+0x+ 12 +OC+ O+ O+ Ox® + -
+0x+ 0+ 13+ O+ O+ Ox + - --
+0x+ 0%+ 00+ 0x*+ 0xX°+ 1x8+- -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+ Ox+O+O +OxX' + OX° + Ox® + - -
+ 0x+ 1 +O03+ O +OX° +Ox8 + - -
+0x+ 0x+ 1+ Ox" + O + Ox* + -+

+0x+ 0x*+ 0+ 0x' 4+ 0%+ 1x0+ -+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O+ O+ O+ O + OxXP + - --
+0x+ 1+ + O+ O+ Ox + -
+0x+ 0+ 1+ O+ O+ Ox® + - -

+0x+ 0%+ 03+ 0x*+ 00+ 1x% 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O+ + O+ OX° + Ox® + - -
+ 0x4+ 12+ + O + O+ OxP + - -
+0x+ 0+ 13+ O+ O+ Ox + - -

+0x+ 0x+ 0+ 0x + 0%+ 1x° 4+
Idea: when x is removable, construct a new operator whose

solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O +OC+ O+ O+ Ox® + -

+ 0x+ 1 +0O03+ O +OX° +Ox8 +- -
+O0x+ 0+ 1+ O + O+ Ox + -+

+0x+ 0xF+ 0+ 0x"+ 0%+ 1x0+ -+
Idea: when x is removable, construct a new operator whose

solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O+ O+ O+ O + OxXP + - -

+0x+ 12+ + O+ O+ Ox® + -
+0x+ 0+ 13+ O+ O+ Ox® + - -

+0x+ 0%+ 03+ 0x*+ 05+ 1x% 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O +OC + O+ O + Ox® + - -
+ 0x+ 1+ + O+ O+ O + -
+0x+ 0+ 13+ O+ O +Ox® + - -

+ 0x4+ 0x2+ 03+ 0x + 0+ Tx0 4.

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O +OC+ O+ OX° + Ox® + - -
+ 0x+ 1 +0O3+ O +OX° +Ox8 +- -
+O0x+ 00X+ 1+ O+ O+ Oxo + -+

+0x+ 0x*+ 0+ 0x' 4+ 0%+ 1x0+ -+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:
T +Ox+ O+ O+ O+ O + OxP + - -

+0x+ 12+ + O+ O+ Ox + -
+0x+ 0+ 1+ + O+ Ox® + - -

+0x+ 0%+ 03+ 0x*+ 00+ 1x% 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+ Ox+O+OC +OxX + OX° + Ox® + - -
+0x+ 1+ + O+ O+ O + -
+0x+ 0+ 13+ O+ O+ Ox® + - -
+ 0x4+ 0x2+ 03+ 0x + 0+ Tx0 4.

Idea: when x is removable, construct a new operator whose

solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O+ O+ O+ O + OxP + - --

+0x+ 12 +OC+ O+ O+ Ox® + -

+ 0x+ 0+ 1T+ + O+ OxP + - -
+0x+ 0%+ 0+ 0x*+ 00+ 1x% 4+ -

Idea: when x is removable, construct a new operator whose

solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O+ + O + O + Ox + - -
+0x+ 12+ + O+ O+ Ox® + -
+0x+ 0+ 13+ + O+ Ox® + - -
+0x+ 00X+ 00+ 0xP+ 0+ 1x8+- -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+O%+OC + O+ O+ Ox® + - -

+0x+ 1+ + O+ O+ OxP + -
+0x+ 0+ 13+ O+ O+ Ox® + - -

+0x+ 0xF+ 0+ 0x' + 0%+ 1x0+ -+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O+ + O + O + Ox® + - -

+0x+ 12 +OC+ O+ O+ Ox® + - -
+0x+ 0+ 13+ O+ O+ Ox +- -

+0x+ 0x2+ 0x3+ 0x* 4+ 0+ Tx8 4+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+ Ox+ O+ +OxX' + OX + Ox® + - -

+ 0x+ 1 +O03+ O +OX° +Ox8 +- -
+ 0x4+ 02+ 1T+ + O+ OxP + - -

+0x+ 0xF+ 0+ 0x' 4+ 0%+ 1x0+ -+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T+Ox+ O+ + O + O + Ox + - -

+0x+ 1+ + O+ O+ Ox® + -
+0x+ 02+ 1+ O+ O+ Ox® + - -

+ 0x4+ 0x2+ 03+ 0x + 004+ 1x0 4.

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+0O*+OC + O+ O + Ox® + - -

+0x+ 12 +0OC+ O+ O+ O + -
+0x+ 0+ 13+ O+ O+ Ox® + - --

+0x+ 0%+ 00+ 0x*+ 0+ 1x8+- -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+ O+ O+ O+ O + OxXP + - --

+ 0x+ 1 +O03+ O +OX° +Ox8 +- -
+0x+ 0+ 1+ + O+ Ox® + - -

+0x+ 0%+ 0+ 0x*+ 05+ 1x% 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

T +Ox+O+OC + O+ O + Ox® + - -

+0x+ 1+ + O+ O+ Ox® + -
+0x+ 0+ 13+ + O+ Ox® + - -

+ 0x4+ 0x2+ 03+ 0x + 0%+ Tx0 4.

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

1T +Ox+ O+ O+ O+ O + OxP + - --

+ 0x+ 12+ + O+ O+ OxP + -
+0x+ 0+ 13+ O+ O+ Ox® + - -

+0x+ 024+ 0+ 0x*+ 00+ 1x8 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

1T +Ox+ O+ O+ O+ O + OxP + - --

+ 0x+ 12+ + O+ O+ OxP + -
+0x+ 0+ 13+ O+ O+ Ox® + - -

+0x+ 024+ 0+ 0x*+ 00+ 1x8 4+ -

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

The classical desingularization algorithm for differential operators:

1T +Ox+ O+ O+ O+ O + OxP + - --
— + x4 02+ 03+ 0x 4+ 05 4+ 0x0 4 -+

+0x+ 12+ + O+ O+ Ox® + - --
+0x+ 0+ 13+ O+ O+ Ox® + - -
— 0+ 0x+ 0x2+ 00+ Ixt+ 0+ 0x° 4
— 0+ 0x+ 0x2+ 00+ 0xP+ T+ 0x° 4
l’

X+ 0xT 4+ 0%+ 0x + 0x°+ Tx° 4+

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials x€ for all the missing e's.

10

Theorem (Fuchs). Let L be a differential operator and suppose
that x | 1c(L) is removable.
If x¢1,...,x°™ are the missing monomials, let

M = lelm(x0 — ey, ..., X0 — em).

Then lelm(L, M) is an x-removed left multiple of L.

11

Theorem (Chen, Kauers, Singer).

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let M € C[x][0] be an arbitrary operator of order n.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let M € C[x][0] be an arbitrary operator of order n.
Then lclm(L, M) is a g-removed left multiple of L.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let Mie-€[x][d] be an arbitrary operator of-erder m.

Then lelm (LM is a g-removed left muitiple of L.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let V C C™ be the set of all points (mg, mi,...,My_1) € C™ such
that for

M:=0"+my 10" +my 0™+ -+

the operator lclm(L, M) is not a g-removed left multiple of L.

12

Theorem (Chen, Kauers, Singer). Let C[x][d] be an Ore
algebra.

Let L € C[x][0], q | lc(L) removable by some operator Q of
order n.

Let V C C™ be the set of all points (mg, mi,...,My_1) € C™ such
that for

M:=0"+my 10" +my 0™+ -+

the operator lclm(L, M) is not a g-removed left multiple of L.

Then V is (contained in) a proper algebraic subset of C™.

12

Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).

13

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator M € C[0] of order n.

[2] Return lclm(L, M).

Features:

e With high probability, this will remove all the removable
factors in one stroke, not just a given factor .

13

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).

Features:

e With high probability, this will remove all the removable
factors in one stroke, not just a given factor .

e |t can be detected a posteriori whether the choice of M was
unlucky. (And there is a deterministic version too.)

13

Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).

Features:

e With high probability, this will remove all the removable
factors in one stroke, not just a given factor .

e |t can be detected a posteriori whether the choice of M was
unlucky. (And there is a deterministic version too.)

e The case where a factor with higher multiplicity cannot be
removed but its multiplicity can be lowered.

13

Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M € C[0] of order n.
[2] Return lclm(L, M).
Features:

e With high probability, this will remove all the removable
factors in one stroke, not just a given factor .

e |t can be detected a posteriori whether the choice of M was
unlucky. (And there is a deterministic version too.)

e The case where a factor with higher multiplicity cannot be
removed but its multiplicity can be lowered.

e In the recurrence and differential case, bounds for n are can
be obtained as in the known algorithms.

13

14

Removing factors is crucial for the contraction problem: Given
L € C[x][0], consider the ideal £ = (L) generated by L in C(x)[0].

The ideal
£1 = £nCKx[0]

is called the contraction of £.

15

Removing factors is crucial for the contraction problem: Given
L € C[x][0], consider the ideal £ = (L) generated by L in C(x)[0].
The ideal

£1 = £nCKx[0]

is called the contraction of £.

As a consequence of our theorem, we have that £ | is generated as
ideal of C[x][0] by L and lclm(L, M), for almost every M of
sufficiently high order.

15

Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:

16

Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:

For a left ideal £ C C(x1,...,Xm)[01,...,0m] we may hope that a
basis of
L1l =2nCxy...,xml[01,...,0m]

by joining a basis of £ and a basis of £ NN, for almost every left
ideal 9.

16

Noting that lclm(L, M) is the generator of (L) N (M), this
suggests a natural generalization to the case of several variables:

For a left ideal £ C C(x1,...,Xm)[01,...,0m] we may hope that a
basis of
L1l =2nCxy...,xml[01,...,0m]

by joining a basis of £ and a basis of £ NN, for almost every left
ideal 9.

Experiments suggest that this works indeed. We don’t have a
proof yet, but we are working on it.

16

17

