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f ′′(x) =
(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)

3(x− 5)(x− 2)
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(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)
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• The roots of the denominator are called the singularities of
the equation.

• If a solution f has a singularity at ξ, then ξ is also a
singularity of the equation.

• The converse is not true: The equation may have singularities
where all solutions are regular.
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f ′′(x) =
(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)
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Solutions in this case:

exp(x/3),
1

x− 5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

2



f ′′(x) =
(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)

3(x− 5)(

apparent singularity

x− 2)

Solutions in this case:

exp(x/3),
1

x− 5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

2



f ′′(x) =
(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)

3(

non-apparent singularity

x− 5)(

apparent singularity

x− 2)

Solutions in this case:

exp(x/3),
1

x− 5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

2



f ′′(x) =
(x+ 1)f(x) + (x2 − 10x+ 7)f ′(x)

3(

non-apparent singularity

x− 5)(

apparent singularity

x− 2)

Solutions in this case:

exp(x/3),
1

x− 5

How to distinguish apparent and non-apparent singularities when we
don’t have closed form solutions?

2



f ′(x) =
(x− 2)f(x)

(x− 1)x

(x− 1)f ′′′(x) + 3 f ′′(x) = 0

Obvious: removable ⇒ apparent

Also true: apparent ⇒ removable
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Singularities of recurrences can also be removable:

(x+ 3)f(x+ 1) − (x+ 4)f(x) = 0

(x+ 4)f(x+ 2) − (x+ 5)f(x+ 1) = 0

}
−

(x+4)f(x+ 2) − 2(x+4)f(x+ 1) + (x+4)f(x) = 0

f(x+ 2) − 2f(x+ 1) + f(x) = 0

For recurrences, removable and apparent are “almost equivalent”
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Write differential equations in operator notation:

pr(x)f
(r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0

Similarly, for recurrence operators:
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Define multiplication of operators in such a way that it corresponds
to composition:

(L1 L2) · f(x)
!
= L1 · (L2 · f(x))

Write C[x][∂] for the algebra of all these operators.

• For differential operators, we have ∂x = x∂+ 1

(σ = id, δ = d
dx)

• For recurrence operators, we have ∂x = (x+ 1)∂

(σ(x) = x+ 1, δ = 0)

• More generally, we just assume to have ∂x = σ(x)∂+ δ(x) for
certain given maps σ, δ : C[x]→ C[x].

The maps σ, δ uniquely determine the Ore algebra C[x][∂].
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Definition. Let L ∈ C[x][∂]. A factor q ∈ C[x] of lc(L) is called
removable if

∃ Q ∈ C(x)[∂] : QL ∈ C[x][∂] and lc(QL) =
1

σord(Q)(q)
lc(L).

q is called removable “at order n” if ord(Q) ≤ n.

Examples.

• In the differential case, let L = (x− 1)x∂− (x− 2). The
factor q = x is removable using Q = 1

x∂
2.

• In the recurrence case, let L = (x+ 3)∂− (x+ 4). The factor
q = (x+ 3) is removable using Q = 1

x+4(∂− 1).
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• For differential operators, it is known since ∼1890 how to
decide removability.

• For recurrence operators, algorithms have been given by
Abramov and van Hoeij in the 1990s.

• We give an algorithm which is more simple and more general,
but which only decides removability at order n for a given n.
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The classical desingularization algorithm for differential operators:

Idea: when x is removable, construct a new operator whose
solution space contains the solution space of L as well as
monomials xe for all the missing e’s.
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Let L ∈ C[x][∂] and r = ord(L).

Case 1. L has fewer than r linearly independent power series solutions.
Then x is a non-removable factor of lc(L).
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Theorem (Fuchs). Let L be a differential operator and suppose
that x | lc(L) is removable.
If xe1 , . . . , xem are the missing monomials, let

M = lclm(x∂− e1, . . . , x∂− em).

Then lclm(L,M) is an x-removed left multiple of L.
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Theorem (Chen, Kauers, Singer).

Let C[x][∂] be an Ore
algebra.

Let L ∈ C[x][∂], q | lc(L) removable by some operator Q of
order n.
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Our simple and general desingularization algorithm is thus:

[1] Pick a random operator M ∈ C[∂] of order n.

[2] Return lclm(L,M).

Features:

• With high probability, this will remove all the removable
factors in one stroke, not just a given factor q.

• It can be detected a posteriori whether the choice of M was
unlucky. (And there is a deterministic version too.)

• The case where a factor with higher multiplicity cannot be
removed but its multiplicity can be lowered.

• In the recurrence and differential case, bounds for n are can
be obtained as in the known algorithms.
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Removing factors is crucial for the contraction problem: Given
L ∈ C[x][∂], consider the ideal L = 〈L〉 generated by L in C(x)[∂].
The ideal

L↓ := L ∩ C[x][∂]

is called the contraction of L.

As a consequence of our theorem, we have that L↓ is generated as
ideal of C[x][∂] by L and lclm(L,M), for almost every M of
sufficiently high order.
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Noting that lclm(L,M) is the generator of 〈L〉 ∩ 〈M〉, this
suggests a natural generalization to the case of several variables:

For a left ideal L ⊆ C(x1, . . . , xm)[∂1, . . . , ∂m] we may hope that a
basis of

L↓ := L ∩ C[x1, . . . , xm][∂1, . . . , ∂m]

by joining a basis of L and a basis of L ∩M, for almost every left
ideal M.

Experiments suggest that this works indeed. We don’t have a
proof yet, but we are working on it.
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