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Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.
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Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Example: For the step set we have

a(x, y, t) = 1 + (x+ xy) t

+ (2 + x2 + y + 2x2y + x2y2)t2

+ (5x+ x3 + 6xy + 3x3y + 2xy2 + 3x3y2 + x3y3)t3

+ · · ·
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Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Who cares?

At least:

Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle,
Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson,
Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer,
Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer,
Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger
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Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer,
Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

4



Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Note:

• a(1, 1, t) counts the number of walks with arbitrary endpoint.

• a(0, 0, t) counts the number of walks returning to the origin.

4



Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Note:

• a(1, 1, t) counts the number of walks with arbitrary endpoint.

• a(0, 0, t) counts the number of walks returning to the origin.

4



Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Note:

• a(1, 1, t) counts the number of walks with arbitrary endpoint.

• a(0, 0, t) counts the number of walks returning to the origin.

4



Fix a step set.

Let an,i,j be the number of walks of length n with end point (i, j).

Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

Question:

How does the nature of a(x, y, t) depend on the step set?
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Let

a(x, y, t) =

∞∑
n=0

∑
i,j

an,i,j x
iyjtn

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even
algebraic), and for which step sets is it not D-finite?
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How many step sets are there?

23
2−1 = 256

∈ or 6∈

|{−1, 0, 1}|
dim = 2

except (0, 0)− 32 trivial models
− 86 half-space models (easy)

− 59 models being in bijection to others

79 models to be investigated

How many of them are D-finite?

How many of them are not D-finite?

What does it depend on?
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The step set gives rise to a recurrence for ai,j,n.

Example: For the step set we obtain

ai,j,n+1 = ai+1,j−1,n + ai,j+1,n + ai−1,j−1,n.

Together with a0,0,0 = 1 and the boundary conditions
a−1,j,n = ai,−1,n = 0, this recurrence gives rise to a functional
equation for the generating function a(x, y, t).

Example: For the step set above we obtain(
1−

( y
x + 1

y + xy
)
t
)
a(x, y, t) = 1− t

y a(x, 0, t)−
yt
x a(0, y, t)

This functional equation uniquely describes a(x, y, t).

All properties of a(x, y, t) must somehow follow from it.
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There are three possible reasons why this approach can fail:

• if the group is infinite

• if the right hand side adds up to 0

• if several terms on the left contain monomials with positive
exponents

What to do then? Try using computer algebra, as follows.
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( y
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y + xy
)
t
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︸ ︷︷ ︸
=0 for y=Y (x,t):=

x−
√

x(x−4t2(1+x2))

2t(1+x2)
=t+
(
x+ 1

x

)
t3+···

a(x, y, t) = 1− t
y a(x, 0, t)− yt

x a(0, y, t)

For this choice of Y (x, t) we find

0 = 1− t
Y (x,t)a(x, 0, t)− Y (x,t) t

x a(0, Y (x, t), t)a(x, 0, t) = Y (x,t)
t − xY (x, t)2 a(0, Y (x, t), t)

Setting x Y −1(x, t) in this equation and rearranging terms gives

a(0, x, t) = 1
txY −1(x,t)

− 1
Y −1(x,t)x2a(Y −1(x, t), 0, t)
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Now consider the following system of functional equations for two
unknown power series U(x, t), V (x, t):

U(x, t) = Y (x,t)
t − xY (x, t)2 V (Y (x, t), t)

V (x, t) = 1
txY −1(x,t)

− 1
Y −1(x,t)x2U(Y −1(x, t), t)
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− 1
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Observe:

• This system has a unique solution.

• By construction, the solution must be

U = a(x, 0, t) and V = a(0, x, t).
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− 1
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Now turn on the computer. . .

• generate lots of coefficients of a(x, 0, t), and a(0, x, t).

• guess a system of D-finite differential equations possibly
satisfied by these series.

• prove that the series solutions of the guessed D-finite system
solve the functional equations.
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• a(x, 0, t) and a(0, x, t) are D-finite.

• Because of

(
1−

( y
x + 1

y + xy
)
t
)
a(x, y, t) = 1− t

y a(x, 0, t)− yt
x a(0, y, t)a(x, y, t) =

1− t
y a(x, 0, t)− yt

x a(0, y, t)

1−
( y
x + 1

y + xy
)
t

it follows that also a(x, y, t) is D-finite.
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79 models in total

finite group?

23 56

kernel method? bad asymptotics?

19 + 3 1

computer proof

algebraic

D-finite

51 5

too many poles

not D-finite

not D-finite

yes no

yes no yes no

A posteriori observation:
D-finite generating function ⇐⇒ finite group.
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step set a(0, 0, t) a(1, 1, t) a(x, y, t)

D-finite D-finite D-finite

algebraic algebraic algebraic

algebraic algebraic algebraic

D-finite algebraic D-finite

D-finite D-finite D-finite
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• start at (0, 0, 0)

• make n steps (e.g., n = 7)

• end at (i, j, k) (e.g., (i, j, k) = (3, 4, 2))

• never step out of the first octant

• use only steps taken from a prescribed step set, e.g.,
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For a fixed step set, define the generating function a(x, y, z, t) in
the obvious way.

Question:

For which step sets is a(x, y, z, t) D-finite,
and for which step sets is it not D-finite?

How many step sets are there?

23
3−1 = 67108864

∈ or 6∈

|{−1, 0, 1}|
dim = 3

except (0, 0, 0)− 56034639 models in bijection to others

− 11038677 models with | · | > 6

35548 models to be investigated
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Consider the following three properties that a step set may have.

• The model has a finite group (defined like for 2D models).

• The model can be faithfully projected to a 2D model.

• The model can be faithfully decomposed into lower
dimensional models.
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Models are in bijection! Not a valid bijection!
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reducible to 2D

decomposable

finite group

3 4 5 6 Σ

T T T 8 47 110 175 340
T T F 46 437 1864 4821 7168
T F T 0 0 0 0 0
T F F 18 275 1599 5344 7236


look at the
527 resulting
2D models. . .

F T T 0 18 47 82 147

D-finite!

F T F 0 9 125 411 545

not D-finite?

F F T 0 8 0 15 23

not so clear. . .

F F F 1 185 2680 17223 20089

not D-finite?

Σ 73 979 6425 28071 35548
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527 models in total

finite group?

118 409

guessing

not D-finite?

orbit sum 6= 0?

95 23

kernel method? ad hoc arguments?

22 1

computer proof

algebraic

algebraic

94 1

D-finite computer proof

D-finite

yes no (?)

yes no

yes noyes no
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There are 23 models in 3D which are not reducible to 2D, which
are not decomposable, and which have a finite group. For 4 of
them, the orbit sum is nonzero and the kernel method implies that
they are D-Finite.

The remaining 19 models are mysterious. Even on a
super-computer we were not able to find any evidence for possible
differential equations. Can it be that they are not D-finite?

This would imply that the equivalence between D-finiteness and a
finite group does not carry over to walks in three dimensions.
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