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Abstract

We show that the number of digits in the integers of a creative telescoping relation of expected
minimal order for a bivariate proper hypergeometric term has essentially cubic growth with
the problem size. For telescopers of higher order but lower degree we obtain a quintic bound.
Experiments suggest that these bounds are tight. As applications of our results, we give an
improved bound on the maximal possible integer root of the leading coefficient of a telescoper,
and the first discussion of the bit complexity of creative telescoping.
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1. Introduction

Creative telescoping is a backbone of symbolic summation. It permits the construction
of recurrence equations for definite sums. In its classical version, it is applied to sums
whose summands are hypergeometric terms. This situation was intensively studied during
the 1990s (see Petkovšek et al. (1997) and the references given there for an overview on
the classical results). While during the first decade of this century most research in the
area focussed on generalizing creative telescoping to sums whose summands are more
complicated (see, for instance, the survey articles of Koutschan (2013) and Schneider
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(2013) and the references given there), the hypergeometric case is recently getting back
into the focus. There is now a general interest in getting a better understanding of the
sizes of the output of summation algorithms, and of the amount of time spent on the
computation. First complexity estimates for summation (and integration) algorithms
were given by Takayama (1995) and Gerhard (2004). More recent works include the
articles by Bostan et al. (2010) and Chen and Kauers (2012a,b). In the present paper, we
continue these investigations. We work out bounds for the length of the integers that may
appear in the output of creative telescoping algorithms, complementing earlier results
given for the order and the degree of creative telescoping relations. As corollaries of our
bounds, we obtain a new bound on the maximal integer root of the leading coefficient as
well as a first bound on the bit complexity of creative telescoping.

Throughout this article, we consider a proper hypergeometric term

h = p xnyk
M∏
m=1

Γ(amn+ a′mk + a′′m)Γ(bmn− b′mk + b′′m)

Γ(umn+ u′mk + u′′m)Γ(vmn− v′mk + v′′m)
, (1)

where p ∈ Z[n, k], M ∈ N is fixed, x, y, am, a′m, a′′m, bm, b′m, b′′m, um, u′m, u′′m, vm,
v′m, v′′m are fixed nonnegative integers, and n and k are variables. To avoid discussion of
degenerate cases, we assume throughout that h is not a rational function. The assumption
that there are exactly M Gamma-terms for each of the four types is without loss of
generality, because we can always add further terms Γ(0n+ 0k+ 1) without changing h.

A creative telescoping relation for h is a pair (L,C), where L = `0 +`1Sn+· · ·+`rSrn ∈
Z[n][Sn]\{0} is a nonzero recurrence operator in n, free of k, and C ∈ Q(n, k) a bivariate
rational function in n and k (which may well be zero), with the property

L(h) = (Sk − 1)(Ch).

The symbols Sn and Sk refer to the usual shift operators n ; n + 1, k ; k + 1,
respectively. The operator L is called a telescoper for h, and C is called a certificate
for L and h. Note that with h non-rational, and C nonzero, Ch is also non-rational, in
particular, not constant. Therefore, (Sk − 1)(Ch) is nonzero. From the equality above,
we thus have L(h) nonzero, or specifically, L nonzero. In short, when h is non-rational,
we can be sure that every nontrivial pair (L,C) must have a nontrivial L.

If h has finite support, i.e., for every n ∈ N there are only finitely many k with h(n, k) 6=
0, and if Ch is well-defined for all n, k, then a telescoper L annihilates the definite
hypergeometric sum H(n) :=

∑
k h(n, k). If not, a creative telescoping relation still gives

rise to an inhomogeneous recurrence for finite definite sums such as
∑n
k=0 h(n, k) or∑2n

k=n h(n, k). See Petkovšek et al. (1997) for details.
The classical Zeilberger algorithm (Zeilberger, 1990, 1991; Petkovšek et al., 1997)

finds a creative telescoping relation for any given proper hypergeometric term h. This
algorithm is based on Gosper’s algorithm (Gosper, 1978) for indefinite hypergeometric
summation and delivers a creative telescoping relation (L,C) for which the order r of
L is minimal. An alternative algorithm proposed by Apagodu and Zeilberger (2005)
does not use Gosper’s algorithm during the computation but only in its correctness
proof. This algorithm also finds creative telescoping relations for proper hypergeometric
terms, but unlike Zeilberger’s original algorithm there is no guarantee that the telescoper
has minimal possible order. The key observation behind the algorithm of Apagodu and
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Zeilberger is that L = `0 + `1Sn + · · · + `rS
r
n ∈ Q[n][Sn] is a telescoper for h if there

exists some polynomial Y ∈ Q[n, k] with the property

`0P0 + · · ·+ `rPr = QSk(Y )−RY, (2)

where

Pi = xiSin(p)

M∏
m=1

(
(amn+ a′mk + a′′m)iam(bmn− b′mk + b′′m)ibm

× (umn+ u′mk + u′′m + ium)(r−i)um(vmn− v′mk + v′′m + ivm)(r−i)vm
)

(i = 0, . . . , r),

Q = y

M∏
m=1

(amn+ a′mk + a′′m)a
′
m(vmn− v′mk + v′′m + rvm − v′m)v

′
m ,

R =

M∏
m=1

(umn+ u′mk + u′′m + rum − u′m)u
′
m(bmn− b′mk + b′′m)b

′
m .

Here and below we write xm := x(x+1) · · · (x+m−1) and xm := x(x−1) · · · (x−m+1)
to denote the rising and falling factorial, respectively. A certificate is then given by

C =
Y

p

M∏
m=1

(bmn− b′mk + b′′m)b
′
m

(umn+ u′mk + u′′m)rum−u′
m(vmn− v′mk + v′′m)rvm

,

so that

Ch = Y xnyk
M∏
m=1

Γ(amn+ a′mk + a′′m)Γ(bmn− b′mk + b′′m + b′m)

Γ(umn+ u′mk + u′′m + rum)Γ(vmn− v′mk + v′′m + rvm)
. (3)

These results are due to Apagodu and Zeilberger (2005). For a justification of the
formulas, see either their article, or, with the notation we are using here, the paper
by Chen and Kauers (2012a). The following definition contains certain quantities in
terms of which bounds on the size of the telescoper of h can be formulated.

Definition 1. For a proper hypergeometric term h as above, define

ν = max
{ M∑
m=1

(a′m + v′m),

M∑
m=1

(u′m + b′m)
}
, δ = deg(p),

ϑ = max
{ M∑
m=1

(am + bm),

M∑
m=1

(um + vm)
}
, λ =

M∑
m=1

(um + vm),

µ =

M∑
m=1

(am + bm − um − vm).

Furthermore, we let

Ω :=
M

max
m=1

max{|am|, |a′m|, |a′′m|, |bm|, |b′m|, |b′′m|, |um|, |u′m|, |u′′m|, |vm|, |v′m|, |v′′m|}

be a bound on the integers appearing in the arguments of the Γ terms of h.
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Apagodu and Zeilberger show that h admits a telescoper of order r for every r ≥ ν, or

in other words, that if r is the order of the minimal telescoper, then r ≤ ν. Generically

this bound is tight. Chen and Kauers (2012a) supplement this result with information

about the degrees of the coefficients of the telescoper. They show that for every r ≥ ν

and every d satisfying

d >
(ϑν − 1)r + 1

2ν(2δ + |µ|+ 3− (1 + |µ|)ν)− 1

r − ν + 1
,

there exists a telescoper L = `0 + · · · + `rS
r
n with maxri=0 |`i| ≤ d. The purpose of the

present article is to refine the analysis one step further by giving bounds on the length

of the integers appearing in the coefficients `i of a telescoper L of h. In Theorem 7 in

Section 4, we show that hypergeometric terms h have a telescoper of order r = ν whose

integer coefficients have no more than O(Ω3 log(Ω)) digits. In Theorem 10 in Section 4,

we show furthermore that there are telescopers of order r = O(Ω) and degree d = O(Ω2)

whose integer coefficients have no more than O(Ω5 log(Ω)) digits. For both estimates, we

provide experimental data that indicate that our bounds are sharp.

2. Bounding Tools

In order to bound the integers arising in the coefficients of a telescoper, we need to

know by how much the size of the integers can grow during the various steps of the

computation. In particular, we need to know how adding, multiplying, and shifting of

polynomials may affect the length of their coefficients, and how long the integer co-

efficients can become in the solution of a system of linear equations with polynomial

coefficients. In this section we provide a collection of results in this direction.

The coefficient length of a polynomial depends on the basis with respect to which

the polynomial is expressed. We are mostly interested in the coefficient length with

respect to the standard monomial basis 1, x, x2, x3, . . . , but we will also have occasion to

use alternative bases. In the following definition we introduce the notational distinction

which will be used below.

Definition 2. (1) For p =
∑d
i=0 pin

i ∈ Q[n], we call |p| := |p|s := maxdi=0 |pi| the

(standard) height or the (standard) norm of p.

(2) For p =
∑d
i=0 pi

(
n
i

)
∈ Q[n], we call |p|b := maxdi=0 |pi| the binomial height or the

binomial norm of p.

(3) For p =
∑d
i=0

∑e
j=0 pi,jn

ikj ∈ Q[n, k], we define ‖p‖s,s := maxdi=0 maxej=0 |pi,j |.
(4) For p =

∑d
i=0

∑e
j=0 pi,jn

i
(
k
j

)
∈ Q[n, k], we define ‖p‖s,b := maxdi=0 maxej=0 |pi,j |.

Note that | · |s, | · |b, ‖ · ‖s,s, and ‖ · ‖s,b are indeed norms, i.e., they satisfy absolute

scalability, triangle inequality, and they are zero only when the argument is zero. The

following lemmas give bounds for shifted polynomials, for products of polynomials, and,

to begin with, a connection between the standard norm and the binomial norm.

Lemma 3 (Conversion). For all p ∈ Q[n, k], we have ‖p‖s,b ≤ degk(p)!2 ‖p‖s,s.
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Proof. Recall from Equation (6.10) on page 262 of Graham et al. (1994):

km =
∑
i≥0

S2(m, i)ki =
∑
i≥0

S2(m, i)i!
ki

i!
=
∑
i≥0

S2(m, i)i!

(
k

i

)
,

where S2(m, i) is the Stirling number of the second kind. Write p = p0 + p1k+ · · ·+ pdk
d

with p0, . . . , pd ∈ Q[n]. Then

p =

d∑
j=0

pjk
j =

d∑
j=0

(
pj

j∑
i=0

S2(j, i)i!

(
k

i

))
=

d∑
i=0

( d∑
j=i

pjS2(j, i)i!

)(
k

i

)
.

Thus, for the binomial height of p, we find

‖p‖s,b =
d

max
i=0

∣∣∣∣∣∣
d∑
j=i

pjS2(j, i)i!

∣∣∣∣∣∣ ≤ d
max
i=0

d∑
j=i

|pj |S2(j, i)i! ≤ d
max
i=0

d∑
j=i

‖p‖s,sS2(j, i)d!

≤ ‖p‖s,s d!

d∑
j=0

S2(d, i) ≤ ‖p‖s,s d! Bd ≤ ‖p‖s,s d!2,

where Bd denotes the dth Bell number. 2

Lemma 4 (Shift). For q ∈ Q[n, k] and r ∈ N, we have ‖Srn(q)‖s,s ≤ (1 + r)degn(q)‖q‖s,s
and ‖Srn(q)‖s,b ≤ (1 + r)degn(q)‖q‖s,b.

Proof. For ‖ · ‖s,s, this is Lemma 3.4 of Yen (1996). It then also holds for | · |s and

polynomials in Q[n] ⊆ Q[n, k]. If finally q =
∑d
i=0 qi

(
k
i

)
∈ Q[n, k] for certain qi ∈ Q[n],

then ‖Srn(q)‖s,b = maxdi=0 |Srn(qi)|s ≤ (1 + r)d maxdi=0 |qi|s = (1 + r)d‖q‖s,b, so it also
holds for the norm ‖ · ‖s,b. 2

Lemma 5 (Product). (1) For p1, . . . , pm ∈ Q[n], we have∣∣∣∣ m∏
i=1

pi

∣∣∣∣≤ ( m
max
i=1

deg(pi) + 1
)m−1

m∏
i=1

|pi|.

(2) Let p1, p2, . . . , pm ∈ Q[n, k] be polynomials of total degree 1, and M ∈ N be such
that ‖pi‖s,s ≤M for i = 1 . . . ,m. Then for every q ∈ Q[n, k], we have

‖p1p2 · · · pmq‖s,b ≤ (2M)m(degk(q) + 2)m‖q‖s,b.

Proof. (1) It suffices to prove the case m = 2. The general case then follows imme-
diately by induction. To show the case m = 2, consider two polynomials p =∑d
i=0 pin

i and q =
∑e
i=0 qin

i. The coefficient of nj in pq is
∑d+e
i=0 piqj−i, where we

understand coefficients as being zero if their index is out of range. For every j, the
sum can have at most min{deg(p),deg(q)}+ 1 nonzero terms, and as each term is
bounded by |piqj−i| ≤ |p| |q|, the claim follows.

(2) It suffices to prove the case m = 1. The general case then follows immediately by

induction on m. Consider p = a+ bk+ cn ∈ Q[n, k] and write q =
∑d
i=0 qi

(
k
i

)
with

q0, . . . , qd ∈ Q[n]. Observe that

(uk + v)

(
k

i

)
= (ui+ v)

(
k

i

)
+ u(i+ 1)

(
k

i+ 1

)
.
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Therefore

pq = (an+ bk + c)

d∑
i=0

qi

(
k

i

)

=

d∑
i=0

(
bqik + (an+ c)qi

)(k
i

)

=

d∑
i=0

(an+ bi+ c)qi

(
k

i

)
+ b(i+ 1)qi

(
k

i+ 1

)

=

d+1∑
i=0

(
(an+ bi+ c)qi + biqi−1

)(k
i

)
.

Because of

|(an+ bi+ c)qi + biqi−1| ≤ 2(i+ 1)M max{|qi|, |qi−1|},

and |qi| ≤ ‖q‖s,b for all i, it follows that

‖p q‖s,b ≤
d+1
max
i=0

2(i+ 1)M max{|qi|, |qi−1|} ≤ 2 (d+ 2)M ‖q‖s,b

as claimed.
2

Finally, we need a bound on the length of the integers which may appear in the basis
vectors of the nullspace of a matrix with univariate polynomial entries. The result below
takes into account that the columns of the matrix may be split into two groups for which
different bounds on the degrees and heights are known. Although matrices and vectors
all have coefficients in Z[x], all linear algebra notions (rank, kernel, linear independence,
etc.) are understood with respect to the ground field Q(x).

Lemma 6. Let A = (A0, A1) ∈ Z[x]n×(m0+m1) be a matrix of rank ρ. For i = 0, 1, let di
and Mi be bounds on the degrees and standard heights of the entries of Ai ∈ Z[x]n×mi .
Assume that A0 has full rank. Then kerA has a basis of vectors from Z[x]m0+m1 that
are bounded in degree by (m0 − 1)d0 + (ρ−m0)d1 + max{d0, d1} and in height by

ρ!(max{d0, d1}+ 1)ρ−1Mm0−1
0 Mρ−m0

1 max{M0,M1}.

Proof. By selecting a maximal linearly independent set of rows from A, we may assume
without loss of generality that n = ρ. Furthermore, because A0 has full rank, we have
ρ ≥ m0, and by exchanging columns within A1 if necessary, we may assume that A1 =
(W,V ) where W ∈ Z[x]ρ×(ρ−m0), V ∈ Z[x]ρ×(m1−(ρ−m0)) and U := (A0,W ) ∈ Z[x]ρ×ρ

has full rank.
A basis of kerA is given by the vectors (vi,−ei) ∈ Q(x)ρ+(m0+m1−ρ) where ei ∈

Q(x)m0+m1−ρ is the ith unit vector and vi ∈ Q(x)ρ is the unique solution of the inho-
mogeneous linear system Uvi = V ei. The right hand side is of course just the ith column
of V . According to Cramer’s rule, the jth component of vi is given by detU ′

detU where U ′ is
the matrix obtained from U by replacing its jth column by the ith column of V . Mul-
tiplying all the basis vectors by detU gives a basis of polynomial entries with integer
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coefficients. By Lemma 5.(1), and from the definition of the determinant,

det((ai,j))
n
i,j=1 =

∑
π∈Sn

sgn(π)

n∏
i=1

ai,π(i),

the heights of the determinants detU ′ corresponding to columns j ≤ m0 are bounded
by ρ!(max{d0, d1}+ 1)ρ−1Mm0−1

0 Mρ−m0+1
1 ; and by ρ!(max{d0, d1}+ 1)ρ−1Mm0

0 Mρ−m0

1

for j > m0. Combining both cases gives the claimed bound. The degree estimate follows
from the defining formula for the determinant by the same reasoning. 2

3. Bounds for P0, . . . , Pr, Q, and R

In Sections 4 and 5 we will obtain our bounds on the height of the telescoper by
making an ansatz for `0, . . . , `r and the coefficients of the polynomial Y in equation (2),
comparing coefficients, and applying Lemma 6 to the linear system obtained from com-
paring coefficients in (2). For doing so, we need to determine the heights and degrees of
the polynomials in this equation.

For the degrees, we have deg(Pi) ≤ δ+rϑ and deg(Q),deg(R) ≤ ν by Lemmas 2 and 4
of Chen and Kauers (2012a), where deg refers to the total degree.

For the heights, we apply the lemmas of the previous section. Noting that the products
over the rising factorials consist of linear factors all of which have heights bounded by
(r + 2)Ω− 1, it follows that

‖Pi‖s,b ≤ (2(r + 2)Ω− 2)rλ+iµ(δ + 2)rλ+iµ‖xiSin(p)‖s,b by Lemma 5.(2)

≤ (2(r + 2)Ω− 2)ϑr(δ + 2)ϑr‖xiSin(p)‖s,b because rλ+ iµ ≤ ϑr
≤ |x|i(δ + ϑr + 1)!(2(r + 2)Ω− 2)ϑr(1 + i)degn(p)‖p‖s,b by Lemma 4

≤ ‖p‖s,sδ!2(1 + r)δ|x|r(δ + ϑr + 1)!(2(r + 2)Ω− 2)ϑr by Lemma 3

for every i = 0, . . . , r. Note that the right hand side does not depend on i but only on r
and quantities that are determined by the hypergeometric term h.

For Yj =
(
k
j

)
, we have Sk(Yj) =

(
k+1
j

)
=
(
k
j

)
+
(
k
j+1

)
; therefore, ‖Sk(Yj)‖s,b = ‖Yj‖s,b =

1. Hence, since also the linear factors in the rising factorials in Q and R are all bounded
in height by (r + 2)Ω− 1, we obtain, again by using Lemma 5.(2),

‖QSk(Yj)‖s,b ≤ |y|(2(r + 2)Ω− 2)
∑M

m=1
(a′m+v′m)(j + 2)

∑M

m=1
(a′m+v′m)‖Sk(Yj)‖s,b

≤ |y|(j + ν + 1)ν(2(r + 2)Ω− 2)ν ,

and likewise
‖RYj‖s,b ≤ (j + ν + 1)ν(2(r + 2)Ω− 2)ν

for every j ∈ N.

4. The minimal telescoper

Choose r = ν and s = δ + (ϑ− 1)ν, and make an ansatz

Y = y0 + y1

(
k

1

)
+ · · ·+ ys

(
k

s

)
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with undetermined coefficients y0, . . . , ys. Then, comparing like coefficients of
(
k
j

)
in the

equation
`0P0 + · · ·+ `rPr = QSk(Y )−RY

leads to a system of homogeneous linear equations with (r + 1) + (s + 1) = δ + ϑν + 2
variables `0, . . . , `r, y0, . . . , ys and no more than

max
{

1 +
r

max
i=0

degk(Pi), 1 + degk(Q) + s, 1 + degk(R) + s
}
≤ δ + ϑν + 1

equations. This system obviously has a nontrivial solution.
The matrix A ∈ Z[n](δ+ϑν+1)×(δ+ϑν+2) encoding this system has the form A =

(AL, AC) where AL ∈ Z[n](δ+ϑν+1)×(ν+1) consists of the columns corresponding to the
variables `j in the telescoper part, and AC ∈ Z[n](δ+ϑν+1)×(δ+(ϑ−1)ν+1) consists of the
columns corresponding to the variables yj in the certificate part. More precisely, the en-

try of AL in row i and column j is the coefficient of
(
k
i−1

)
in Pj−1 (i = 1, . . . , δ+ ϑν + 1;

j = 1, . . . , ν + 1), and the entry of AC in row i and column j is the coefficient of
(
k
i−1

)
in

QSk(
(
k
j−1

)
)−R

(
k
j−1

)
(i = 1, . . . , δ + ϑν + 1; j = 1, . . . , δ + (ϑ− 1)ν + 1).

By the results of the previous section, the entries of AL have degree at most δ + ϑν
and height at most ‖p‖s,sδ!2(ν+ 1)δ|x|ν(δ+ϑν+ 1)!(2(ν+ 2)Ω− 2)ϑν , and the entries of
AC have degree at most δ+ϑν and height at most (|y|+ 1)(δ+ϑν+ 1)ν(2(ν+ 2)Ω−2)ν .

We want to determine the height of the polynomials in the solution vectors of A.
There are two cases to distinguish. If AL has full rank, then we can apply Lemma 6 with
A0 = AL, A1 = AC , ρ ≤ n = δ + ϑν + 1, m0 = ν + 1, m1 = δ + (ϑ− 1)ν + 1. It implies
the existence of a solution (`0, . . . , `ν , y0, . . . , yδ+(ϑ−1)ν) ∈ Z[n](ν+1)+(δ+(ϑ−1)ν+1) with

|`i| ≤ (δ + ϑν + 1)!(max{δ + ϑν, δ + ϑν}+ 1)δ+ϑν

×
(
‖p‖s,sδ!2(ν + 1)δ|x|ν(δ + ϑν + 1)!(2(ν + 2)Ω− 2)ϑν

)ν
×
(

(|y|+ 1)(δ + ϑν + 1)ν(2(ν + 2)Ω− 2)ν
)δ+ϑν+1−ν

×max
{
‖p‖s,sδ!2(ν + 1)δ|x|ν(δ + ϑν + 1)!(2(ν + 2)Ω− 2)ϑν ,

(|y|+ 1)(δ + ϑν + 1)ν(2(ν + 2)Ω− 2)ν
}

≤ ((δ + ϑν + 1)!)2(δ + ϑν + 1)δ+ϑν

×
(
‖p‖s,sδ!2(ν + 1)δ|x|ν(δ + ϑν + 1)!(2(ν + 2)Ω− 2)ϑν

)ν
×
(

(|y|+ 1) (δ + ϑν + 1)ν(2(ν + 2)Ω− 2)ν
)δ+(ϑ−1)ν+1

× ‖p‖s,sδ!2(ν + 1)δ(δ + ϑν + 1)ν(2(ν + 2)Ω− 2)ϑν max
{
|x|ν , |y|+ 1

}
≤ max

{
|x|ν , |y|+ 1

}
‖p‖ν+1

s,s (δ + ϑν + 1)!ν+2(ν + 1)δ(ν+1)(|y|+ 1)δ+(ϑ−1)ν+1

× δ!2(ν+1)|x|ν
2

(δ + ϑν + 1)δ+(ϑ+δ+2)ν+(ϑ−1)ν2

(2(ν + 2)Ω− 2)(δ+ϑ+1)ν+(2ϑ−1)ν2

for i = 0, . . . , ν.
If AL does not have full rank, then it has itself a nonempty kernel. In this case, if

(`0, . . . , `ν) is a nontrivial kernel element of AL, then (`0, . . . , `ν , 0, . . . , 0) is a nontrivial
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kernel element of A = (AL, AC). Therefore, in this case it suffices to estimate the height
of the polynomial entries in the kernel of AL. To this end, we use again Lemma 6, this
time taking A0 to be some nonzero column (w.l.o.g. the first), A1 the remaining columns,
n = δ + ϑν + 1, m0 = 1, m1 = ν, ρ ≤ ν − 1. Using for both A0 and A1 the degree and
height estimates stated above for AL, we get the bound

|`i| ≤ (ν − 1)!(δ + ϑν + 1)ν−2
(
‖p‖s,sδ!2(ν + 1)δ|x|ν(δ + ϑν + 1)!(2(ν + 2)Ω− 2)ϑν

)ν−1

for i = 0, . . . , r. As this is always less than or equal to the bound obtained before for
the case when AL has full rank, we have completed the proof of the following theorem.
Recall from the remarks made in the introduction that the assumption of a non-rational
h excludes the degenerate case that the telescoper may be zero.

Theorem 7. Let h be a non-rational proper hypergeometric term as in (1), and let
δ, ϑ, ν,Ω be as in Definition 1. Then there exists a telescoper for h of order r = ν whose
polynomial coefficients are bounded in height by

max
{
|x|ν , |y|+ 1

}
‖p‖ν+1

s,s (δ + ϑν + 1)!ν+1(ν + 1)δ(ν+1)(|y|+ 1)δ+(ϑ−1)ν+1

× δ!2(ν+1)|x|ν
2

(δ + ϑν + 1)δ+(ϑ+δ+2)ν+(ϑ−1)ν2

(2(ν + 2)Ω− 2)(δ+ϑ+1)ν+(2ϑ−1)ν2

.

Remarks 8. (1) In general, a hypergeometric term h does not have any telescoper
of order smaller than ν, so the theorem makes a statement about the integers
appearing in the minimal order telescoper of a “generic” hypergeometric term h. For
hypergeometric terms which do possess a smaller telescoper, the theorem remains
true as it stands, but does not say anything about the size of the integers in the
minimal telescoper.

(2) Lemma 6 also yields the degree bound (δ+νϑ)(δ+νϑ+1) = O(Ω4), which is worse
than the degree bound O(Ω3) given by Chen and Kauers (2012a). In the generic
case, when the minimal telescoper order is ν, the solution space of the linear system
discussed above has dimension 1, so that at least in this case there is a telescoper
of degree O(Ω3) and height as stated above. We do not know if this also applies to
the degenerate case.

(3) Considering ‖p‖s,s, δ, |x|, |y|, and M as fixed, and noting that ν and ϑ are bounded

by 2MΩ, the bound of Theorem 7 is equal to e64(MΩ)3 log(Ω)+O(Ω3) as Ω tends to
infinity. Combined with the degree bound O(Ω3) (when ν is minimal) or O(Ω4)
(when it’s not), it follows that there is a telescoper of order r = ν = O(Ω) of bit
size O(Ω7 log(Ω)) or O(Ω8 log(Ω)), respectively.

(4) The choice of the binomial basis in the ansatz for Y is motivated by the fact that
with respect to this basis the shift does not increase the norm. In the standard basis
we have Sk(kj) = (k + 1)j =

∑
i

(
j
i

)
ki, whose standard norm is

(
j
bj/2c

)
≤ 2j . Using

this (almost tight) bound in the argument above leads to a suboptimal bound of

the form eO(Ω4 log(Ω)). Of course, the choice of the basis with respect to k used in
the ansatz for Y does not have any effect on the output telescoper L, which is free
of k by construction.

We conclude the section by a family of hypergeometric terms which gives evidence
that the bound of Theorem 7 seems to be asymptotically accurate.
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Example 9. For Ω = 1, 2, 3, . . . consider the proper hypergeometric term hΩ = Γ(Ωk)
Γ(Ωn−k) .

We have computed the minimal telescoper LΩ of hΩ for Ω = 1, . . . , 23 and determined the
length of the integers appearing in them. Let HΩ be the logarithm of the maximum over
the absolute values of all integers appearing in LΩ. In Figure 1, we plot the normalized
values HΩ

Ω3 (bullets, ) against the following least square fits, testing the four hypotheses
HΩ = Θ(Ω3 log(Ω)), Θ(Ω3), Θ(Ω2 log(Ω)), or Θ(Ω2), respectively:

(1) log(Ω)
(

1.43 +
3.30

Ω
− 1.66

Ω2

)
(solid line, )

(2) 1
(

5.06− 9.22

Ω
+

4.23

Ω2

)
(densely dashed, )

(3)
log(Ω)

Ω

(
34.8− 167

Ω
+

221

Ω2

)
(loosely dashed, )

(4)
1

Ω

(
58.9− 182

Ω
+

123

Ω2

)
(dotted, )

The best fit is given by the first hypothesis, suggesting that the bound proven above is
asymptotically accurate.

Ω

HΩ/Ω3

5 10 15 20

1

2

3

4

5
Θ(Ω3 log(Ω))

Θ(Ω3)

Θ(Ω2 log(Ω))

Θ(Ω2)

Fig. 1. Heights of minimal telescopers

The corresponding comparison for the total bit size of the telescopers suggests that
the bound Θ(Ω7 log(Ω)) is right. As the figure for this case looks very similar to the figure
above, we do not reproduce it here.

5. Nonminimal telescopers

As shown by Chen and Kauers (2012a), telescopers of order r > ν may have much
smaller degrees than the (generically) minimal telescoper of order r = ν. More precisely,
the arithmetic size, i.e., the number of monomials niSjn with a nonzero coefficient ap-
pearing in a telescoper, which is bounded by (r+ 1)(d+ 1), is asymptotically smaller by
one order of magnitude when r = αν for any fixed constant α > 1. It is therefore also

10



interesting to bound the length of the integers appearing in telescopers of nonminimal
order.

In this section, we derive such a bound. Following Chen and Kauers (2012a), we pro-
ceed by analyzing the linear system of equations obtained from the parameterized Gosper
equation (2) by comparing coefficients with respect to both n and k. The corresponding
matrix is much larger but its entries are integers instead of integer polynomials.

As the resulting bound turns out to be much larger than the bound obtained in the
previous section for the height of the telescoper of order ν, we confine ourselves to giving
only an asymptotic estimate rather than an exact formula. This makes the expressions
in the calculations a little simpler.

Choose r = 2ν = O(Ω), s = δ + rϑ− ν, d = 4νϑ = O(Ω2), and make an ansatz

L =

r∑
j=0

d∑
i=0

`i,jn
iSjn, Y =

s+d∑
j=0

s∑
i=0

yi,jn
i

(
k

j

)
,

with undetermined coefficients `i,j and yi,j . Then, comparing like coefficients of ni
(
k
j

)
in

the equation
r∑
j=0

d∑
i=0

`i,jn
iPj = QSk(Y )−RY

leads to a system of homogeneous linear equations with

(r + 1)(d+ 1) + (s+ d+ 1)(s+ 1) = 12ν2ϑ2 + (12 + 8δ)νϑ+ ν2 + O(Ω) = O(Ω4)

variables `i,j and yi,j and no more than

max
{

(δ + rϑ+ d+ 1)(δ + rϑ+ 1), (ν + s+ d+ 1)(ν + s+ 1)
}

= (δ + rϑ+ d+ 1)(δ + rϑ+ 1) = 12ν2ϑ2 + (8 + 8δ)νϑ+ O(1) = O(Ω4)

equations. As 12 > 8, this system has a nontrivial solution if νϑ→∞, as Ω→∞.
Let A = (AL, AC) be the matrix encoding this linear system, with AL the submatrix

consisting of the columns corresponding to the variables `i,j and AC the part consisting
of the columns corresponding to the variables yi,j , respectively. As the coefficients of Pi,
Q, or R do not change when these polynomials are multiplied by some term nj (only the
exponents change), we can use the same bounds for the heights of the matrix entries as
before. Hence AL is an integer matrix with (r + 1)(d + 1) = O(Ω3) columns and O(Ω4)

rows whose entries are bounded in absolute value by eO(Ω2 log(Ω)), and AC is an integer
matrix with O(Ω4) rows and columns whose entries are bounded in absolute value by
eO(Ω log(Ω)).

If AL happens to have full rank, we can apply Lemma 6 to A, interpreting its entries
as integer polynomials of degree zero. It follows that the solution space has a basis whose
components are bounded by

O(Ω4)!(eO(Ω2 log(Ω)))O(Ω3)(eO(Ω log(Ω)))O(Ω4) = eO(Ω5 log(Ω)) .

If AL does not have full rank, then, as before, any nontrivial solution of AL gives rise to
a nontrivial solution of A by padding the solution vectors with zeros. Applying Lemma 6
to an arbitrary decomposition of AL into a block of full rank and the rest gives the bound

O(Ω3)!(eO(Ω2 log(Ω)))O(Ω3) = eO(Ω5 log(Ω))

11



for the size of the integers in a basis of the solution space of AL. We have thus completed
the proof of the following theorem.

Theorem 10. For every Ω ∈ N, let hΩ be a proper hypergeometric term as in (1) for
which the integer coefficients appearing in the Γ terms are bounded in absolute value
by Ω, for which p, x and y are fixed, and for which νϑ → ∞ as Ω → ∞. Then, as Ω
approaches infinity, each term hΩ admits a telescoper LΩ of order O(Ω) and polynomial

degree O(Ω2) with integer coefficients bounded in absolute value by eO(Ω5 log(Ω)).

There is nothing special about the choice r = 2ν in the above derivation. The argument
works more generally for any choice r = αν where α > 1 is a constant (assumed to remain

fixed as Ω grows). Choosing d = 1+2α
α−1 νϑ also leads to the bound eO(Ω5 log(Ω)).

For the (generically) minimal order r = ν, the approach of this section only delivers

the height bound eO(Ω6 log(Ω)) for a telescoper of degree O(Ω3), which is much worse

than the height bound eO(Ω3 log(Ω)) obtained in Theorem 7 for a telescoper of degree at
most O(Ω4).

To conclude the section, we again compare the theoretical bound with the actual
heights found on a particular example.

Example 11. For Ω = 1, 2, 3, . . . consider the same proper hypergeometric term hΩ =
Γ(Ωk)

Γ(Ωn−k) as in Example 9. From the minimal telescopers LΩ of order ν = Ω + 1, we

constructed nonminimal telescopers of order 2Ω of small degree and height.
For each LΩ, we computed many terms of a randomly chosen sequence solution, and

used these to construct a candidate operator MΩ of order 2Ω and minimal degree by
guessing. Checking that the MΩ are left-multiples of the LΩ proves that they are indeed
telescopers. Unlike the minimal order operators LΩ, the minimal degree operators of
order 2Ω are typically not unique but form a vector space over Q of dimension greater
than 1. For example, for Ω = 6, the telescopers of order 12 and degree 53 form a vector
space of dimension 3 and there are no telescopers of order 12 and degree 52 or less.
Using lattice reduction (von zur Gathen and Gerhard, 1999; Nguyen and Vallée, 2010),
we determined an element of these vector spaces with small (but not necessarily smallest
possible) integer coefficients. Let HΩ be the logarithm of the maximum of the absolute
values of the coefficients of the vector computed in this way.

In Figure 2, we plot the values of HΩ

Ω5 (bullets, ) against the least square fits

(1) log(Ω)
(

0.269 +
0.599

Ω

)
(solid, )

(2)
log(Ω)

Ω

(
2.73− 3.39

Ω

)
(dashed, )

for comparing the hypotheses HΩ = Θ(Ω5 log(Ω)) or HΩ = Θ(Ω4 log(Ω)). Unfortu-
nately, because of the high computational cost of computing HΩ, we were not able to
produce more data points. However, despite being less convincing than the test in the
previous example, also here the solid curve seems to catch the trend better than the
dashed curve, suggesting that the (quasi-)quintic bound can probably not be improved
to a (quasi-)quartic bound in general. It also seems that the resulting bit size estimate
O(Ω8 log(Ω)) is reasonably tight.
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Ω

HΩ/Ω5

2 4 6 8

0.2

0.4

0.6

0.8
Θ(Ω5 log(Ω))

Θ(Ω4 log(Ω))

Fig. 2. Heights of nonminimal telescopers

6. Consequences

Theorems 7 and 10 are primarily interesting for two reasons. First, they give rise
to a significant improvement of Yen’s “two-line algorithm” for proving hypergeometric
summation identities (Yen, 1993, 1996), and second, they imply a bound on the bit
complexity of creative telescoping. No such bound was known before.

The two-line algorithm rests on the following observations.

Proposition 12 (Yen 1993, 1996). Let L ∈ Z[n][Sn] be an operator of order r and
degree d, and let `r ∈ Z[n] \ {0} be the coefficient of Srn in L.

(1) Suppose there is a sequence (an)∞n=0 which is annihilated by L and contains a
run of at least r + d + 1 consecutive 1’s (i.e., there exists an index n0 ∈ N with
an0

= an0+1 = · · · = an0+r+d+1 = 1). Then L also annihilates 1.
(2) Let (an)∞n=0 and (bn)∞n=0 be sequences which are annihilated by L. If an = bn for

all n ≤ r+ n0, where n0 is the greatest nonnegative integer root of `r (or n0 = 0 if
`r has no nonnegative integer roots). Then an = bn for all n ∈ N.

(3) If n0 is an integer root of `r, then n0 ≤ |`r|.

In view of these facts, in order to prove a hypergeometric summation identity∑
k

h(n, k) = 1,

for a given proper hypergeometric term h(n, k) which has finite support and no singu-
larities in N× Z, and for which also the term in (3) has no singularity for any r ∈ N, it
suffices to proceed as follows:

(1) Determine bounds on the order r, the degree d, and the height H, of some telescoper
of the summand h.

(2) Check the identity for n = 0, . . . , r + H. It holds for all n ∈ N iff it holds for all
these points.

For step 1, Yen gives an explicit formula for a bound with asymptotic growth eO(Ω6 log(Ω))

(Ω → ∞). Our bound from Theorem 7 is significantly better, albeit still exponential.
Although, as illustrated in Example 9, our bound seems to be tight in general, it turns
out that in virtually all examples the integer roots of the leading coefficient `r are much
smaller than they could be. In these cases, it remains much more efficient to compute a
telescoper for the summand and inspect the linear factors of `r.
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For the cost of computing a telescoper, Theorem 8 of Chen and Kauers (2012a) says
that a telescoper of order r = ν [ resp. r = O(Ω) ] and degree d = O(Ω3) [ resp.
d = O(Ω2) ] can be computed using O∼(Ω9) [ resp. O∼(Ω8) ] arithmetic operations,
where the soft-O notation O∼(·) suppresses possible logarithmic terms. If we use these
algorithms to compute telescopers modulo various primes and then use Chinese remain-
dering and rational reconstruction to combine the results of the modular computations
into a telescoper with integer coefficients, this will take time proportional to the length
of the integers appearing in the output times the number of arithmetic operations spent
for a single prime. We thus obtain a bound O∼(Ω3) × O∼(Ω9) = O∼(Ω12) for the time
to compute a telescoper of order r = ν if no lower order telescoper exists, and a bound
of O∼(Ω5) × O∼(Ω8) = O∼(Ω13) for the time to compute a nonminimal telescoper of
order r = O(Ω).

There is another, somewhat more heuristic algorithm which makes use of the fact that
all the telescopers of a given term h form a left ideal in the operator algebra Q(n)[Sn]
(see Bronstein and Petkovšek (1996) for a tutorial on arithmetic in such algebras). The
algorithm proceeds as follows. Choose a prime p ∈ Z and compute several nonminimal
telescopers, then take their greatest common right divisor in Zp(n)[Sn], and hope that
this is the modular image of the minimal telescoper. With high probability, this will be
the case. Repeat the computation for various primes and use Chinese remaindering and
rational reconstruction to recover an operator in Q(n)[Sn] from all the modular greatest
common right divisors. If we assume that the cost of computing the greatest common
right divisor can be neglected, then this algorithm spends O∼(Ω8) operations in Zp for
every prime p, and if we further assume that possible issues related to unlucky primes can
be neglected as well, we expect to need O∼(Ω3) primes of size O∼(1). The resulting bit
complexity is thus O∼(Ω3) × O∼(Ω8) = O∼(Ω11) for terms h whose minimal telescoper
has order r = ν.

As pointed out above, for proving a hypergeometric identity it is not necessary to
explicitly compute a telescoper for the summand. Yen’s algorithm gets away without
computing any information about the telescoper. It is however very expensive. On the
other hand, explicitly computing a complete telescoper is more than we need, even though
it is cheaper. The algorithm proposed by Guo et al. (2008) is an attempt to compromise
between these two extremes: it actually sets up the linear system for computing a tele-
scoper, but then, instead of solving it, it determines a bound on the height of the solution,
taking into account special features of the particular matrix at hand, such as sparsity, in
a more careful way than it would be easily possible to do in a general analysis. Unfortu-
nately, Guo et al. do not make any statement about the complexity of their algorithm.
It would be interesting to know whether their improvement can be translated into better
bounds on either the height of a telescoper or, more generally, on the bit complexity of
creative telescoping.
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Bronstein, M., Petkovšek, M., 1996. An introduction to pseudo-linear algebra. Theoretical
Computer Science 157 (1), 3–33.

14



Chen, S., Kauers, M., 2012a. Order-degree curves for hypergeometric creative telescoping.
In: Proceedings of ISSAC’12. pp. 122–129.

Chen, S., Kauers, M., 2012b. Trading order for degree in creative telescoping. Journal of
Symbolic Computation 47 (8), 968–995.

Gerhard, J., 2004. Modular algorithms in symbolic summation and symbolic integration.
Springer.

Gosper, W., 1978. Decision procedure for indefinite hypergeometric summation. Pro-
ceedings of the National Academy of Sciences of the United States of America 75,
40–42.

Graham, R. L., Knuth, D. E., Patashnik, O., 1994. Concrete Mathematics, 2nd Edition.
Addison-Wesley.

Guo, Q.-H., Hou, Q.-H., Sum, L. H., 2008. Proving hypergeometric identities by numerical
verifications. Journal of Symbolic Computation 43 (12), 895–907.

Koutschan, C., 2013. Creative telescoping for holonomic functions. In: Blümlein, J.,
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