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Abstract. We present a Sage implementation of Ore algebras. The main features for the
most common instances include basic arithmetic and actions; GCRD and LCLM; D-finite
closure properties; natural transformations between related algebras; guessing; desingular-
ization; solvers for polynomials, rational functions and (generalized) power series. This paper
is a tutorial on how to use the package.

1 Introduction

In computer algebra, objects are often described implicitly through equations they satisfy. For
example, the exponential function exp(x) is uniquely specified by the linear differential equation
f ′(x) − f(x) = 0 and the initial value f(0) = 1. Likewise, the sequence Fn of Fibonacci numbers
is uniquely determined by the linear recurrence Fn+2 − Fn+1 − Fn = 0 and the two initial values
F0 = 0, F1 = 1. Especially for representing functions or sequences that cannot be expressed in
“closed form”, the differential or difference equations they may satisfy provide an attractive way
to store them on the computer. The question is then how to calculate with objects which are given
in this form.

Algorithms for Ore algebras provide a systematic answer to this question [3, 5]. Invented in the
first half of the 20th century [15] with the objective of providing a unified theory for various kinds
of linear operators, they have been used for many years in computer algebra systems, for example
in the Maple packages OreTools [1], gfun [16] or Mgfun [4], or in the Mathematica packages by
Mallinger [14] and Koutschan [12, 11].

The purpose of this paper is to introduce an implementation of a collection of algorithms related
to Ore algebras for the computer algebra system Sage [17]. It is addressed to first-time users who
are already familiar with Sage, and with the theory of Ore algebras and its use for doing symbolic
computation related to special functions. Readers unfamiliar with Sage are referred to [17], and
readers unfamiliar with Ore algebras may wish to consult the recent tutorial [10] and the references
given there for an introduction to the subject.

At the time of writing, the package we describe here is still under construction and has not yet
been incorporated into the official Sage distribution. Readers who want to try it out are invited
to download the current version from

http://www.risc.jku.at/research/combinat/software/ore_algebra

and are encouraged to send us bug reports or other comments. We hope that the community will
find the code useful.

The following instructions show how to load the code and then create an Ore algebra A of linear
differential operators and an Ore algebra B of recurrence operators. Observe the correct application
of the respective commutation rules in both cases.

sage: from ore_algebra import *
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sage: R.<x> = PolynomialRing(ZZ); A.<Dx> = OreAlgebra(R)

sage: A

Z[x]〈Dx〉

sage: A.random_element()

(2x− 2) Dx2 +
(
−6x2 − 2x− 1

)
Dx− 9x2 − 21

sage: Dx*x

xDx + 1

sage: B.<Sx> = OreAlgebra(R)

sage: B

Z[x]〈Sx〉

sage: Sx*x

(x+ 1) Sx

More details on the construction of Ore algebras are given in the following section. The construction
and manipulation of elements of Ore algebras is discussed in Section 3.

The package also supports Ore algebras with several generators already. However, so far we offer
hardly more functionality than addition and multiplication for these. Much more functionality is
available for algebras with one generator. Some of it is described in Section 4. We plan to add
more code for the multivariate case in the future.

2 Ore Algebras

An Ore algebra is determined by a base ring and a finite number of generators. In the examples
above, the base ring was Z[x], and the generators were Dx and Sx, respectively. If no other
information is provided in the arguments, the OreAlgebra constructor chooses the nature of the
generators according to their name: a generator called Dt represents the standard derivation d/dt
acting on the generator t of the base ring, a generator called Sn represents the standard shift
operator sending the generator n of the base ring to n+ 1.

For this way of generating algebras, generator names must be composed of one of the following
single-letter prefixes followed by the name of a generator of the base ring.

Prefix Name Commutation rule
D Standard derivation d/dx Dxx = xDx + 1
S Standard shift x x+ 1 Sxx = (x+ 1) Sx

T or Θ Eulerian derivation x d/dx Txx = xTx + x
F or ∆ Forward difference ∆x Fxx = (x+ 1)Fx + 1

Q q-shift x q x Qxx = q xQx
J q-derivation (“Jackson derivation”) Jxx = q x Jx + 1
C commutative generator Cxx = xCx

For the q-shift and the q-derivation, the base ring must contain an element q. The element playing
the role of q can be specified as an optional argument.



sage: R.<x> = PolynomialRing(ZZ[’q’])

sage: A.<Qx> = OreAlgebra(R)

sage: Qx*x

qxQx

sage: A.<Qx> = OreAlgebra(R, q=2)

sage: Qx*x

2xQx

In general, the commutation rules of a generator X of an Ore algebra A with base ring R are
governed by two maps, σ : R → R and δ : R → R, where σ is a ring endomorphism (i.e., σ(a +
b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b) for all a, b ∈ R) and δ is a skew-derivation for σ (i.e.,
δ(a + b) = δ(a) + δ(b) and δ(ab) = δ(a)b + σ(a)δ(b) for all a, b ∈ R). With two such maps being
given, the generator X satisfies the commutation rule Xa = σ(a)X+δ(a) for every a ∈ R. If there
is more than one generator, then each of them has its own pair of maps σ, δ. Different generators
commute with each other; noncommutativity only takes place between generators and base ring
elements.

It is possible to create an Ore algebra with user specified commutation rules. In this form, each
generator must be declared by a tuple (X,σ, δ), where X is the name of the generator (a string),
and σ and δ are dictionaries which contain the images of the generators of the base ring under the
respective map. Here is how to specify an algebra of difference operators in this way:

sage: R.<x> = ZZ[’x’]

sage: A = OreAlgebra(R, (’X’, {x:x+1}, {x:1}))

sage: X = A.gen()

sage: X*x

(x+ 1)X + 1

As another example, here is how to define an algebra of differential operators whose base ring is
a differential field K = Q(x, y, z) where y represents exp(x) and z represents log(x):

sage: K = ZZ[’x’,’y’,’z’].fraction_field()

sage: x,y,z = K.gens()

sage: A = OreAlgebra(K, (’D’, {}, {x:1, y:y, z:1/x}))

sage: D = A.gen()

sage: D*x, D*y, D*z



(
xD + 1, yD + y, zD +

1

x

)
In the dictionary specifying σ, omitted generators are understood to be mapped to themselves,
so that {} in the definition of A in the example above is equivalent to {x:x,y:y,z:z}. In the
dictionaries specifying δ, omitted generators are understood to be mapped to zero.

For Ore algebras with several generators, it is possible to mix specifications of generators via triples
(X,σ, δ) with generators using the naming convention shortcuts as explained before. Continuing
the previous example, here is a way to define an algebra A over K with two generators, a D that
behaves like before, and in addition an Sx which acts like the standard shift on x and leaves the
other generators fixed.

sage: A = OreAlgebra(K, (’D’, {}, {x:1, y:y, z:1/x}), ’Sx’)

sage: D, Sx = A.gens()

sage: D*x, Sx*x

(xD + 1, (x+ 1)Sx)

sage: D*y, Sx*y

(yD + y, ySx)

sage: D*z, Sx*z (
zD +

1

x
, zSx

)
In theory, any integral domain can serve as base ring of an Ore algebra. Not so in our implementa-
tion. Here, base rings must themselves be polynomial rings (univariate or multivariate), or fraction
fields of polynomial rings. Their base rings in turn may be either Z, Q, a prime field GF (p), or a
number field Q(α), or — recursively — some ring which itself would be suitable as base ring of
an Ore algebra.

sage: ZZ[’x’].fraction_field()[’y’,’z’] ### OK

Frac(Z[x])[y, z]

sage: GF(1091)[’x’,’y’,’z’][’u’] ### OK

F1091[x, y, z][u]

sage: ( ZZ[’x’,’y’,’z’].quotient_ring(x^2+y^2+z^2-1) )[’u’] ### not OK

Z[x, y, z]/
(
x2 + y2 + z2 − 1

)
Z[x, y, z][u]

sage: GF(9, ’a’)[’x’] ### not OK

F32 [x]

Note that the maps σ and δ must leave all the elements of the base ring’s base ring fixed. They
may only have nontrivial images for the top level generators.

The constituents of an Ore algebra A can be accessed through the methods summarized in the
following table. Further methods can be found in the documentation.



Method name short description
associated_commutative_algebra() returns a polynomial ring with the same base ring

as A and whose generators are named like the
generators of A

base_ring() returns the base ring of A
delta(i) returns a callable object representing the delta

map associated to the ith generator (default: i =
0)

gen(i) returns the ith generator (default: i = 0)
sigma(i) returns a callable object representing the sigma

map associated to the ith generator (default: i =
0)

var(i) returns the name of the ith generator (default:
i = 0)

Examples:

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: A

Z[x]〈Dx〉

sage: A.associated_commutative_algebra()

Z[x][Dx]

sage: A.base_ring()

Z[x]

sage: A.gen()

Dx

sage: s = A.sigma(); d = A.delta();

sage: s(x^5), d(x^5) (
x5, 5x4

)

3 Ore Polynomials

Ore polynomials are elements of Ore algebras, i.e., Sage objects whose parent is an Ore algebra
object as described in the previous section. They can be constructed by addition and multiplication
from generators and elements of the base ring.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: (5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)



(
5x2 + 3x− 7

)
Dx2 +

(
3x2 + 8x− 1

)
Dx + 9x2 − 3x+ 8

Alternatively, an Ore polynomial can be constructed from any piece of data that is also accepted
by the constructor of the associated commutative algebra. The associated commutative algebra of
an Ore algebra is the commutative polynomial ring with the same base ring as the Ore algebra and
with generators that are named like the generators of the Ore algebra. In particular, it is possible
to create an Ore polynomial from the corresponding commutative polynomial, from a coefficient
list, or even from a string representation.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: Ac = A.associated_commutative_algebra()

sage: Ac

Z[x][Dx]

sage: A(Ac.random_element())

(x− 3) Dx2 +
(
x2 + x+ 445

)
Dx− x2 + x+ 1

sage: A([5*x,7*x-3,3*x+1])

(3x+ 1) Dx2 + (7x− 3) Dx + 5x

sage: A("(5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)")(
5x2 + 3x− 7

)
Dx2 +

(
3x2 + 8x− 1

)
Dx + 9x2 − 3x+ 8

Ore polynomials can also be created from Ore polynomials that belong to other algebras, provided
that such a conversion is meaningful.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: L = (5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)

sage: L.parent()

Z[x]〈Dx〉

sage: B = OreAlgebra(QQ[’x’], ’Dx’)

sage: L = B(L)

sage: L.parent()

Q[x]〈Dx〉

In accordance with the Sage coercion model, such conversions take place automatically (if possible)
when operators from different algebras are added or multiplied. Note that the result of such an
operation need not belong to either of the parents of the operands but may instead have a suitable
“common extension” as parent.



sage: A = OreAlgebra(ZZ[’t’][’x’], ’Dx’)

sage: B = OreAlgebra(QQ[’x’].fraction_field(), ’Dx’)

sage: L = A.random_element() + B.random_element()

sage: L.parent()

Frac(Q[t][x])〈Dx〉

4 Selected Methods

Besides basic arithmetic for Ore operators, the package provides a wide range of methods to create,
manipulate and solve several different kinds of operators. Some of these methods are accessible
in any Ore algebra while others are tied specifically to, e.g., recurrence operators or differential
operators.

In this section, we give an overview of the functionality provided by the package. Because of space
limitation, only some of the available methods can be discussed here. For further information, we
refer to the documentation.

4.1 Methods for General Algebras

A univariate Ore algebra over a field is a left Euclidean domain, which means that it is possible
to perform left division with remainder. Building upon this, the greatest common right divisor
(GCRD) and the least common left multiple (LCLM) of two Ore polynomials can be computed.
The package provides a number of methods to carry out these tasks.

Method name short description
A.quo_rem(B) returns the left quotient and the left remainder of A and B.
A.gcrd(B) returns the greatest common right divisor of A and B.
A.xgcrd(B) returns the greatest common right divisor of A and B and the

according Bézout coefficients.
A.lclm(B) returns the least common left multiple of A and B.
A.xlclm(B) returns the least common left multiple L of A and B and the

left quotients of L and A and of L and B.
A.resultant(B) returns the resultant of A and B (see [13] for its definition and

properties).

All these methods are also available for Ore operators living in univariate Ore algebras over a base
ring R which does not necessarily have to be a field. The operators are then implicitly assumed to
live in the respective Ore algebra over the quotient field K of R. The output will be the GCRD
(LCLM, quotient, remainder) in the Ore algebra over K but not over R, in which these objects
might not exist or might not be computable.

sage: A = OreAlgebra(ZZ[’n’], ’Sn’)

sage: G = A.random_element(2)

sage: L1, L2 = A.random_element(7), A.random_element(5)



sage: while L1.gcrd(L2) != 1: L2 = A.random_element(5)

sage: L1, L2 = L1*G, L2*G

sage: L1.gcrd(L2) == G.normalize()

True

sage: L3, S, T = L1.xgcrd(L2)

sage: S*L1 + T*L2 == L3

True

sage: LCLM = L1.lclm(L2)

sage: LCLM % L1 == LCLM % L2 == 0

True

sage: LCLM.order() == L1.order() + L2.order() - G.order()

True

The GCRD is only unique up to multiplication (from the left) by an element from the base ring.
The method normalize called in line 6 of the listing above multiplies a given operator from the
left by some element from the base ring such as to produce a canonical representative from the
class of all the operators that can be obtained from each other by left multiplication of a base ring
element. This facilitates the comparison of output.

The efficiency of computing the GCRD depends on the size of the coefficients of intermediate
results, and there are different strategies to control this growth via so-called polynomial remainder
sequences (PRS). The default is the improved PRS described in [7], which will usually be the fastest
choice. Other strategies can be selected by the option prs.

sage: A = OreAlgebra(ZZ[’n’], ’Sn’)

sage: L1, L2 = A.random_element(3), A.random_element(2)

sage: algs = ["improved", "classic", "monic", "subresultant"]

sage: [L1.gcrd(L2, prs=a) for a in algs]

[1, 1, 1, 1]

If L1, L2 are operators, then the solutions of their GCRD are precisely the common solutions of
L1 and L2. The LCLM, on the other hand, is the minimal order operator whose solution space
contains all the solutions of L1 and all the solutions of L2. Because of this property, GCRD and
LCLM are useful tools for constructing operators with prescribed solutions. For example, here is
how to construct a differential operator which has the solutions x5 and exp(x), starting from the
obvious operators annihilating x5 and exp(x), respectively.

sage: R.<x> = ZZ[]; A.<Dx> = OreAlgebra(R)



sage: L = (Dx - 1).lclm(x*Dx - 5)

sage: L

(
x2 − 5x

)
Dx2 +

(
−x2 + 20

)
Dx + 5x− 20

sage: L(x^5)

0

sage: L(exp(x)).full_simplify()

0

Observe how in the last two lines we apply the operator L to other objects. Such applications are
not defined for every algebra and in general have to be specified by the user through an optional
argument:

sage: A.<Qqn> = OreAlgebra(ZZ[’q’][’qn’])

sage: var(’q’, ’n’, ’x’)

(q, n, x)

sage: (Qqn^2+Qqn+1)(q^n, action=lambda expr: expr.substitute(n=n+1))

qn + q(n+2) + q(n+1)

sage: (Qqn^2+Qqn+1)(x, action=lambda expr: expr.substitute(x=q*x))

q2x+ qx+ x

Thanks to the LCLM operation discussed above, we have the property that when f and g are two
objects which are annihilated by some operators L1, L2 belonging to some Ore algebra A then this
algebra contains also an operator which annihilates their sum f + g. In other words, the class of
solutions of operators of A is closed under addition. It turns out that similar closure properties
hold for other operations. The following table lists some of the corresponding methods. Methods
for more special closure properties will appear further below.

Method name short description
lclm() computes an annihilating operator for f + g from an-

nihilating operators for f and g
symmetric_product() computes an annihilating operator for fg from anni-

hilating operators for f and g
symmetric_power() computes an annihilating operator for fn from an an-

nihilating operator for f and a given positive integer n
annihilator_of_associate() computes an annihilating operator for M(f) from an

annihilating operator for f and a given operator M
annihilator_of_polynomial() computes an annihilating operator for the object

p(f, ∂f, ∂2f, . . . ) from an annihilating operator for f
and a given multivariate polynomial p.



As an example application, let us prove Cassini’s identity for Fibonacci numbers:

F 2
n+1 − FnFn+2 = (−1)n.

The idea is to derive, using commands from the table above, a recurrence satisfied by the left hand
side, and then show that this recurrence is also valid for the right hand side.

sage: A.<Sn> = OreAlgebra(ZZ[’n’])

sage: fib = Sn^2 - Sn - 1

sage: R.<x0,x1,x2> = ZZ[’n’][’x0’,’x1’,’x2’]

sage: fib.annihilator_of_polynomial(x1^2 - x0*x2)

Sn + 1

As this operator obviously annihilates (−1)n, the proof is complete after checking that the identity
holds for n = 0. Another way of carrying out the same computation using the other commands
would be as follows.

sage: A.<Sn> = OreAlgebra(ZZ[’n’])

sage: fib = Sn^2 - Sn - 1

sage: L1 = fib.annihilator_of_associate(Sn).symmetric_power(2)

sage: L2 = fib.annihilator_of_associate(Sn^2).symmetric_product(fib)

sage: L1.lclm(L2)

Sn3 − 2Sn2 − 2Sn + 1

Observe that the resulting operator again annihilates (−1)n, but its order is higher than the
operator obtained before, so we need to check more initial values to complete the proof. For larger
computations, the command annihilator_of_polynomial would also consume less computation
time than the step-by-step approach.

4.2 Methods for Special Algebras

For the elements of some of the most important algebras, additional methods have been imple-
mented. The following table lists some of the additional methods available for differential operators,
i.e., elements of an Ore algebra of the form R[x]〈Dx〉 or K(x)〈Dx〉.



Method name short description
to_S() converts to a recurrence operator for the Taylor series

solutions at the origin
to_F() converts to a difference operator for the Taylor series

solutions at the origin
to_T() rewrites in terms of the Euler derivative
annihilator_of_integral() converts an annihilator for f(x) to one for

∫
f(x)dx

annihilator_of_composition() converts an annihilator for f(x) to one for f(a(x))
where a(x) is algebraic over the base ring

desingularize() computes a left multiple of this operator with polyno-
mial coefficients and lowest possible leading coefficient
degree

associate_solutions(p) applied to an operator P , this computes, if possible,
an operator M and a rational function m such that
DM = p+mP (see [2] for further information)

polynomial_solutions() computes the polynomial solutions of this operator
rational_solutions() computes the rational function solutions of this oper-

ator
power_series_solutions() computes power series solutions of this operator
generalized_series_solutions() computes generalized series solutions of this operator

As an example application, we compute an annihilator for the error function 2√
π

∫ x
0

exp(−t2)dt,

starting from the differential equation for exp(x), and produce the recurrence for the Taylor series
coefficients at the origin. Finally, we compute the series solutions of the differential operator at
infinity.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R, ’Dx’)

sage: (Dx - 1).annihilator_of_composition(-x^2)

Dx + 2x

sage: L = (Dx + 2*x).annihilator_of_integral()

sage: L

Dx2 + 2xDx

sage: L.to_S(OreAlgebra(ZZ[’n’], ’Sn’))(
n2 + 3n+ 2

)
Sn2 + 2n

sage: L.power_series_solutions(10)[
x− 1

3
x3 +

1

10
x5 − 1

42
x7 +

1

216
x9 +O(x10), 1 +O(x10)

]
sage: L.annihilator_of_composition(1/x).generalized_series_solutions()[

exp
(
−x−2

)
· x ·

(
1− 1

2
x2 +

3

4
x4 +O(x5)

)
, 1 +O(x5)

]

The last output implies that the operator annihilating
∫ x
0

exp(−t2)dt also admits a solution which

behaves for x→∞ like 1
x exp(−x2).



The next example illustrates the methods for finding rational and polynomial solutions of an
operator L. These methods accept as an optional parameter an inhomogeneous part consisting
of a list (or tuple) of base ring elements, (f1, . . . , fr). They return as output a list of tuples
(g, c1, . . . , cr) with L(g) = c1f1 + · · · + crfr where g is a polynomial or rational function and
c1, . . . , cr are constants, i.e., elements of the base ring’s base ring. The tuples form a vector space
basis of the solution space.

In the example session below, we start from two polynomials p, q, then compute an operator L
having p and q as solutions, and then recover p and q from L. Note that for consistency also the
solutions of homogeneous equations are returned as tuples. At the end we give an example for
solving an inhomogeneous equation.

sage: R.<x> = ZZ[]

sage: p = x^2 + 3*x + 8; q = x^3 - 7*x + 5

sage: A.<Dx> = OreAlgebra(R)

sage: L = (p*Dx - p.derivative()).lclm(q*Dx - q.derivative())

sage: L

(
x4 + 6x3 + 31x2 − 10x− 71

)
Dx2 +

(
−4x3 − 18x2 − 62x+ 10

)
Dx + 6x2 + 18x+ 14

sage: L.polynomial_solutions()

[(
−3x3 + 2x2 + 27x+ 1

)
,
(
−8x3 + 5x2 + 71x

)]
sage: M = (2*x+3)*Dx^2 + (4*x+5)*Dx + (6*x+7)

sage: sol = M.polynomial_solutions([1,x,x^2,x^3])

sage: sol

[
(1, 7, 6, 0, 0) , (x, 5, 11, 6, 0) ,

(
x2, 6, 14, 15, 6

)]
sage: map(lambda s: M(s[0]) == s[1]+s[2]*x+s[3]*x^2+s[4]*x^3, sol)

[True,True,True]

The functions polynomial_solutions and rational_solutions are not only defined for differ-
ential operators but also for recurrence operators, i.e., elements of an Ore algebra of the form
R[x]〈Sx〉 or K(x)〈Sx〉. Some other methods defined for recurrence operators are listed in the
following table.



Method name short description
to_D() converts annihilator for the coefficients in a power se-

ries to a differential operator for the sum
to_F() converts shift operator to a difference operator
to_T() converts to a differential operator in terms of the Euler

derivative
annihilator_of_sum() converts an annihilator for f(n) to one for the sum∑n

k=0 f(k)
annihilator_of_composition() converts an annihilator for f(n) to one for f(bun+vc)

where u, v ∈ Q
annihilator_of_interlacing() interlaces two or more sequences
desingularize() computes a left multiple of this operator with polyno-

mial coefficients and lowest possible leading coefficient
degree

associate_solutions(p) applied to an operator P , this computes, if possible,
an operator M and a rational function m such that
(S − 1)M = p+mP (see [2] for further information)

polynomial_solutions() computes the polynomial solutions of this operator
rational_solutions() computes the rational function solutions of this oper-

ator
generalized_series_solutions() computes asymptotic expansions of sequences annihi-

lated by the operator
to_list() computes terms of a sequence annihilated by the op-

erator

As an example application, we compute an annihilator for the sequence c(n) =
∑n
k=0 1/k!:

sage: R.<n> = ZZ[]; A.<Sn> = OreAlgebra(R)

sage: inverse_factorials = (n + 1) * Sn - 1

sage: partial_sums = inverse_factorials.annihilator_of_sum()

sage: partial_sums

(n+ 2) Sn2 + (−n− 3) Sn + 1

The to_list method returns the first few values of a sequence, given the initial values:

sage: L = partial_sums.to_list([1, 2], 8)

sage: L [
1, 2,

5

2
,

8

3
,

65

24
,

163

60
,

1957

720
,

685

252

]
sage: N(L[7])

2.71825396825397

We compute the asymptotic expansion of the sequence of terms to estimate how many terms we
need to approximate e to a given number of digits:



sage: digits = 10^5

sage: asymp = inverse_factorials.generalized_series_solutions(3)

sage: target = lambda x: log(abs(asymp[0](RR(x))), 10) + digits

sage: num_terms = ceil(find_root(target, 1, 10^6))

sage: num_terms

25207

In some cases, for example when the base ring is Z or Z[x], isolated values of a sequence can be
computed asymptotically faster for large n than by listing all values, using the binary splitting
technique. The forward_matrix_bsplit method, called with argument n, returns a matrix P
and a polynomial Q such that P/Q multiplied by a column vector of initial values c0, c1, . . . yields
cn, cn+1, . . .. This way, computing 105 digits of e takes a fraction of a second:

sage: e_approx = N(e, 400000)

sage: P, Q = partial_sums.forward_matrix_bsplit(num_terms)

sage: u = Matrix([[e_approx], [e_approx]]) - P * Matrix([[1], [2]]) / Q

sage: u.change_ring(RealField(20))(
1.3053× 10−100009

5.1780× 10−100014

)

4.3 Guessing

Guessing is, in some sense, the reverse operation of to_list for recurrence operators, or of
power_series_solutions for differential operators. It is one of the most popular features of pack-
ages like gfun, and there are even some special purpose packages dedicated to this technique [9,
6]. The basic idea is simple. Given a finite array of numbers, thought of as the first terms of an
infinite sequence, we want to know whether this sequence satisfies a recurrence. The algorithm
behind a guessing engine searches for small equations matching the given data. Generically, no
such equations exist, so if some are found, it is fair to “guess” that they are in fact valid equations
for the whole infinite sequence.

We provide a guessing function which takes as input a list of terms and an Ore algebra, and
returns as output an operator which matches the given data and which, in some measure, would
be unlikely to exist for random data.

sage: data = [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

sage: L = guess(data, OreAlgebra(ZZ[’n’], ’Sn’))

sage: L

−Sn2 + Sn + 1



sage: L(data)

[0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: M = guess(data, OreAlgebra(ZZ[’x’], ’Dx’))

sage: M (
−x3 − x2 + x

)
Dx− x2 − 1

sage: M(x/(1-x-x^2))

0

If an algebra of differential operators is supplied as second argument, the data is understood as
the first few coefficients of a power series. The output operator is expected to have this power
series as solution.

It can happen that the procedure is unable to find an operator matching the given data. In this
case, an exception is raised. There are two possible explanations for such an event. Either the
sequence in question does not satisfy any equations, or it does but the equations are so big that
more data is needed to detect them.

Several options are available for customizing the search for relations. In order to explain them, we
first need to give some details on the underlying algorithms. For simplicity of language, we restrict
here to the case of recurrence operators. The situation for differential operators is very similar.

For the most typical situations, there are two important hyperbolas. One describes the region in
the (r, d)-plane consisting of all points for which there exists an operator of order r and degree d
truly satisfied by the sequence in question. (See [8] for an explanation why the boundary of this
region is usually a hyperbola.) The second describes the region of all points (r, d) for which an
operator of order r and degree d can be detected when N terms are provided as input. This region
is determined by the requirement (r + 1)(d+ 2) < N .

The method tests a sequence of points (r1, d1), (r2, d2), . . . right below this second hyperbola.
Success at a point (ri, di) means that some evidence for an operator of order ≤ ri and degree ≤ di
has been found. This operator however is not explicitly computed. Instead, the method uses the
partial information found about this operator to calculate an operator which with high probability
is the minimal order operator satisfied by the sequence in question. This operator is usually more
interesting than the one at (ri, di), and its computation is usually more efficient.

Using the option path, the user can specify a list of points (ri, di) which should be used instead of
the standard path. By setting the options min_degree, max_degree, min_order, max_order, all
points (r, d) of the path are discarded for which r or d is not within the specified bounds. These
options can be used to accelerate the search in situations where the user has some knowledge (or
intuition) about the size of the expected equations.

r

d

min
degree

max
degree

min order max order

A

B

The figure on the right illustrates the typical situation
for guessing problems that are not too small and not too
artificial. The gray region indicates the area which is not
accessible with the given amount of data. Only the points
(r, d) below it can be tested for an operator of order r
and degree d that fits to the given data. Let’s assume that
operators exist on and above the solid black hyperbola.
The user will usually not know this curve in advance but
may have some expectations about it and can restrict
the search accordingly, for example to the dashed area
shown in the figure. The method will detect the existence



of an operator, say at point A, and construct from the
information gained at this point an operator of minimal
possible order, which may correspond to point B. This operator is returned as output. Note that
the degree of the output may exceed the value of max_degree, and its order may be smaller than
min_order:

sage: data = [(n+1)^10*2^n + 3^n for n in xrange(200)]

sage: L = guess(data, OreAlgebra(ZZ[’n’],’Sn’), min_order=3, max_degree=5)

sage: L.order(), L.degree()

(2, 10)

In order to test a specific point (r, d), the data array must contain at least (r+ 1)(d+ 2) terms. If
it has more terms, the guess becomes more trustworthy, but also the computation time increases.
By setting the option ensure to a positive integer e, the user can request that only such points
(r, d) should be tested for which the data array contains at least e more terms than needed. This
increases the reliability. By setting the option cut to a positive integer c, the user requests that for
testing a point (r, d), the method should take into account at most c more terms than needed. If the
data array contains more terms, superfluous ones are ignored in the interest of better performance.
We must always have 0 ≤ e ≤ c ≤ ∞. The default setting is e = 0, c =∞.
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