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Task: Given a function f(x, y),

find an operator of the form

L = T − ∂yC

with T · f(x, y) = 0, where

I T is nonzero and free of y and ∂y (the telescoper)

I C is an arbitrary operator (the certificate)

I ∂y is a prescribed generator of the operator algebra (e.g.,
∂y = d

dy “anti-integration” for integration problems, or
∂y = σy − 1 “anti-summation” for summation problems)

Why? Because such operators are useful for summation and
integration (→ talks of C. Koutschan or N. Takayama earlier
today)
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Example: For f(x, y) = 1
3x+y2

exp(−xy) we can take

T = 4x2 d2

dx2
+2x d

dx +(27x3−2), C = 81x3−12xy+39x2y2−2y3+4xy4

3x+y2

Then (T − d
dyC) · f(x, y) = 0 implies

T ·
∫ 1

0

∫ 1

0
T · f(x, y) dy =

[
C · f(x, y)

]1

y=0

(81x2+39x−8)x−2
(3x+1)2

exp(−x)− 9x

∫ 1

0

d

dy
(C · f(x, y)) dy

So we obtain an explicit (inhomogeneous) linear differential
equation with respect to x for the integral

∫ 1
0 f(x, y)dy.
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Typical classes of functions f(x, y):

I f(x, y) is called hyperexponential if it can be written in the
form

f(x, y) = c0(x, y) exp
(a(x, y)

b(x, y)

) m∏
i=1

ci(x, y)ei

for certain polynomials a, b, c0, c1, . . . , cm and constants
e1, . . . , em (not necessarily integers).

I Example: f(x, y) = 1
3x+y2

exp(−xy)
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Typical classes of functions f(x, y):

I f(x, y) is called (proper) hypergeometric if it can be written
in the form

f(x, y) = c(x, y)pxqy
m∏
i=1

Γ(aix+ a′iy + a′′i )Γ(bix− b′iy + b′′i )
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for a certain polynomial c, certain constants p, q, a′′i , b
′′
i , u
′′
i , v
′′
i

and certain fixed nonnegative integers ai, a
′
i, bi, b

′
i, ui, u

′
i, vi, v

′
i.

I Example: f(x, y) = (x+ y)2x(−1)y (x+y)!(2x−y)!(2x−2y)!
(x+2y)!2
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Typical classes of functions f(x, y):

I f(x, y) is called D-finite if there exists an operator algebra
A = K(x, y)[∂x, ∂y] acting on f(x, y) and the left ideal

ann(f) := {L ∈ A : L · f = 0}

is such that the quotient algebra A/ann(f) is a finite
dimensional K(x, y)-vector space.

This class contains the previous two as special cases, and it
covers many additional functions.

D-finite is closely related to holonomic (→ talks of
C. Koutschan or N. Takayama earlier today)
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Main Question in Today’s Talk:

What can we say about the size of T for a specific
function f(x, y) without computing it?
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How to measure the “size” of an operator T ∈ Z[x][∂x]?

T = (34045 + 60101x− 15377x2)

+ (−68071− 62604x− 93961x2 + 54058x3)∂x

+ (−35079− 54446x+ 5324x2 + 94790x3 + 55527x4)∂2
x

+ (92795 + 13448x− 97390x2 − 81011x3 + 55462x4)∂3
x

+ (−86626 + 83267x+ 82406x2 − 76639x3 + 29278x4)∂4
x

+ (−96781 + 45676x+ 40203x2 + 59197x3)∂5
x

+ (41662− 44140x+ 13204x2)∂6
x

I ord(T ) := maximal ∂x-exponent in T (“order”)

I deg(T ) := maximal x-exponent in T (“degree”)

I ht(T ) := maximal integer appearing in T (“height”)
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problem order degree height

D-finite closure properties

hypergeometric summation

hyperexponential integration

holonomic summation/integration
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Theorem (Apagodu-Zeilberger) For every (non-rational) proper
hypergeometric term

f(x, y) = c(x, y)pxqy
m∏
i=1

Γ(aix+ a′iy + a′′i )Γ(bix− b′iy + b′′i )

Γ(uix+ u′iy + u′′i )Γ(vix− v′iy + v′′i )

there exists a telescoper T with

ord(T ) ≤ max

{ m∑
i=1

(a′i + v′i),

m∑
i=1

(u′i + b′i)

}

Usually there is no telescoper of lower order.
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Theorem (Apagodu-Zeilberger) For every (non-rational)
hyperexponential term

f(x, y) = c0(x, y) exp
(a(x, y)

b(x, y)

) m∏
i=1

ci(x, y)ei

there exists a telescoper T with

ord(T ) ≤ degy(b) + max{degy(a),degy(b)}+

m∑
i=1

degy(ci),

The first degy(b) can be replaced by degy(sqfpy(b)). That
changed, there is usually no telescoper of lower order.
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Theorem (Apagodu-Zeilberger)

; Chen-Kauers)

For every (non-rational) proper hypergeometric term

f(x, y) = c(x, y)pxqy
m∏
i=1

Γ(aix+ a′iy + a′′i )Γ(bix− b′iy + b′′i )

Γ(uix+ u′iy + u′′i )Γ(vix− v′iy + v′′i )

there exists a telescoper T with

ord(T ) ≤ max

{ m∑
i=1

(a′i + v′i),

m∑
i=1

(u′i + b′i)

}

and
deg(T ) ≤

⌈
1
2ν(2δ + 2νϑ+ |µ| − ν|µ|)

⌉
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Theorem (Apagodu-Zeilberger

)

; Chen-Kauers)
For every (non-rational) proper hypergeometric term
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where

I δ = deg(c)

I ν = max

{ m∑
i=1

(a′i + v′i),

m∑
i=1

(u′i + b′i)

}
I ϑ = max

{ m∑
i=1

(ai + bi),

m∑
i=1

(ui + vi)

}
I µ =

m∑
i=1

(
(ai + bi)− (ui + vi)

)
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Theorem (Chen-Kauers)
For every (non-rational) proper hypergeometric term

f(x, y) = c(x, y)pxqy
m∏
i=1

Γ(aix+ a′iy + a′′i )Γ(bix− b′iy + b′′i )

Γ(uix+ u′iy + u′′i )Γ(vix− v′iy + v′′i )

there exist telescopers T with ord(T ) ≤ r and deg(T ) ≤ d for all
(r, d) ∈ N2 with

r ≥ ν and d >

(
ϑν − 1

)
r + 1

2ν
(
2δ + |µ|+ 3− (1 + |µ|)ν

)
− 1

r − ν + 1
.
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Theorem (Kauers-Yen) Every (non-rational) proper
hypergeometric term f(x, y) with p, q, a′′i , b

′′
i , u
′′
i , v
′′
i ∈ Z admits a

telescoper T with ord(T ) ≤ ν and

ht(T ) ≤ max
{
|p|ν , |q|+ 1

}
ht(c)ν+1(δ + ϑν + 1)!ν+1(ν + 1)δ(ν+1)

× (|y|+ 1)δ+(ϑ−1)ν+1δ!2(ν+1)|x|ν2

× (δ + ϑν + 1)δ+(ϑ+δ+2)ν+(ϑ−1)ν2

× (2(ν + 2)Ω− 2)(δ+ϑ+1)ν+(2ϑ−1)ν2

exp(O(Ω3 log(Ω)))

where ν, ϑ, δ are as before, and

Ω =
m

max
i=1

{
|ai|, |a′i|, |a′′i |, |bi|, |b′i|, |b′′i |, |ui|, |u′i|, |u′′i |, |vi|, |v′i|, |v′′i |

}
.
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How good is this bound?

Consider fΩ(x, y) = Γ(Ωy)/Γ(Ωx− y) for Ω = 1, 2, 3, . . . .
We compare the actual height to the bound.

Ω

Ω3 log(Ω)
/

log(ht(T ))

0 5 10 15 20 25
1

1.5

2

The asymptotics seems to be right.
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The previous theorem only bounds the height of the telescoper of
order ν.

Recall that higher order operators may have lower degree.

What is their height?

Theorem (Kauers-Yen)
Every (non-rational) proper hypergeometric term f(x, y) with
p, q, a′′i , b

′′
i , u
′′
i , v
′′
i ∈ Z admits a telescoper T with

ord(T ) = O(Ω)

deg(T ) = O(Ω2)

ht(T ) = O(Ω5 log(Ω))
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Theorem (Chen-Kauers-Koutschan)
Let f(x, y) be a D-finite function, so that
K(x, y)[ ddx ,

d
dy ]/ann(f) ∼= K(x, y)d, and let M ∈ K[x, y]d×d and

m ∈ K[x, y] be such that for all v ∈ K(x, y)d we have

d

dy
v =

1

m
Mv + v′.

Then there exists a telescoper T for f(x, y) with

ord(T ) ≤ dmax{degy(m),degy(M)}.

There is also a more general version for when ∂x or ∂y are not the
partial derivatives.
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