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Abstract

Our main result is a formulation and proof of the reverse
hypercontractive inequality in the sum-of-squares (SOS)
proof system. As a consequence we show that for
any constant 0 < γ ≤ 1/4, the SOS/Lasserre SDP
hierarchy at degree 4d 1

4γ e certifies the statement “the
maximum independent set in the Frankl–Rödl graph
FRn

γ has fractional size o(1)”. Here FRn
γ = (V,E) is

the graph with V = {0, 1}n and (x, y) ∈ E whenever
∆(x, y) = (1− γ)n (an even integer). In particular, we
show the degree-4 SOS algorithm certifies the chromatic
number lower bound “χ(FRn

1/4) = ω(1)”, even though
FRn

1/4 is the canonical integrality gap instance for
which standard SDP relaxations cannot even certify
“χ(FRn

1/4) > 3”. Finally, we also give an SOS proof of
(a generalization of) the sharp (2, q)-hypercontractive
inequality for any even integer q.

1 Introduction

Hypercontractive inequalities play an important role
in analysis of Boolean functions. They are concerned
with the noise operator Tρ which acts on functions
f : {−1, 1}n → R via Tρf(x) = E[f(y)], where y
is a “ρ-correlated copy” of x. Equivalently, Tρf =∑
S⊆[n] ρ

|S|f̂(S)χS , where the numbers f̂(S) are the
Fourier coefficients of f . The standard hypercontrac-
tivity inequality was first proved by Bonami [Bon70]
and the reverse hypercontractivity inequality was first
proved by Borell [Bor82]. We state both, recalling the
notation ‖f‖p = Ex∼{−1,1}n [|f(x)|p]1/p.
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Hypercontractive Inequality. Let f : {−1, 1}n →
R, let 1 ≤ p ≤ q ≤ ∞, and let 0 ≤ ρ ≤√

(p− 1)/(q − 1). Then ‖Tρf‖q ≤ ‖f‖p.

Reverse Hypercontractive Inequality. Let f :
{−1, 1}n → R

≥0, let −∞ ≤ q ≤ p ≤ 1, and let
0 ≤ ρ ≤

√
(1− p)/(1− q). Then ‖Tρf‖q ≥ ‖f‖p.

The hypercontractive inequality is almost always
used with either p = 2 or q = 2. The (2, 4)-
hypercontractivity inequality — i.e., the case q = 4,
p = 2, ρ = 1/

√
3 — is a particularly useful case, as is

the following easy corollary:

Theorem 1.1. For k ∈ N, let P≤k be the projection
operator which maps f : {−1, 1}n → R to its low-

degree part P≤kf =
∑
|S|≤k f̂(S)χS. Then the 2 → 4

operator norm of P≤k is at most 3k/2. I.e., ‖P≤kf‖4 ≤
3k/2‖f‖2.

Theorem 1.1 is known to have a proof which is notice-
ably simpler than that of the general hypercontractive
inequality [MOO05]. Theorem 1.1 can be used to prove,
e.g., the KKL Theorem [KKL88], the sharp small-set ex-
pansion statement for the 1/3-noisy hypercube, and the
Invariance Principle of [MOO10]. More generally, the
hypercontractivity inequality has the following corol-
lary:

Theorem 1.2. For any q ≥ 2 and f : {−1, 1}n → R

we have ‖P≤kf‖q ≤ (q − 1)k/2‖f‖2.

This corollary is often used to control the behavior of
low-degree polynomials of random bits.

Reverse hypercontractivity is perhaps most often
used to show that if A,B ⊆ {−1, 1}n are large sets
and (x,y) is a ρ-correlated pair of random strings then
there is a substantial chance that x ∈ A and y ∈ B.
This was first deduced in [MOR+06] by deriving the
following consequence of reverse hypercontractivity:

Theorem 1.3. Let f, g : {−1, 1}n → R≥0, let 0 ≤ q ≤
1, and let 0 ≤ ρ ≤ 1− q. Then E[f(x)g(y)] ≥ ‖f‖q‖g‖q
when (x,y) is a pair of ρ-correlated random strings.



The reverse hypercontractive inequality has been used,
e.g., in problems related to approximability and hard-
ness of approximation [FKO07, She09, BHM12], and
problems in quantitative social choice [MOO10, Mos12a,
MOS12b, Kel12, MR12].

1.1 Sum-of-squares proofs of hypercontractive
inequalities The present work is concerned with prov-
ing hypercontractive inequalities via “sums of squares”
(SOS); i.e., in the Positivstellensatz proof system in-
troduced by Grigoriev and Vorobjov [GV01]. A re-
cent work of Barak et al. [BBH+12] showed that the
Khot–Vishnoi [KV05] SDP integrality gap instances for
Unique-Games are actually well-solved by the “4-round
Lasserre SDP hierarchy”; equivalently, the “degree-8
SOS hierarchy”. This is despite the fact that they are
strong gap instances for superconstantly many rounds of
other weaker SDP hierarchies such as Lovász–Schrijver+

and Sherali–Adams+ [RS09, KS09]. The key to analyz-
ing the optimum value of the Khot–Vishnoi instances
is the hypercontractive inequality, and perhaps the key
technical component of the Barak et al. result is showing
that Theorem 1.1 has a degree-4 “SOS proof”. That is,
if we treat the each f(x) as a formal “indeterminate”,
then 9k‖f‖42−‖P≤kf‖44 is a degree-4 polynomial in the
2n indeterminates, and Barak et al. showed that it is
a sum of squared polynomials (hence always nonnega-
tive).

The connection between SOS proofs and SDP re-
laxations for optimization problems was made indepen-
dently by Lasserre [Las00] and Parrilo [Par00]. Roughly
speaking, if a system of n-variate polynomial inequali-
ties can be refuted within the degree-d SOS proof sys-
tem of Grigoriev and Vorobjov [GV01], then this refu-
tation can also be found efficiently by solving a semidef-
inite program of size nO(d). (For more details, see
e.g. [OZ13].) The associated “degree-d SOS hierar-
chy” for approximating optimization problems is known
to be at least as strong as the Lovász–Schrijver+ and
Sherali–Adams+ SDP hierarchies, and the [BBH+12]
result shows that it can be noticeably stronger for the
notorious Unique Games problem.

Later, [OZ13] showed that the degree-4 SOS hi-
erarchy correctly analyzes the value of the [DKSV06]
instances of Balanced-Separator, which are known to
be superconstant-factor integrality gap instances for
superconstantly many rounds of the “LH SDP hier-
archy” [RS09]. It was also shown in [OZ13] that
the degree-O(1) SOS hierarchy certifies the value of
the [KV05] instances of Max-Cut to within factor .952,
whereas superconstantly many rounds of the Sherali–
Adams+ hierarchy are still off by a factor of .878 [RS09,
KS09]. (The .952 here was very recently improved to

any 1−ε. [DMN13]) The key to the former result was an
SOS proof of the KKL Theorem (relying on [BBH+12]’s
SOS proof of Theorem 1.1); the key to the latter was an
SOS proof of an Invariance Principle variant, which in
turned needed an SOS proof of higher-norm hypercon-
tractivity, Theorem 1.2. The work [OZ13] was unable to
actually obtain Theorem 1.2 with an SOS proof, but in-
stead obtained a weaker version which sufficed for their
purposes.

Still, the full power of the SOS hierarchy is far
from well-understood. Analyzing what can and can-
not be proved with low-degree SOS proofs is evi-
dently very important; for example, it’s consistent with
our current knowledge that the degree-4 SOS hier-
archy refutes the Unique-Games Conjecture, gives a
1.01-approximation for Uniform Sparsest-Cut, a 1.4-
approximation for Vertex-Cover, and certifies that any
graph with chromatic number exceeding 5 is not 3-
colorable.

In particular, hypercontractive inequalities have
played a key role in many of the sophisticated SDP
integrality gap instances. Thus it is natural to ask: Can
a sharp version of the hypercontractive inequality be
proved in the SOS proof system? Can any version of the
reverse hypercontractive inequality be proved? As we
will see, the latter question is particularly relevant for
the known SDP integrality instances of the 3-Coloring
and Vertex-Cover problems.

1.2 Our results The main result in this paper is
an SOS proof of the reverse hypercontractivity Theo-
rem 1.3 for all q equal to the reciprocal of an even in-
teger. As one application of this, we show that just
the degree-4 algorithm from the SOS hierarchy can cer-
tify that the “Frankl–Rödl” SDP integrality gap in-
stances for 3-Coloring have chromatic number ω(1). Fi-
nally, we also give an SOS proof of the sharp (2, q)-
hypercontractive inequality for all even integers q; in
fact, a version with relaxed moment conditions. We
find it interesting to see that the two powerful hyper-
contractive inequalities admit proofs as “elementary”
as sum-of-squares proofs. On the other hand, to obtain
these proofs we had to use somewhat elaborate meth-
ods, including computer algebra techniques.

The hypercontractive inequality for even in-
teger norms. As mentioned, Barak et al. [BBH+12]
gave an SOS proof of Theorem 1.1, that ‖P≤kf‖44 ≤
9k‖f‖42. Although there is a very easy proof of this the-
orem “in ZFC” [MOO05], that proof uses the Cauchy–
Schwarz inequality, whose square-roots do not obvi-
ously translate into SOS statements. The SOS proof
in [BBH+12] gets around this by proving the generalized
statement E[(P≤kf)2(P≤k′g)2] ≤ 3k+k′ E[f2]E[g2], al-



lowing them to replace Cauchy–Schwarz with XY ≤
1
2X

2 + 1
2Y

2. In [OZ13] this SOS proof was very slightly
generalized to cover the (2, 4)-hypercontractive inequal-
ity, E[(Tρf)2(Tρg)2] ≤ E[f2]E[g2] for ρ = 1/

√
3. That

work also gave an SOS proof of a weakened version of
Theorem 1.2 for all even integers q, namely ‖P≤kf‖qq ≤
qO(qk/2)‖f‖q2. (Attention is restricted to even integers q
because the (2, q)-hypercontractive inequality cannot
even be stated as a polynomial inequality otherwise.)

In Section 3 we prove the full (2, q)-hypercontractive
inequality for all even integers q. Our strategy is as fol-
lows. First, we give a simple proof (“in ZFC”) of (2, q)-
hypercontractivity for all even integers q; our proof
works not just for random ±1 bits but for any random
variables satisfying fairly liberal moment bounds. In-
deed, we are not aware of any previous work showing
that such moment bounds are sufficient for hypercon-
tractivity. However this proof relies on the well-known
fact that the hypercontractivity inequality tensorizes
[KS88], which in turn uses the triangle inequality for the
(q/2)-norm, an inequality that cannot even be stated in
SOS. For our SOS extension of this result we move to a
(q/2)-function version of the statement as in [BBH+12];
this requires some more work.Our final theorem is as
follows:

Theorem 1.4. (Informal.) Let s ∈ N
+ and write

q = 2s. Let 0 ≤ ρ ≤ 1√
q−1

. Let x = (x1, . . . ,xn) be

a sequence of independent real random variables, with
each xi satisfying

E[x2j−1
i ] = 0, E[x2j

i ] ≤ (2s− 1)j
(
s
j

)(
2s
2j

)
for all integers 1 ≤ j ≤ s; further assume that E[x2

i ] =
1 for each i. (Rademachers and standard Gaussians
qualify.) Then for functions f1, . . . , fs : {−1, 1}n → R

there is an SOS proof of

E

[
s∏
i=1

(Tρfi(x))2

]
≤

s∏
i=1

E[fi(x)2].

As corollaries we have SOS proofs of ‖Tρf‖qq ≤ ‖f‖
q
2

and ‖P≤kf‖qq ≤ (q − 1)qk/2‖f‖q2.

The reverse hypercontractive inequality.
Giving an SOS proof of this theorem proved to be signifi-
cantly more difficult; it is our main result and the source
of our application to 3-Coloring and Vertex-Cover inte-
grality gaps. The theorem cannot even be stated in the
SOS proof system directly since the p-“norms” are not
polynomials in the values f(x) when p < 1. We turn to
the 2-function version from [MOR+06], Theorem 1.3;
if q = 1

2k for some k ∈ N+ and if we replace f and

g by f2k and g2k then we get a polynomial statement
(and we can even drop the hypothesis that f and g are
nonnegative). The resulting theorem is:

Theorem 1.5. Let k ∈ N+ and let 0 ≤ ρ ≤ 1 − 1
2k .

Then for functions f, g : {−1, 1}n → R there is a degree
4k SOS proof of

E
(x,y)
ρ-corr’d

[f(x)2kg(y)2k] ≥ E[f ]2k E[g]2k.

We prove this result in Section 4. An induction on n
easily reduces the problem to the n = 1 case; for each k,
this is an inequality in four real indeterminates. Then by
homogeneity we can further reduce to an inequality in
just two indeterminates. Nevertheless, giving an SOS-
proof of this “two-point inequality” for all k seems to
be surprisingly tricky. As an example of the problem
we need to solve (the k = 3 case), the reader is invited
to try the following puzzle:

“Show that

11
24 (1 + a)

6
(1 + b)

6
+ 11

24 (1− a)
6

(1− b)6

+ 1
24 (1 + a)

6
(1− b)6

+ 1
24 (1− a)

6
(1 + b)

6 − 1

is a sum of squared polynomials in a and b.”
Our solution is presented in Section 4.1. Our

high level approach is to employ a change of variables
which reduces the task to proving a sequences of one-
variable real inequalities. This is helpful because every
nonnegative univariate polynomial is SOS; hence we
can use any mathematical technique to verify the one-
variable inequalities. We establish the one-variable
inequalities using techniques from computer algebra.
Peculiarly, this approach only works for the specific
choice ρ = 1 − 1

2k ; however the proof for general
0 ≤ ρ ≤ 1 − 1

2k can be deduced since the two-point
inequality is linear in ρ.

1.2.1 Application to integrality gap instances
for 3-Coloring and Vertex-Cover Along the lines
of [BBH+12, OZ13], our SOS proof of the reverse hyper-
contractive inequality also has application to integral-
ity gap instances; specifically, for the 3-Coloring and
Vertex-Cover problems. These problems can be put
in a common framework by considering the Maximum
Independent-Set problem:

Definition 1.1. Given graph G = (V,E) we define
the (fractional) size of its maximum independent set:
Max-IS(G) = max{|S|/|V | : S ⊆ V such that E ∩ (S ×
S) = ∅} ∈ [0, 1].

There is a one-way connection with k-Coloring: any
graph G with chromatic number χ(G) ≤ k has



Max-IS(G) ≥ 1/k. There is a two-way connection with
the Vertex-Cover problem: a set S ⊆ V is independent
if and only if its complement S = V \S is a vertex cover
(i.e., every e ∈ E meets S). Thus Min-VC(G), the mini-
mum (fractional) size of a vertex cover in G, is equal to
1−Max-IS(G).

Finding the chromatic number or minimum vertex
cover of a graph is an NP-hard problem; thus it has been
common to seek efficient approximation algorithms. For
example, one may seek an efficient algorithm which
can 100-color any 3-colorable graph, or find a vertex
cover of size at most 1.5 times the minimum. Neither
of these problems is known to be polynomial-time
solvable; nor is either known to be NP-hard. In fact,
the 3-colorability question shows an enormous gap;
we only know an efficient algorithm for n.2111-coloring
3-colorable graphs [ACC06], and NP-hardness of 4-
coloring them [KLS00, GK04]. For Vertex-Cover, there
is an easy linear-time 2-approximation algorithm [GJ79,
Gavril 1974], whereas achieving a 1.36-approximation is
known to be NP-hard [DS05].

Previous work on integrality gaps. Based on
the 40-year lack of progress on the algorithms side, it is
reasonable to suspect that there is no efficient (2 − ε)-
approximation algorithm for Vertex-Cover. Similarly,
one may suspect that there is no efficient algorithm
for O(1)-coloring 3-colorable graphs. Indeed, these
statements are known to be true assuming the Unique-
Games Conjecture in the first case [KR08], and a closely
related variant of the Unique-Games Conjecture in the
second [DMR09]. However there is reasonable doubt
about the Unique-Games Conjecture [ABS10] and it’s
important to seek alternative evidence of hardness. One
very good form of evidence is showing that strong,
generic polynomial-time optimization algorithms fail to
give good approximations to the value of the optimal
solution. Specifically, one can seek integrality gaps for
the canonical hierarchies of linear programming and
semidefinite relaxations of the problem. In this work
we will often describe integrality gaps in more “proof-
theoretic language”. For example, instead of saying that
for Vertex-Cover, the complete graph Kn is a factor-
n−1
n/2 integrality gap instance for the linear program,

we will say that linear programming “fails to certify
Min-VC(Kn) > 1/2, even though Min-VC(Kn) = (n −
1)/n”.

There is a long line of work on integrality
gaps for Chromatic-Number, Independent-Set, and
Vertex-Cover. Specific works on integrality gaps for
Vertex-Cover include [KG98, Cha02, ABL02, ABLT06,
Tou06, FO06, STT07a, STT07b, GMT08, GM08, Sch08,
CMM09, Tul09, GMPT10, GM10, BCGM11] (see Geor-
giou’s thesis [Geo10] for a recent survey), and papers on

integrality gaps for 3-Coloring include [KMS98, KG98,
AK98, Cha02, FLS04, AG11]. Furthermore, almost any
paper on the Lovász ϑ-Function [Lov79] is implicitly
concerned with integrality gaps for these problems.

Both for 3-Coloring and Vertex-Cover, the integral-
ity gap papers working with the strongest SDP relax-
ation employ the “Frankl–Rödl graphs” as their hard
instances:

Definition 1.2. Let n ∈ N and let 0 ≤ γ ≤ 1 be such
that (1−γ)n is an even integer. The Frankl–Rödl graph
FRn

γ is the undirected graph on the N = 2n vertices
{−1, 1}n with edge set {(x, y) : ∆(x, y) = (1 − γ)n},
where ∆(·, ·) denotes Hamming distance.

The following theorem is essentially due to Frankl and
Rödl [FR87] (a few small details are only worked out
in [GMPT10]):

Theorem 1.6. There is a universal constant K such
that for all γ ≤ 1/4 it holds that Max-IS(FRn

γ ) ≤
n(1− γ2/K)n. In particular,

Max-IS(FRn
γ ) ≤ on(1), χ(FRn

γ ) = ωn(1),

Min-VC(FRn
γ ) ≥ 1− on(1),

whenever γ ≥ .1
√

logn
n and n is sufficiently large.

For the problem of 3-Coloring, integrality gap pa-
pers have focused mainly on FRn

1/4, the graph on
{−1, 1}n in which (x, y) is an edge if and only if
∆(x, y) = (3/4)n, i.e., 1

n 〈x, y〉 = −1/2. The succes-
sion of works [KMS98, KG98, Cha02] showed that FRn

1/4

is an integrality gap instance for successively stronger
SDP relaxations of 3-Coloring, with Charikar [Cha02]
showing that the strongest of them still fails to certify
χ(FRn

1/4) > 3, even though in fact χ(FRn
1/4) ≥ NΩ(1).

(Feige, Langberg, and Schechtman [FLS04] have one of
the few works to employ a non-Frankl–Rödl graph as an
integrality gap instance; however it’s for an SDP relax-
ation weaker than Charikar’s.) A recent work of Arora
and Ge [AG11] shows that the degree-polylog(N) SOS
proof system is able to certify χ(FRn

1/4) ≥ 4; we will
give a much stronger result.

Turning to Vertex-Cover, there are factor-(2−o(1))
integrality gap instances for NΩ(1) levels of the Sherali–
Adams linear programming hierarchy [CMM09]; this
work does not use Frankl–Rödl graphs. However, as
far as we are aware, the Frankl–Rödl graphs are the
only known factor-(2− ε) integrality gap instances even
for the basic SDP relaxation. By employing FRn

γ with
γ slightly subconstant, it has recently been shown that

Ω(
√

logN
log logN ) levels of the Lovász–Schrijver+ SDP hi-

erarchy and 6 levels of the Sherali–Adams+ SDP hier-
archy fail to certify Min-VC(FRn

γ ) > 1/2 + ω(1), even



though Min-VC(FRn
γ ) > 1 − o(1) [BCGM11]. Further,

[BCGM11] conjectures (based on numerical evidence)
that their 6-level result can be extended to any con-
stant number of levels. Since the Sherali–Adams+ hier-
archy is stronger than the Sherali–Adams and Lovász–
Schrijver+ hierarchies, this conjecture would subsume
the other two mentioned results, at least with regards to
ruling out polynomial-time (constant-level) algorithms.

Our result. As an application of our SOS proof
for the reverse hypercontractive inequality, we are able
to show that for any constant 0 < γ ≤ 1/4, the
SOS/Lasserre hierarchy can certify Max-IS(FRn

γ ) < o(1)

using degree 4d 1
4γ e. In particular, whereas the strong

SDP of [Cha02] fails to certify χ(FRn
1/4) > 3, we show

that the degree-4 SOS proof system correctly certifies
χ(FRn

1/4) = ω(1). This improves the work of [AG11]
which shows that degree-polylog(N) SOS proofs can
certify χ(FRn

1/4) ≥ 4.
Our application to Vertex-Cover is not quite as

strong. The prior work of [BCGM11] shows that for
any constants ε, γ > 0, Ω(ε2/γ) levels of Lovász–
Schrijver+ and 6 levels of Sherali–Adams+ fail to certify
Min-VC(FRn

γ ) > 1/2 + ε, even though Min-VC(FRn
γ ) >

1−o(1). Our work shows that the SOS proof system does
certify Min-VC(FRn

γ ) > 1 − o(1) once the degree is as
large as 1/γ. However, the [BCGM11] result continues

to hold for the subconstant value γ = Θ(
√

logn
n ), and

they advocate this parameter setting. On the other
hand, not only do we not obtain a constant-degree SOS

certification when γ = Θ(
√

logn
n ), our techniques do

not work at all unless γ � 1
logn (though this may be

just for a technical reason). In fact, one may speculate

that with the choice γ = Θ(
√

logn
n ), the Frankl–Rödl

graphs are factor-(2−o(1)) integrality gap instances for
constant-degree SOS; see Section 6.

To obtain our result we need to show an SOS proof
for the Frankl–Rödl Theorem. A key ingredient in
Frankl and Rödl’s original proof is the vertex isoperi-
metric inequality on {−1, 1}n, due to Harper. The stan-
dard proof of this inequality involves a “shifting” argu-
ment which we do not see how to carry out with SOS.
However, it is known that inequalities of this type can
also be proved using the reverse hypercontractive in-
equality studied in this paper. In particular, Benabbas,
Hatami, and Magen [BHM12] have very recently proven
a “density” variation of the Frankl–Rödl Theorem using
the reverse hypercontractive inequality. We obtain the
SOS proof for the Frankl–Rödl Theorem by combining
our SOS proof for the reverse hypercontractive inequal-
ity and an SOS version of the Benabbas–Hatami–Magen
proof; see Section 5.

2 Preliminaries

The SOS proof system. We describe the
SOS (Positivstellensatz) proof system of Grigoriev
and Vorobjov [GV01] using the notation from the
work [OZ13]; for more details, please see that paper.

Definition 2.1. Let X = (X1, . . . , Xn) be indetermi-
nates, let q1, . . . , qm, r1, . . . , rm′ ∈ R[X], and let

A = {q1 ≥ 0, . . . , qm ≥ 0} ∪ {r1 = 0, . . . , rm′ = 0}.

Given p ∈ R[X] we say that A SOS-proves p ≥ 0 with
degree k, written

A `k p ≥ 0,

whenever

∃v1, . . . , vm′ and SOS u0, u1, . . . , um such that

p = u0 +

m∑
i=1

uiqi +

m′∑
j=1

vjrj ,

with deg(u0),deg(uiqi),deg(vjrj) ≤ k ∀i ∈ [m], j ∈ [m′].

Here we use the abbreviation “w ∈ R[X] is SOS” to
mean w = s2

1 + · · · + s2
t for some si ∈ R[X]. We say

that A has a degree-k SOS refutation if

A `k −1 ≥ 0.

Finally, when A = ∅ we will sometimes use the short-
hand

`k p ≥ 0,

which simply means that p is SOS and deg(p) ≤ k.

Analysis of boolean functions. Let us recall
some standard notation from the field. We write
x ∼ {−1, 1}n to denote that the string x is drawn
uniformly at random from {−1, 1}n. Given f :
{−1, 1}n → R we sometimes use abbreviations like E[f ]
for Ex∼{−1,1}n [f(x)]. For f, g : {−1, 1}n → R we
also write 〈f, g〉 = E[fg] = Ex∼{−1,1}n [f(x)g(x)]. For
−1 ≤ ρ ≤ 1 we say that (x,y) ∼ {−1, 1}n ×{−1, 1}n is
a pair of ρ-correlated random strings if the pairs (xi,yi)
are independent for i ∈ [n] and satisfy E[xi] = E[yi] = 0
and E[xiyi] = ρ. The operator Tρ acts on functions
f : {−1, 1}n → R via Tρf(x) = E[f(y) | x = x], where
(x,y) is a pair of ρ-correlated random strings.

Simple SOS facts and lemmas. We will use the
following facts and lemmas in our SOS proofs. The first
one, in particular, we use throughout without comment.



Lemma 2.1.

If A `k p ≥ 0, A′ `k′ p′ ≥ 0,

then A ∪A′ `max(k,k′) p+ p′ ≥ 0.

The following fact is a well-known consequence of
the Fundamental Theorem of Algebra.

Fact 2.1. A univariate polynomial p(x) is SOS if it is
nonnegative. In other words, we have

`deg(p) p(x) ≥ 0,

when p(x) ≥ 0 for all x ∈ R.

It is also well known that for homogeneous polyno-
mials, one can reduce the number of variables by 1 by
“dehomogenizing” the polynomial, getting an SOS rep-
resentation (if there is one), and rehomogenizing it to
get an SOS representation of the original polynomial.
Applying this trick to Fact 2.1, we get:

Fact 2.2. A homogeneous bivariate polynomial p(x, y)
is SOS if it is nonnegative.

Here are some additional lemmas:

Lemma 2.2. Let c ≥ 0 be a constant and X an indeter-
minate. Then for any k ∈ N+,

X ≥ c `k Xk ≥ ck.

Proof. This follows because

Xk − ck = (X − c+ c)k − ck =

k∑
i=1

(
k
i

)
ck−i(X − c)i

and each power (X − c)i is either a square or (X − c)
times a square.

Lemma 2.3. For any k ∈ N+ we have

`2k

(
X+Y

2

)2k ≤ X2k+Y 2k

2 .

Proof. Since X2k+Y 2k

2 −
(
X+Y

2

)2k
is a degree-2k ho-

mogeneous polynomial, the claim follows from Fact 2.2:
the inequality is indeed true by convexity of t 7→ tk.

3 The hypercontractive inequality in SOS

As a warmup, we give a simple proof (“in ZFC”) of
the (2, q)-hypercontractive inequality ‖Tρf‖q ≤ ‖f‖q
for all even integers q, which implies Theorem 1.2 for
all even integers q. As mentioned, we do this under a
significantly weakened moment condition:

“s-Moment Conditions.” For a real random
variable xi, the condition is that E[x2

i ] = 1 and

E[x2j−1
i ] = 0, E[x2j

i ] ≤ (2s− 1)j
(
s
j

)(
2s
2j

)
for all integers 1 ≤ j ≤ s.

Our proof will show that these moment conditions
are sharp; none of them can be relaxed.

Remark 3.1. By converting to factorials and expand-
ing, one verifies that

(2s− 1)j
(
s
j

)(
2s
2j

) = (2j − 1)!! ·
j−1∏
i=1

2s− 1

2s− (2i+ 1)
.

It follows that for each fixed j ∈ N
+, the quantity

decreases as a function of s (for s ≥ j) to the limit
(2j − 1)!!, which is the (2j)th moment of a standard
Gaussian. This shows that a standard Gaussian and a
uniformly random ±1 bit both satisfy all of the above
moment conditions.

Theorem 3.1. Let x = (x1, . . . ,xn) be a sequence
independent real random variables satisfying the s-
Moment Conditions. Let f : {−1, 1}n → R, s ∈ N+,
and 0 ≤ ρ ≤

√
1/(2s− 1). Then ‖Tρf(x)‖2s ≤

‖f(x)‖2.

Proof. It is well-known that the hypercontractive
inequality tensorizes [KS88] and so it suffices to treat
the case n = 1. By homogeneity we may also assume
E[f ] = 1; we thus write f(x1) = 1+εx1 for some ε ∈ R.
Raising both sides of the inequality to the (2s)th power
and using the odd moment conditions (E[x2j−1

1 ] = 0 for
all integers 1 ≤ j ≤ s), we have

‖Tρf(x1)‖2s2s =

s∑
j=0

(
2s

2j

)
ρ2jε2j E[x2j

1 ](3.1)

‖f(x1)‖2s2 =

s∑
j=0

(
s

j

)
ε2j .(3.2)

By the even moment conditions

E[x2j
1 ] ≤ (2s− 1)j

(
s

j

)
/

(
2s

2j

)
,

each summand in (3.1) is at most the corresponding
term in (3.2) and the proof is complete.

By considering ε→ 0 in (3.1) and (3.2) it is easy to
see for each j = 1, 2, . . . , s in turn that the associated
s-moment condition cannot be further relaxed.

Our SOS extension of this result requires the fol-
lowing lemma:



Lemma 3.1. Let v be an even positive integer and let
G1, . . . , Gv, H1, . . . ,Hv be indeterminates. Then

`2v

v∏
i=1

GiHi ≤
1(
v
v/2

) ∑
T⊂[v]
|T |=v/2

∏
i∈T

G2
i

∏
i∈[v]\T

H2
i .

Proof. The non-SOS proof would be to just apply the
AM-GM inequality. For the SOS proof we first trivially
write∏

i∈[v]

GiHi =

1(
v
v/2

) ∑
T⊆V
|T |=v/2

∏
i∈T

Gi
∏

i∈[v]\T

Hi

 ∏
i∈[v]\T

Gi
∏
i∈T

Hi

 .

We then apply the fact that `2 XY ≤ 1
2X

2 + 1
2Y

2 to
each summand to deduce

`2v

v∏
i=1

GiHi ≤
1

2
(
v
v/2

) ∑
T⊆[v]
|T |=v/2

∏
i∈T

G2
i

∏
i∈[t]\T

H2
i

+
1

2
(
v
v/2

) ∑
T⊆[v]
|T |=v/2

∏
i∈[v]\T

G2
i

∏
i∈T

H2
i

=
1(
v
v/2

) ∑
T⊂[v]
|T |=v/2

∏
i∈T

G2
i

∏
i∈[v]\T

H2
i .

We are now ready to state and prove the full version
of Theorem 1.4.

Theorem 3.2. Fix s ∈ N+ and write q = 2s. Let
0 ≤ ρ ≤ 1√

q−1
. Let n ∈ N and for each 1 ≤ i ≤ s

and each S ⊆ [n], introduce an indeterminate f̂i(S).
For each x = (x1, . . . , xn) ∈ Rn we write

fi(x) =
∑
S⊆[n]

f̂i(S)
∏
j∈S

xi,

Tρfi(x) =
∑
S⊆[n]

ρ|S|f̂i(S)
∏
j∈S

xi.

Let x = (x1, . . . ,xn) be a sequence independent real
random variables satisfying the s-Moment Conditions.
Then

(3.3) `q E

[
s∏
i=1

(Tρfi(x))2

]
≤

s∏
i=1

E[fi(x)2].

Proof. We prove (3.3) by induction on n. The base
case, n = 0, is trivial. For general n ≥ 1, we can
decompose each fi(x) as

fi(x1, . . . , xn) = xngi(x1, . . . , xn−1) + hi(x1, . . . , xn−1).

Formally, this means introducing the shorthand
hi(x1, . . . , xn−1) =

∑
S 63n f̂i(S)

∏
j∈S xi, and similarly

for gi. We also introduce the notation F i = fi(x),

F̃ i = Tρfi(x) for each i, and similarly Gi, G̃i,Hi, H̃i.
Note that these latter four do not depend on xn. By

definition we have F̃ i = ρxnG̃i + H̃i.
Using the fact that xn is independent of all Gi, Hi

and has zero odd moments, the left-hand side of (3.3)
can be written as follows:

E

[
s∏
i=1

(
ρ2x2

nG̃
2

i + 2ρxnG̃iH̃i + H̃
2

i

)]
=

∑
partitions

(U,V,W ) of [s]

(
ρ2|U |+|V |2|V |E

[
x2|U |+|V |
n

]

E

[ ∏
i∈U

G̃
2

i

∏
i∈V

G̃iH̃i

∏
i∈W

H̃
2

i

])
=

s∑
u=0

s−u∑
v=0
v even

(
ρ2u+v2v E[x2u+v

n ]

∑
(U,V,W )
|U |=u
|V |=v

E

[ ∏
i∈U

G̃
2

i

∏
i∈W

H̃
2

i

∏
i∈V

G̃iH̃i

])
.

(3.4)

We apply Lemma 3.1 to each
∏
i∈V G̃iH̃i (notice that

each is multiplied against an SOS polynomial) to obtain

`q (3.4) ≤
s∑

u=0

s−u∑
v=0
v even

(
ρ2u+v2v(

v
v/2

) E[x2u+v
n ]

∑
(U,V,W )
|U |=u
|V |=v

∑
T⊆V
|T |=v/2

E

[ ∏
i∈U∪T

G̃
2

i

∏
i∈W∪(V \T )

H̃
2

i

])

≤
s∑

u=0

s−u∑
v=0
v even

(
2v(
v
v/2

) ( s
u+v/2

)(
2s

2u+v

)
∑

(U,V,W )
|U |=u
|V |=v

∑
T⊆V
|T |=v/2

E

[ ∏
i∈U∪T

G̃
2

i

∏
i∈W∪(V \T )

H̃
2

i

])

≤
s∑

u=0

s−u∑
v=0
v even

( 2v(
v
v/2

) ( s
u+v/2

)(
2s

2u+v

)
∑

(U,V,W )
|U |=u
|V |=v

∑
T⊆V
|T |=v/2

∏
i∈U∪T

E[G2
i ]

∏
i∈W∪(V \T )

E[H2
i ]
)
,

(3.5)



where the second inequality uses the s-Moments Condi-
tion and the bound on ρ, and the third inequality uses
the induction hypothesis. (Again, note that each in-
equality is multiplied against an SOS polynomial.) It is
easy to check that E[F 2

i ] = E[G2
i ] + E[H2

i ] and so the
right-hand side of (3.3) is simply∑

R⊆[s]

∏
i∈R

E[G2
i ]

∏
i∈[s]\R

E[H2
i ].

Thus to complete the inductive proof, it suffices to
show that for each R ⊆ [s], the coefficient on∏
i∈RE[G2

i ]
∏
i∈[s]\RE[H2

i ] in (3.5) is equal to 1. By

symmetry, and taking the sum over v first in (3.5), it
suffices to check that for each r = |R| = |U ∪ T | ∈
{0, 1, . . . , s} we have

(3.6)

r∑
v′=0

22v′(
2v′

v′

) (sr)(2s
2r

)( r
v′

)(
s−r
v′

)
= 1.

With a modest amount of work it is possible to prove
this identity by “traditional” enumerative combina-
torics methods; however it is much more efficient to
simply use Zeilberger’s algorithm [Zei90, PWZ97]. This
algorithm automatically generates the key rational func-
tion

R(r, v′) =
(1 + 2r − s)v′(2v′ − 1)

(2r − 2s+ 1)(r − s)(1 + r − v′)
.

Then, writing t(r, v′) for the expression in the sum on
the left-hand side of (3.6), we have

t(r+1, v′)−t(r, v′) = R(r, v′+1)t(r, v′+1)−R(r, v′)t(r, v′),

as can be verified by a trivial calculation. Summing the
above equation for v′ = 0, . . . , r shows that T (r + 1) −
T (r) = 0, where T (r) =

∑r
v′=0 t(r, v

′). Together with
the initial value T (0) = 1, it follows by induction that
T (r) = 1 for all r, as required.

4 The reverse hypercontractive inequality in
SOS

This section is devoted to providing a proof Theo-
rem 1.5, the reverse hypercontractivity in the SOS proof
system. More precisely:

Theorem 4.1. Let k, n ∈ N+, let 0 ≤ ρ ≤ 1− 1
2k , and

let f(x), g(x) be indeterminates for each x ∈ {−1, 1}n.
Then

`4k E
(x,y)
ρ-corr’d

[f(x)2kg(y)2k] ≥ E[f ]2k E[g]2k.

For each fixed k, we prove Theorem 4.1 by induction
on n. The n = 1 base case of the induction is the
following 4-variable inequality:

Theorem 4.2. Let k ∈ N+ and let 0 ≤ ρ ≤ 1− 1
2k . Let

F0, F1, G0, G1 be real indeterminates. Then

`4k ( 1
4 + 1

4ρ)
(
F 2k

0 G2k
0 + F 2k

1 G2k
1

)
+ ( 1

4 −
1
4ρ)
(
F 2k

0 G2k
1 + F 2k

1 G2k
0

)
≥
(
F0+F1

2

)2k(
G0+G1

2

)2k

.

Proving this base case will be the key challenge; for now,
we give the induction which proves Theorem 4.1.

Proof of Theorem 4.1. Let n > 1. Given indetermi-
nates f(x), g(x) for x ∈ {−1, 1}n, let f0(x) be short-
hand for f(x1, . . . , xn−1, 1), let f1(x) be shorthand for
f(x1, . . . , xn−1,−1), and similarly define shorthands g0,
g1. Now

E
(x,y)
ρ-corr’d

[f(x)2kg(y)2k] = ( 1
4 + 1

4ρ)E[f0(x)2kg0(y)2k]

+ ( 1
4 + 1

4ρ)E[f1(x)2kg1(y)2k]

+ ( 1
4 −

1
4ρ)E[f0(x)2kg1(y)2k]

+ ( 1
4 −

1
4ρ)E[f1(x)2kg0(y)2k].

By four applications of induction, we deduce

`4k E
(x,y)
ρ-corr’d

[f(x)2kg(y)2k]

≥ ( 1
4 + 1

4ρ)E[f0(x)]2k E[g0(y)]2k

+ ( 1
4 + 1

4ρ)E[f1(x)]2k E[g1(y)]2k

+ ( 1
4 −

1
4ρ)E[f0(x)]2k E[g1(y)]2k

+ ( 1
4 −

1
4ρ)E[f1(x)]2k E[g0(y)]2k.

Now applying the n = 1 base case of the induction
(Theorem 4.2) to the right-hand side of the above we
conclude that

`4k E
(x,y)
ρ-corr’d

[f(x)2kg(y)2k]

≥
(

E[f0(x)]+E[f1(x)]
2

)2k (
E[g0(y)]+E[g1(y)]

2

)2k

= E[f ]2k E[g]2k.

Our remaining task is to prove the 4-variable base
case, Theorem 4.2. Let us make a few simplifications.
First, we claim it suffices to prove it in the case ρ =
ρ∗ = 1− 1

2k . To see this, note that

( 1
4 + 1

4ρ)
(
F 2k

0 G2k
0 + F 2k

1 G2k
1

)
+( 1

4−
1
4ρ)
(
F 2k

0 G2k
1 +F 2k

1 G2k
0

)
−
(
F0+F1

2

)2k(
G0+G1

2

)2k



is linear in ρ. Thus if we can show it is SOS for both
ρ = 0 and ρ = ρ∗, it follows easily that it is SOS for all
0 < ρ < ρ∗. And for ρ = 0 the task is easy:

`4k
1
4

(
F 2k

0 G2k
0 + F 2k

1 G2k
1

)
+ 1

4

(
F 2k

0 G2k
1 + F 2k

1 G2k
0

)
=
(
F 2k

0 +F 2k
1

2

)(
G2k

0 +G2k
1

2

)
≥
(
F0+F1

2

)2k (G0+G1

2

)2k
by Lemma 2.3. Next, for clarity we make a change
of variables; our task becomes showing that for real
indeterminates µ, ν, α, β,

`4k( 1
4 + 1

4ρ
∗)
(

(µ+ α)2k(ν + β)2k + (µ− α)2k(ν − β)2k
)

+ ( 1
4 −

1
4ρ
∗)
(

(µ+ α)2k(ν − β)2k + (µ− α)2k(ν + β)2k
)

− µ2kν2k ≥ 0.

(4.7)

Finally, by homogeneity we can reduce the above to
proving the following “two-point inequality”:

Two-Point Inequality. Let k ∈ N+ and let ρ∗ =
1− 1

2k . Then

`4k Pk(a, b)

:= ( 1
4 + 1

4ρ
∗)
(

(1 + a)2k(1 + b)2k + (1− a)2k(1− b)2k
)

+ ( 1
4 −

1
4ρ
∗)
(

(1 + a)2k(1− b)2k + (1− a)2k(1 + b)2k
)

− 1 ≥ 0.

Proof that (4.7) follows from the Two-Point Inequality.
Suppose we show that Pk(a, b) is equal to a sum of
squares, say

∑m
i=1Ri(a, b)

2 where each Ri(a, b) is a
bivariate polynomial. Viewing this as an SOS identity
in a only, we deduce that dega(Ri) ≤ k for each i;
similarly, degb(Ri) ≤ k for each i. Then

m∑
i=1

(µkνkRi(
α
µ ,

β
ν ))2 = µ2kν2k

m∑
i=1

Ri(
α
µ ,

β
ν )2 = LHS(4.7),

and in the summation each expression µkνkRi(
α
µ ,

β
ν ) is

a polynomial in µ, ν, α, β.

It remains to establish the Two-Point Inequality via
an SOS proof.

Remark 4.1. We remind the reader that there is of
course a “ZFC” proof of the Two-Point Inequality, since
it follows as a special case of the reverse hypercontractive
inequality.

4.1 The Two-Point Inequality in SOS This sec-
tion is devoted to proving the Two-Point Inequality; i.e.,

showing Pk(a, b) is SOS. After significant trial and er-
ror, we were led to the crucial idea of rewriting it under
the following substitutions:

r = a− b, s = a+ b, t = ab.

We may then express

Pk(a, b) =

− 1 +
(

1
4 + 1

4ρ
∗) ((1 + t+ s)2k + (1 + t− s)2k

)
+
(

1
4 −

1
4ρ
∗) ((1− t+ r)2k + (1− t− r)2k

)
= −1 +

(
1
2 + 1

2ρ
∗) k∑

i=0

(
2k
2i

)
(1 + t)2k−2is2j

+
(

1
2 −

1
2ρ
∗) k∑

j=0

(
2k
2j

)
(1− t)2k−2jr2j ,

where we used the identity

1
2

(
(c+ d)2k + (c− d)2k

)
=

k∑
i=0

(
2k
2i

)
c2k−2id2i.

Next we use r2 = s2 − 4t to eliminate r, obtaining

Pk(a, b) = −1 +
(

1
2 + 1

2ρ
∗) k∑

i=0

(
2k
2i

)
(1 + t)2k−2is2i

+
(

1
2 −

1
2ρ
∗) k∑

j=0

(
2k
2j

)
(1− t)2k−2j(s2 − 4t)j .

Now we expand (s2 − 4t)j in the latter sum so that we
can write it as an even polynomial in s. We get

k∑
j=0

(
2k
2j

)
(1− t)2k−2j(s2 − 4t)j

=

k∑
j=0

(
2k
2j

)
(1− t)2k−2j

j∑
i=0

(
j
i

)
s2i(−4t)j−i

=

k∑
i=0

s2i
k∑
j=i

(
2k
2j

)
(1− t)2k−2j

(
j
i

)
(−4t)j−i.

Thus we have

Pk(a, b)

=− 1 +

k∑
i=0

( (
1
2 + 1

2ρ
∗) (2k

2i

)
(1 + t)2k−2i

+
(

1
2 −

1
2ρ
∗) k∑

j=i

(
2k
2j

)
(1− t)2k−2j

(
j
i

)
(−4t)j−i

)
s2i

=Qk,0(t) +Qk,1(t)s2 +Qk,2(t)s4 + · · ·+Qk,k(t)s2k,

(4.8)



where (for i = 1 . . . k)

Qk,0(t) =− 1 +
(

1
2 + 1

2ρ
∗) (1 + t)2k

+
(

1
2 −

1
2ρ
∗) k∑

j=0

(
2k
2j

)
(1− t)2k−2j(−4t)j ,

Qk,i(t) =
(

1
2 + 1

2ρ
∗) (2k

2i

)
(1 + t)2k−2i

+
(

1
2 −

1
2ρ
∗) k∑

j=i

(
2k
2j

)
(1− t)2k−2j

(
j
i

)
(−4t)j−i.

Suppose we could show that Qk,0(t) and also
Qk,1(t), . . . , Qk,k(t) are nonnegative for all t ∈ R. Then
by Fact 2.1 they are also SOS, and hence Pk(a, b) is SOS
in light of (4.8). This would complete the proof of the
Two-Point Inequality.

In fact that is precisely what we show below, using
some computer algebra assistance. We remark, though,
that is not a priori clear that this strategy should work;
i.e., that Qk,0(t), . . . , Qk,k(t) should be nonnegative.
It does not follow from the truth of the Two-Point
Inequality. To see this, observe that whereas the Two-
Point Inequality is known to hold for any 0 ≤ ρ ≤ ρ∗, it
is not true that Qk,0(t) ≥ 0 for all 0 ≤ ρ ≤ ρ∗. In fact,
for k = 1 we have

(4.9) Q1,0(t) = t2 − (2− 4ρ∗)t

which is nonnegative for all t only for the specific choice
ρ∗ = 1− 1

2k = 1
2 .

Nevertheless, we now complete the proof
of the Two-Point Inequality by showing that
Qk,0(t), . . . , Qk,k(t) are all nonnegative.

Proposition 4.1. For each k ∈ N+ (with ρ∗ = 1− 1
2k ),

the polynomial Qk,0(t) is nonnegative.

Proof. For k = 1 we have Q1,0(t) = t2 (as noted
in (4.9)); henceforth we may assume k ≥ 2. For t < 0
we substitute a =

√
−t, b = −

√
−t into (4.8); since

s = a + b = 0 we get Pk(
√
−t,−

√
−t) = Qk,0(t). By

Remark 4.1 we have Pk(
√
−t,−

√
−t) ≥ 0 and hence

Qk,0(t) ≥ 0 for all t < 0.
For t ≥ 0 we first rewrite

Qk,0(t) = −1

+(1+t)2k

1− 1

4k
+

1

4k

k∑
j=0

(
2k
2j

) (1− t)2k−2j

(1 + t)2k
(−4t)j

 .

Denoting the sum in this expression by Sk(t), Zeil-
berger’s algorithm [Zei90, PWZ97] finds the recurrence
equation

(t+1)2Sk+2(t)−2(t2−6t+1)Sk+1(t)+(t+1)2Sk(t) = 0,

valid for all k ≥ 0. Since the coefficients in this
recurrence do not depend on k but only on t, the
recurrence can be solved in closed form. Together with

the initial values S(0) = 1 and S(1) = t2−6t+1
(t+1)2 , it follows

that S(t) = cos(4k arctan(
√
t)). (Not every computer

algebra system may deliver the solution in this form;
however, for the correctness of the proof it is sufficient
to check that cos(4k arctan(

√
t)) is indeed a solution of

the recurrence. This is easy to verify.) Hence,

Qk,0(t)

= −1 + (1 + t)2k
(

1− 1
4k + 1

4k cos(4k arctan(
√
t))
)

≥ −1+(1+2kt)
(

1− 1
4k + 1

4k cos(4k arctan(
√
t))
)
,

using the fact that the parenthesized expression is
clearly nonnegative. We now split into two cases.

Case 1: t ≥ 1
2k(2k−1) . In this case we simply use

that cos(4k arctan(
√
t)) ≥ −1 to obtain

Qk,0(t) ≥ −1 + (1 + 2kt)
(
1− 1

2k

)
= − 1

2k + (2k − 1)t,

which is indeed nonnegative when t ≥ 1
2k(2k−1) .

Case 2: 0 ≤ t ≤ 1
2k(2k−1) . In this case we use the

following estimates:

arctan(
√
t) ≤

√
t ∀t ≥ 0,

cos(x) ≥ κ(x) := 1− 1
2x

2 + 1
24x

4 − 1
720x

6 ∀x ∈ R.

Note that 4k arctan(
√
t) ≤ 4k

√
t ≤ 4k

√
1

2k(2k−1) , and

the latter quantity is at most
√

2 for all k ≥ 2. Since
cos(x) is decreasing for x ∈ [0,

√
2] we have

cos(4k arctan(
√
t)) ≥ cos(4k

√
t) ≥ κ(4k

√
t).

Therefore

Qk,0(t)

≥ −1 + (1 + 2kt)
(

1− 1
4k + 1

4kκ(4k
√
t)
)

= (1 + 2kt)(
1− 1

4k + 1
4k

(
1− 8k2t+ 32

3 k
4t2 − 256

45 k
6t3
))
− 1

= q(t)t2,

where

q(t) = − 128
45 k

6t2 −
(

64
45k −

16
3

)
k4t+

(
8
3k − 4

)
k2.

It remains to show that q(t) ≥ 0 for 0 ≤ t ≤
1

2k(2k−1) . Since q(t) is a quadratic polynomial with

negative leading coefficient, we only need to check that
q(0), q( 1

2k(2k−1) ) ≥ 0. We have q(0) =
(

8
3k − 4

)
k2,



which is clearly nonnegative for k ≥ 2. Finally, one
may check that

q
(

1
2k(2k−1)

)
= 4k2

45(2k−1)2

(
19 + 136(k − 2)

(
(k − 13

34 )2 + 103
1156

))
,

which is evidently nonnegative for k ≥ 2.

Proposition 4.2. For all 1 ≤ i ≤ k ∈ N
+, the

polynomial Qk,i(t) is nonnegative (with ρ∗ = 1− 1
2k ).

Proof. In fact, we will prove the stronger claim that
each Qk,i(t) is nonnegative even when ρ∗ is set to 0. I.e.,
we will show that

Q̃k,i(t) :=

1
2

(
2k
2i

)
(1 + t)2k−2i + 1

2

k∑
j=i

(
2k
2j

)
(1− t)2k−2j

(
j
i

)
(−4t)j−i

is nonnegative. To see that this is indeed stronger, sim-
ply note that Qk,i(t) and Q̃k,i(t) are convex combina-

tions of the same two main quantities, but Q̃k,i(t) has

less of its “weight” on the first quantity
(

2k
2i

)
(1+t)2k−2i,

which is clearly nonnegative. We will furthermore show
that even Q̃k,0(t) ≥ 0.

This is not particularly easy to prove by hand, but
using computer assistance yields a compact proof. One
may check that the following recurrence holds for all
integers 0 ≤ i ≤ k:

(1 + i)(1 + k)Q̃k+2,i+1(t)

= (1 + i)(2 + k)(1 + t)2Q̃k+1,i+1(t)

+ (2 + k)(2 + 2k − i)Q̃k+1,i(t).

This was found by guessing the form of a polynomial
recurrence and then solving via computer. In light of
this we only need to prove Q̃k,i(t) ≥ 0 for the cases

that k = i and i = 0; the nonnegativity of Q̃k,i(t)
for general k and i then follows by induction. For
k = i we have Q̃k,k(t) = 1 ≥ 0. For i = 0 the proof
of nonnegativity is similar to, but easier than, that of
Proposition 4.1. For t < 0 it’s obvious from its definition
that Q̃k,0(t) is nonnegative. For t ≥ 0, the proof of
Proposition 4.1 gives

Q̃k,0(t) = 1
2 (1 + t)2k

(
1 + cos(4k arctan(

√
t))
)
≥ 0.

5 The Frankl-Rödl Theorem in SOS

The applications of our work to 3-Coloring and Vertex-
Cover follow by giving a low-degree SOS of the Frankl–
Rödl Theorem, that Max-IS(FRn

γ ) < o(1). (See Sec-
tion 1.2.1 for the definition of the Frankl–Rödl graphs
and the statement of the Frankl–Rödl Theorem.) More
precisely, in this section we will prove the following:

Theorem 5.1. Let n ∈ N+ and let 1
logn ≤ γ ≤ 1

4 be

such that (1−γ)n is an even integer. Given the Frankl–
Rödl graph FRn

γ = (V,E), for each x ∈ V = {−1, 1}n
let f(x) be an indeterminate. Then there is a degree-(

4d 1
4γ e
)

SOS refutation of the system expressing the

statement that Max-IS(G) ≥ O(n−γ/10); i.e.,

{f(x)2 = f(x) ∀x ∈ V, f(x)f(y) = 0 ∀(x, y) ∈ E,
1
|V |

∑
x∈V

f(x) ≥ Cn−γ/10} `O(1/γ) −1 ≥ 0

for a universal constant C.

In particular, this theorem shows that the degree-4
SOS/Lasserre algorithm certifies that Max-IS(FRn

1/4) <
o(1), which is a stronger statement then the chromatic
number bound χ(FRn

1/4) = ω(1). More generally, it

shows that the NO(1/γ)-time SOS/Lasserre hierarchy
algorithm certifies that Max-IS(FRn

γ ) ≤ O(n−γ/10); in

other words, that Min-VC(FRn
γ ) ≥ (1−O(n−γ/10))N =

(1 − O(n−γ/10))2n. Note that this bound is nontrivial
only for γ � 1

logn ; the reason for this dependence on γ
will be seen shortly.

We prove Theorem 5.1 by “SOS-izing”
the Benabbas–Hatami–Magen Fourier-theoretic
proof [BHM12] of the following “density” version
of the Frankl–Rödl Theorem:

Theorem 5.2. ([BHM12]) Fix 0 < γ < 1/2 and 0 <
α ≤ 1. In the graph FRn

γ = (V,E), if S ⊆ V has
|S|/2n ≥ α then

Pr
(x,y)∼E

[x ∈ S,y ∈ S] ≥ 2(α/2)1/γ − on(1).

Here the on(1) goes to 0 rather slowly in n, which means
that the Benabbas–Hatami–Magen proof only recovers
the Frankl–Rödl Theorem for γ > ω( 1

logn ). This is
due to comparison between the Td and Sd operators
described below; it seems possible that some additional
technical work would allow for smaller values of γ.

5.1 The Benabbas–Hatami–Magen argument
in SOS Benabbas, Hatami, and Magen [BHM12] in-
troduce the following operator:



Definition 5.1. For integer 0 ≤ d ≤ n the operator Sd
is defined on functions f : {−1, 1}n → R by Sdf(x) =
Ey[f(y)], where y is a chosen uniformly at random
subject to ∆(x,y) = d.

The key technical contribution of [BHM12] is show-
ing how to pass between the Sd operators (which are
relevant for Frankl–Rödl analysis) and the Tρ operators
(for which we have reverse hypercontractivity). Intu-
itively, the operators Sd and T1−2d/n should be similar
(at least if d/n is bounded away from 0 and 1). How-
ever there is one caveat: “parity” issues with Sd. For
example, if f : {−1, 1}n → {0, 1} is the indicator of the
strings of even Hamming weight, then

〈f, Sdf〉 =

{
0 if d is odd,
1
2 if d is even;

but

〈f, T1−2d/nf〉 ≈ 1
4 for d odd or even.

Benabbas, Hatami, and Magen evade this parity issue
by considering the operator 1

2Sd + 1
2Sd+1.

Definition 5.2. For integer 0 ≤ d < n, we define the
operator S′d = 1

2Sd + 1
2Sd+1.

The crucial theorem in [BHM12]’s work is the following:

Theorem 5.3. (Follows from Lemma 3.4
in [BHM12].) Let f : {−1, 1}n → R. Let d = n− c for
some integer e2

√
n ≤ c ≤ n/2. Then for ρ = 1− 2d/n,

〈f, S′df〉 − 〈f, Tρf〉 =
∑
U⊆[n]

f̂(U)2 · δ(U),

where each real number δ(U) satisfies

|δ(U)| ≤ O(max{n−1/5, nc2 log2( c
2

n )}).

Given this Theorem 5.3, Benabbas, Hatami, and
Magen are able to deduce their main Theorem 5.2 from
the reverse hypercontractivity result Theorem 1.3 with-
out too much trouble. We now show that this deduction
can also be carried out in the SOS proof system. Specif-
ically, we give here the proof of our Theorem 5.1, relying
on the SOS proof of hypercontractivity (Theorem 4.1)
from Section 4.

Proof of Theorem 5.1. Write d = (1 − γ)n (where
1

logn ≤ γ ≤ 1
4 ) and write ρ′ = 1 − 2d/n = −(1 − 2γ).

For i = 0, 1 let us denote

fi(x) =

{
f(x) if x’s Hamming weight equals i mod 2,

0 else.

We have

{f(x)f(y) = 0 ∀∆(x, y) = d}
`2 〈f0, S

′
df0〉+ 〈f1, S

′
df1〉 = 0

because if x’s Hamming weight has the same parity as
y’s then their distance can only be d (an even integer)
not d + 1 (an odd one). Using Theorem 5.3 it follows
that

{f(x)f(y) = 0 ∀∆(x, y) = d} `2

〈f0, Tρ′f0〉+ 〈f1, Tρ′f1〉 ≤ δ
∑
U

f̂0(U)2 + δ
∑
U

f̂1(U)2

= δ(E[f2
0 ] + E[f2

1 ]) = δE[f2].

where

δ = O(max{n−1/5, 1
γ2n log2(γ2n)}) = O(n−1/5)

(with the second bound using γ ≥ 1
logn .) We now write

gi(x) to denote fi(−x) and also ρ = −ρ′ = 1− 2γ; then

〈fi, Tρ′fi〉 = 〈fi, Tρgi〉 = E
(x,y)
ρ-corr’d

[fi(x)gi(y)]

so we conclude

{f(x)f(y) = 0 ∀∆(x, y) = d}
`2 E

(x,y)
ρ-corr’d

[f0(x)g0(y)]+ E
(x,y)
ρ-corr’d

[f1(x)g1(y)] ≤ δE[f2].

Next, define

k =
⌈

1
4γ

⌉
≥ 1.

We have f(x)2 = f(x) `2k f(x)2k = f(x), from which
we may easily deduce

{f(x)2 = f(x) ∀x, f(x)f(y) = 0 ∀∆(x, y) = d}
`4k E

(x,y)
ρ-corr’d

[f0(x)2kg0(y)2k] + E
(x,y)
ρ-corr’d

[f1(x)2kg1(y)2k]

≤ δE[f ].

Since ρ = 1 − 2γ ≤ 1 − 1
2k we may apply our reverse

hypercontractivity result Theorem 4.1 (in Section 4) to
deduce

{f(x)2 = f(x) ∀x, f(x)f(y) = 0 ∀∆(x, y) = d}
`4k E[f0]2k E[g0]2k + E[f1]2k E[g1]2k ≤ δE[f ].

We’re now almost done. First, E[fi] = E[gi] formally for
each i = 0, 1. Second, for simplicity we use the bound

{f(x)2 = f(x) ∀x}
`2 δE[f ] = δE[2f − f2] = δE[1− (1− f)2] ≤ δ.



Thus we have

{f(x)2 = f(x) ∀x, f(x)f(y) = 0 ∀∆(x, y) = d}
`4k δ ≥ E[f0]4k + E[f1]4k

≥ 2

(
E[f0] + E[f1]

2

)4k

= 2(E[f ]/2)4k

⇒ 24k−1δ ≥ E[f ]4k,

where the second inequality is Lemma 2.3. Finally, from
Lemma 2.2 we may deduce

E[f ] ≥ Cn−γ/10 `4k E[f ]4k ≥ C4kn−4kγ/10

= C4kn−(2/5)d 1
4γ eγ ≥ C4kn−1/5 ≥ 24kδ

for C sufficiently large, using our upper bound on δ.
Combining the previous two statements we can get

{f(x)2 = f(x) ∀x, f(x)f(y) = 0 ∀∆(x, y) = d,

E[f ] ≥ Cn−γ/10} `4k −1 ≥ 0,

as required.

6 Conclusions

We describe here a few questions left open by our work.
Regarding reverse hypercontractivity, it seems we may
not have given the Book proof of the SOS Two-Point
Inequality. We would be happy to see a more elegant
“human proof”, but even more interesting would be a
computer algebra technique that could automatically
prove SOS-ness, symbolically for all k.

An additional open question regarding the Frankl–
Rödl Theorem is whether the Benabbas–Hatami–Magen

proof can be improved to work for γ as small as
√

logn
n .

However even if this is possible, the resulting SOS

proof would (presumably) be of degree Ω(
√

n
logn ) =

Ω(
√

logN
log logN ), slightly superconstant. Could there be

an O(1)-degree SOS of the Frankl–Rödl Theorem with
this setting of γ, or should one try to prove an SOS lower
bound? An interesting toy version of this question is the
following: The vertex isoperimetric inequality for the
hypercube immediately implies that if A,B ⊆ {−1, 1}n

satisfy dist(A,B) ≥
√
n log n then |A|2n

|B|
2n = on(1). Does

this have an O(1)-degree SOS proof?
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