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GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(16x4 + 48x3 + 48x2 + 18x+ 2)f ′′(x)

− (16x4 + 48x3 + 52x2 + 32x+ 9)f ′(x)

+ (4x2 + 14x+ 7)f(x) = 0.

One independent
variable x

One unknown
function f(x)

FIND: closed form solutions f(x) of this equation.

I In the example: f(x) = exp(x) and f(x) =
√
1+3x+2x2

x+1 .
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Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2

I rational functions e.g.
(
5x− 3

)
/
(
3x2 − x+ 5

)
I hyperexponential functions e.g. exp

(
2x+3

x2(x+1)

) (2x+5)1/3

(7x2+x−3)1/2

I algebraic functions e.g. x−
√
x2 + 1

I elementary functions e.g. sin(x)/
√
1 + log(1− ex)

I special functions e.g. J3(x
2+1)− 2F1(2, 3; 1)(

1
x)
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Definition.
f(x) is called hyperexponential if there are polynomials p(x), q(x)
with

p(x)f ′(x)− q(x)f(x) = 0.

≈ exponential part ≈ rational part
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More precisely:

Definition.

I Two hyperexponential terms f(x) and g(x) are called similar
if f(x)/g(x) is a rational function.

I The equivalence classes of hyperexponential terms under this
relation are called exponential parts.

Examples.

x
√
2(x+ 1) ∼ x

√
2+4(x+ 1)−3 x

√
2 6∼ x2 x2 6∼ exp(x).
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GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(6x5 − 60x4 + 225x3 − 386x2 + 301x− 84)f(x)

+ (x− 1)2(10x5 − 86x4 + 277x3 − 411x2 + 272x− 59)f ′(x)

+ (x− 2)2(x− 1)4(2x2 − 8x+ 7)f ′′(x) = 0.

FIND: its hyperexponential solutions.

I In the example, there are two hyperexponential solutions
exp

(
x−3

(x−1)(x−2)
)

and exp
(

1
x−1
)
x3−3x2+2x−1

(x−1)3 . (Here, all

solutions can be written as linear combinations of
hyperexponential terms. In general, this is not possible.)
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The problem is easy if we prescribe a specific exponential part.

For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

7



The problem is easy if we prescribe a specific exponential part.

For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

7



The problem is easy if we prescribe a specific exponential part.

For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

No matter what u(x) is, we have

f(x) = u(x) exp
(

1
x−1
)

f ′(x) =
(
u′(x)− 1

(x−1)2u(x)
)
exp
(

1
x−1
)

f ′′(x) =
(
u′′(x)− 2

(x−1)2u
′(x) + 2x−1

(x−1)4u(x)
)
exp
(

1
x−1
)
, etc.
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The problem is easy if we prescribe a specific exponential part.

For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

Plug f(x) = u(x) exp
(

1
x−1
)

into the differential equation, divide by

exp
(

1
x−1
)
, and clear denominators.

This gives the equation

(x− 2)2(x− 1)4(2x2 − 8x+ 7)u′′(x)

+ (x− 1)2(10x5 − 90x4 + 309x3 − 505x2 + 392x− 115)u′(x)

− (8x3 − 50x2 + 92x− 53)(x− 1)u(x) = 0.

Find its rational solutions. This gives u(x) = x3−3x2+2x−1
(x−1)3 .
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In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.
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)
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In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.

Example. For the ODE above and ξ = 1, we get

exp
(

2
x−1
)(

1 + (x− 1) + 3
2(x− 1)2 + 13

6 (x− 1)3 + · · ·
)

exp
(

1
x−1
)(

(x− 1)−3 + (x− 1)−2 − 1 + · · ·
)
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In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.

Example. For the ODE above and ξ = 2, we get

exp
( −1
x−2
)(

1− 2(x− 2) + 4(x− 2)2 − 22
3 (x− 2)2 + · · ·

)
exp(0)

(
1− 6(x− 2) + 31

2 (x− 2)2 − 98
3 (x− 2)3 + · · ·

)
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In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are com-
binations of exponential parts of local solutions at roots of the lead-
ing coefficient of the equation.

Example. For the solution of the ODE above, we have
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(

x−3
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= e exp
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2
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2(x−1)

2 + · · ·
)

= e2 exp
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)

= 2
x−1

− 1
x−2
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Idea: Test all the combinations of local exponential parts.

Fact. Nontrivial local exponential parts can only appear at points
ξ where the leading coefficient of the differential equation is zero
(aka “singularities”).

Example. For the ODE above we consider ξ = 1 and ξ = 2:

I Solutions at ξ = 1:

exp
(

2
x−1
)(

1 + (x− 1) + 3
2(x− 1)2 + 13

6 (x− 1)3 + · · ·
)

exp
(

1
x−1
)(

(x− 1)−3 + (x− 1)−2 − 1 + · · ·
)

I Solutions at ξ = 2:

exp
( −1
x−2
)(

1− 2(x− 2) + 4(x− 2)2 − 22
3 (x− 2)2 + · · ·

)
exp(0)

(
1− 6(x− 2) + 31

2 (x− 2)2 − 98
3 (x− 2)3 + · · ·

)
I Candidate exponential parts:

exp
(

2
x−1+

−1
x−2
)
, exp

(
2

x−1+0
)
, exp

(
1

x−1+
−1
x−2
)
, exp

(
1

x−1+0
)
.
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Algorithm summary

INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ1, ξ2, . . . be the roots of the leading coefficient.

2. For each ξi, compute the exponential parts exp
( pj

(x−ξi)dj
)

(j = 1, 2, . . . ) of the local solutions at ξi.

3. For each combination E := exp
( pj1

(x−ξ1)
dj1

+
pj2

(x−ξ2)
dj2

+ · · ·
)

do:

4. Make an ansatz f(x) = u(x)E

5. Construct an auxiliary equation for u(x)

6. Find its rational solutions

7. For each solution u(x), output f(x) = u(x)E.
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Our contribution (Johansson, MK, Mezzarobba; ISSAC’13):

I An algorithm for quickly finding the relevant combinations.

I Returns at most r candidates (instead of rn).

I Needs at most n4r arithmetic operations to find them.

I Is based on the principle of dynamic programming.

I Also makes use of effective analytic continuation.
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vector space of all
series solution at ξ1 with
a certain exponential part

vector space of all
series solution at ξ2 with
a certain exponential part

This edge can only be part of a relevant combination
if the intersection of the two vector spaces is nonempty

Fact. At most r
of these O(r2) inter-
sections can be
nonempty.
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How to carry out the required vector space intersections?

A priori, spaces for different ξi are not comparable.

Example: What is[
exp
(

1
x−1
)
P1(x−1), exp

(
1

x−1
)
P2(x−1)

]
∩
[
exp
(

1
x−2
)
Q1(x−2), exp

(
1

x−2
)
Q2(x−2)

]
supposed to mean?

The (formal) series expansions at ξ = 1 and those at ξ = 2 don’t
live in the same ring.
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Idea: Interpret the series as asymptotic expansions of actual com-
plex functions, and determine their expansions at some fixed com-
mon reference point using effective analytic continuation and certi-
fied numerical approximation.

Fact. There is an algorithm for doing this.More precisely (but still slightly oversimplified):

I For every generalized series solution F (x− ξ) at ξ and
(almost) every open sector S ⊆ C with vertex ξ there exist
r > 0 and a unique analytic function f : S ∩ Ur(ξ)→ C so
that F is the asymptotic expansion of f for x→ ξ within S.

I Given F , S, a path P from ξ to some z ∈ C leaving ξ
through S, and N ∈ N, there is an algorithm due to J. van
der Hoeven which computes the first N digits of the analytic
continuation along P of f evaluated at z.
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[
exp
(

1
x−1
)
P1(x−1), exp

(
1

x−1
)
P2(x−1)

]

[
P̃1(x− 0), P̃2(x− 0)

][
R̃1(x− 0)

]

∩
[
exp
(

1
x−2
)
Q1(x−2), exp

(
1

x−2
)
Q2(x−2)

]

[
Q̃1(x− 0), Q̃2(x− 0)

]
Use interval arithmetic to do the linear algebra. Then:

I If V ∩W appears to be empty, then it is really empty. The
corresponding edge can be safely discarded.

I If V ∩W appears to be non-empty, then it may be really
empty or the precision was too low. Keep the corresponding
edge, to be on the safe side.
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EWAlgorithm summary

INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A short list of candidates for the exponential parts of its
hyperexponential solutions.

1. Let ξ1, ξ2, . . . be the roots of the leading coefficient.

2. For each ξi, compute the generalized series solutions
Fi,j(x− ξi) (j = 1, 2, . . . ) to some order.

3. Choose an ordinary point ξ0 and determine the expansions of
the functions fi,j corresponding to Fi,j at ξ0 numerically.

4. Use these to determine possible candidates as described above.
If during the algorithm, the number of partial candidates
exceeds 2r, say, abort and try again with higher precision.

5. Return the resulting list of candidates.
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INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ1, ξ2, . . . be the roots of the leading coefficient.

2. For each ξi, compute the exponential parts Ei,1, Ei,2, . . . of
the local solutions at ξi.

2 1/2. Use the algorithm from the previous slide to produce a short
list of tuples (j1, j2, . . . ).

3. For each combination E := E1,j1E2,j2 · · · do:

with (j1, j2, . . . )
from this list do:

4. Make an ansatz f(x) = u(x)E

5. Construct an auxiliary equation for u(x)

6. Find its rational solutions

7. For each solution u(x), output f(x) = u(x)E.
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2 1/2. Use the algorithm from the previous slide to produce a short
list of tuples (j1, j2, . . . ).

3. For each combination E := E1,j1E2,j2 · · · do:

with (j1, j2, . . . )
from this list do:

4. Make an ansatz f(x) = u(x)E

5. Construct an auxiliary equation for u(x)

6. Find its rational solutions

7. For each solution u(x), output f(x) = u(x)E.
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