# Finding hyperexponential solutions of differential equations

# Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Joint work with Fredrik Johansson and Marc Mezzarobba

► For example

$$(16x^{4} + 48x^{3} + 48x^{2} + 18x + 2)f''(x) - (16x^{4} + 48x^{3} + 52x^{2} + 32x + 9)f'(x) + (4x^{2} + 14x + 7)f(x) = 0.$$

► For example

$$(16x^{4} + 48x^{3} + 48x^{2} + 18x + 2)f''(x)$$
  
- (16x<sup>4</sup> + 48x<sup>3</sup> + 52x<sup>2</sup> + 32x + 9)f'(x)  
+ (4x<sup>2</sup> + 14x + 7)f(x) = 0.  
One independent  
variable x

► For example



► For example

$$(16x^4 + 48x^3 + 48x^2 + 18x + 2)f''(x) - (16x^4 + 48x^3 + 52x^2 + 32x + 9)f'(x) + (4x^2 + 14x + 7)f(x) = 0.$$

FIND: closed form solutions f(x) of this equation.

► For example

$$(16x^{4} + 48x^{3} + 48x^{2} + 18x + 2)f''(x) - (16x^{4} + 48x^{3} + 52x^{2} + 32x + 9)f'(x) + (4x^{2} + 14x + 7)f(x) = 0.$$

FIND: closed form solutions f(x) of this equation.

▶ In the example:  $f(x) = \exp(x)$  and  $f(x) = \frac{\sqrt{1+3x+2x^2}}{x+1}$ .

▶ polynomials e.g. 
$$5x^2 + 3x - 2$$

- polynomials e.g.  $5x^2 + 3x 2$
- ▶ rational functions e.g.  $(5x-3)/(3x^2-x+5)$

- polynomials e.g.  $5x^2 + 3x 2$
- rational functions
- e.g.  $(5x-3)/(3x^2-x+5)$
- hyperexponential functions

e.g. 
$$\exp\left(\frac{2x+3}{x^2(x+1)}\right)\frac{(2x+5)^{1/3}}{(7x^2+x-3)^{1/2}}$$

- polynomials 6
- rational functions
- hyperexponential functions
- algebraic functions

e.g. 
$$5x^2 + 3x - 2$$

e.g. 
$$(5x-3)/(3x^2-x+5)$$

e.g. 
$$\exp\left(\frac{2x+3}{x^2(x+1)}\right)\frac{(2x+5)^{1/3}}{(7x^2+x-3)^{1/2}}$$

e.g. 
$$x - \sqrt{x^2 + 1}$$

- polynomials e.g.  $5x^2 + 3x 2$
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions

e.g. 
$$(5x-3)/(3x^2-x+5)$$
  
e.g.  $\exp\left(\frac{2x+3}{x^2(x+1)}\right)\frac{(2x+5)^{1/3}}{(7x^2+x-3)^{1/2}}$   
e.g.  $x-\sqrt{x^2+1}$   
e.g.  $\sin(x)/\sqrt{1+\log(1-e^x)}$ 

- polynomials e.g.  $5x^2 + 3x 2$
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
- special functions

e.g. 
$$(5x-3)/(3x^2-x+5)$$
  
e.g.  $\exp(\frac{2x+3}{x^2(x+1)})\frac{(2x+5)^{1/3}}{(7x^2+x-3)^{1/2}}$   
e.g.  $x-\sqrt{x^2+1}$   
e.g.  $\sin(x)/\sqrt{1+\log(1-e^x)}$   
e.g.  $J_3(x^2+1)-{}_2F_1(2,3;1)(\frac{1}{x})$ 

- polynomials e.g.  $5x^2 + 3x 2$
- rational functions
- hyperexponential functions

e.g. 
$$(5x-3)/(3x^2-x+5)$$

e.g. 
$$\exp\left(\frac{2x+3}{x^2(x+1)}\right)\frac{(2x+5)^{1/3}}{(7x^2+x-3)^{1/2}}$$

▶ algebraic functions
 e.g. x - √x<sup>2</sup> + 1
 ▶ elementary functions
 e.g. sin(x)/√1 + log(1 - e<sup>x</sup>)
 ▶ special functions
 e.g. J<sub>3</sub>(x<sup>2</sup>+1) - 2F<sub>1</sub>(2,3;1)(<sup>1</sup>/<sub>x</sub>)





 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$

 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$

$$f(x) = \exp\left(\int \frac{q(x)}{p(x)}\right)$$

 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$

$$f(x) = \exp\left(\operatorname{rat}(x) + \sum_{i=1}^{k} \gamma_i \log(\operatorname{pol}_i(x))\right)$$

 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$

$$f(x) = \exp\left(\operatorname{rat}(x)\right) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}$$

 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$

$$f(x) = \exp\left(\operatorname{rat}(x)\right) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}$$
  

$$\approx \text{rational part}$$

 $f(\boldsymbol{x})$  is called hyperexponential if there are polynomials  $p(\boldsymbol{x}), q(\boldsymbol{x})$  with

$$p(x)f'(x) - q(x)f(x) = 0.$$



# Definition.

• Two hyperexponential terms f(x) and g(x) are called *similar* if f(x)/g(x) is a rational function.

# Definition.

- Two hyperexponential terms f(x) and g(x) are called *similar* if f(x)/g(x) is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called *exponential parts*.

### Definition.

- ► Two hyperexponential terms f(x) and g(x) are called similar if f(x)/g(x) is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called *exponential parts*.

Examples.

 $x^{\sqrt{2}}(x+1) \sim x^{\sqrt{2}+4}(x+1)^{-3}$   $x^{\sqrt{2}} \not\sim x^2$   $x^2 \not\sim \exp(x)$ .

#### ► For example

$$(6x^{5} - 60x^{4} + 225x^{3} - 386x^{2} + 301x - 84)f(x) + (x - 1)^{2}(10x^{5} - 86x^{4} + 277x^{3} - 411x^{2} + 272x - 59)f'(x) + (x - 2)^{2}(x - 1)^{4}(2x^{2} - 8x + 7)f''(x) = 0.$$

FIND: its hyperexponential solutions.

For example

$$\begin{aligned} (6x^5 - 60x^4 + 225x^3 - 386x^2 + 301x - 84)f(x) \\ &+ (x - 1)^2(10x^5 - 86x^4 + 277x^3 - 411x^2 + 272x - 59)f'(x) \\ &+ (x - 2)^2(x - 1)^4(2x^2 - 8x + 7)f''(x) = 0. \end{aligned}$$

- FIND: its hyperexponential solutions.
  - ► In the example, there are two hyperexponential solutions exp (<sup>x-3</sup>/<sub>(x-1)(x-2)</sub>) and exp(<sup>1</sup>/<sub>x-1</sub>)<sup>x<sup>3</sup>-3x<sup>2</sup>+2x-1</sup>/<sub>(x-1)<sup>3</sup></sub>. (Here, all solutions can be written as linear combinations of hyperexponential terms. In general, this is not possible.)

The problem is **easy** if we prescribe a specific exponential part. For example, suppose we want to find solutions of the form  $f(x) = \exp(\frac{1}{x-1})u(x)$ , where u(x) is a rational function. The problem is **easy** if we prescribe a specific exponential part. For example, suppose we want to find solutions of the form

 $f(x) = \exp(\frac{1}{x-1})u(x)$ , where u(x) is a rational function.

No matter what u(x) is, we have

$$f(x) = u(x) \exp\left(\frac{1}{x-1}\right)$$
  

$$f'(x) = \left(u'(x) - \frac{1}{(x-1)^2}u(x)\right) \exp\left(\frac{1}{x-1}\right)$$
  

$$f''(x) = \left(u''(x) - \frac{2}{(x-1)^2}u'(x) + \frac{2x-1}{(x-1)^4}u(x)\right) \exp\left(\frac{1}{x-1}\right), \text{etc.}$$

For example, suppose we want to find solutions of the form  $f(x) = \exp(\frac{1}{x-1})u(x)$ , where u(x) is a rational function.

Plug  $f(x) = u(x) \exp\left(\frac{1}{x-1}\right)$  into the differential equation, divide by  $\exp\left(\frac{1}{x-1}\right)$ , and clear denominators.

For example, suppose we want to find solutions of the form  $f(x) = \exp(\frac{1}{x-1})u(x)$ , where u(x) is a rational function.

Plug  $f(x) = u(x) \exp\left(\frac{1}{x-1}\right)$  into the differential equation, divide by  $\exp\left(\frac{1}{x-1}\right)$ , and clear denominators. This gives the equation

$$(x-2)^{2}(x-1)^{4}(2x^{2}-8x+7)u''(x) + (x-1)^{2}(10x^{5}-90x^{4}+309x^{3}-505x^{2}+392x-115)u'(x) - (8x^{3}-50x^{2}+92x-53)(x-1)u(x) = 0.$$

For example, suppose we want to find solutions of the form  $f(x) = \exp(\frac{1}{x-1})u(x)$ , where u(x) is a rational function.

Plug  $f(x) = u(x) \exp\left(\frac{1}{x-1}\right)$  into the differential equation, divide by  $\exp\left(\frac{1}{x-1}\right)$ , and clear denominators. This gives the equation

$$(x-2)^{2}(x-1)^{4}(2x^{2}-8x+7)u''(x) + (x-1)^{2}(10x^{5}-90x^{4}+309x^{3}-505x^{2}+392x-115)u'(x) - (8x^{3}-50x^{2}+92x-53)(x-1)u(x) = 0.$$

Find its rational solutions. This gives  $u(x) = \frac{x^3 - 3x^2 + 2x - 1}{(x-1)^3}$ .

In order to find **all** hyperexponential solutions, we need to know which exponential parts can occur.
**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^d}\right)(x-\xi)^{\alpha}\Big(1+c_1(x-\xi)+c_2(x-\xi)^2+\cdots\Big),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^d}\right)(x-\xi)^{\alpha}\left(1+c_1(x-\xi)+c_2(x-\xi)^2+\cdots\right),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^d}\right)(x-\xi)^{\alpha}\left(1+c_1(x-\xi)+c_2(x-\xi)^2+\cdots\right),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

These are series expansions of the form

$$\exp\left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\Big(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\Big),$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Example.** For the ODE above and  $\xi = 1$ , we get

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right)\\\exp\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Example.** For the ODE above and  $\xi = 2$ , we get

$$\exp\left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^2-\frac{22}{3}(x-2)^2+\cdots\right)\\\exp(0)\left(1-6(x-2)+\frac{31}{2}(x-2)^2-\frac{98}{3}(x-2)^3+\cdots\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

$$\exp\left(\frac{x-3}{(x-1)(x-2)}\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

$$\exp\left(\frac{x-3}{(x-1)(x-2)}\right) = \exp\left(\frac{2}{x-1}\right) \left(1 + (x-1) + \frac{3}{2}(x-1)^2 + \cdots\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

$$\exp\left(\frac{x-3}{(x-1)(x-2)}\right) = \exp\left(\frac{2}{x-1}\right) \left(1 + (x-1) + \frac{3}{2}(x-1)^2 + \cdots\right)$$
$$= e^2 \exp\left(-\frac{1}{x-2}\right) \left(1 - 2(x-2) + 4(x-2)^2 + \cdots\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

$$\exp\left(\underbrace{\frac{x-3}{(x-1)(x-2)}}_{=\frac{2}{x-1}-\frac{1}{x-2}} = e \exp\left(\frac{2}{x-1}\right) \left(1 + (x-1) + \frac{3}{2}(x-1)^2 + \cdots\right)$$
$$= \frac{2}{x-1} - \frac{1}{x-2} \exp\left(-\frac{1}{x-2}\right) \left(1 - 2(x-2) + 4(x-2)^2 + \cdots\right)$$

**Fact.** There is a way to compute the *"local solutions"* of a given ODE at a given point  $\xi$ .

**Fact.** The exponential parts of a hyperexponential solution are *combinations* of exponential parts of local solutions at roots of the leading coefficient of the equation.

$$\exp\left(\underbrace{\frac{x-3}{(x-1)(x-2)}}_{=\frac{2}{x-1}}\right) = e \exp\left(\frac{2}{x-1}\right) \left(1 + (x-1) + \frac{3}{2}(x-1)^2 + \cdots\right)$$
$$= \frac{2}{x-1} - \frac{1}{\frac{1}{x-2}} \exp\left(-\frac{1}{x-2}\right) \left(1 - 2(x-2) + 4(x-2)^2 + \cdots\right)$$

**Fact.** Nontrivial local exponential parts can only appear at points  $\xi$  where the leading coefficient of the differential equation is zero (aka "singularities").

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right)\\\exp\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$$

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right)\\\exp\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$$

• Solutions at 
$$\xi = 2$$
:

$$\exp\left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^2-\frac{22}{3}(x-2)^2+\cdots\right)\\\exp(0)\left(1-6(x-2)+\frac{31}{2}(x-2)^2-\frac{98}{3}(x-2)^3+\cdots\right)$$

**Example.** For the ODE above we consider  $\xi = 1$  and  $\xi = 2$ :

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right)\\\exp\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$$

• Solutions at 
$$\xi = 2$$
:  

$$\exp\left(\frac{-1}{x-2}\right) \left(1 - 2(x-2) + 4(x-2)^2 - \frac{22}{3}(x-2)^2 + \cdots\right)$$

$$\exp(0) \left(1 - 6(x-2) + \frac{31}{2}(x-2)^2 - \frac{98}{3}(x-2)^3 + \cdots\right)$$

Candidate exponential parts:

$$\exp\left(\frac{2}{x-1}+\frac{-1}{x-2}\right), \ \exp\left(\frac{2}{x-1}+0\right), \ \exp\left(\frac{1}{x-1}+\frac{-1}{x-2}\right), \ \exp\left(\frac{1}{x-1}+0\right).$$

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^2+\frac{13}{6}(x-1)^3+\cdots\right)$$
  
exp $\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$   
> Solutions at  $\xi = 2$ :  
$$\exp\left(\frac{1}{2-2}\right)\left(1-2(x-2)+4(x-2)^2-\frac{22}{3}(x-2)^2+\cdots\right)$$
  
exp $(0)\left(1-6(x-2)+\frac{34}{2}(x-2)^2-\frac{98}{3}(x-2)^3+\cdots\right)$   
> Candidate exponential parts:  
$$\exp\left(\frac{2}{x-1}+\frac{-1}{x-2}\right), \ \exp\left(\frac{2}{x-1}+0\right), \ \exp\left(\frac{1}{x-1}+\frac{-1}{x-2}\right), \ \exp\left(\frac{1}{x-1}+0\right).$$

$$\exp\left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right)\\\exp\left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)$$

• Solutions at 
$$\xi = 2$$
:  

$$\exp\left(\frac{-1}{x-2}\right)\left(1 - 2(x-2) + 4(x-2)^2 - \frac{22}{3}(x-2)^2 + \cdots\right)$$

$$\exp(0)\left(1 - 6(x-2) + \frac{31}{2}(x-2)^2 - \frac{98}{3}(x-2)^3 + \cdots\right)$$
• Candidate exponential parts:  

$$\exp\left(\frac{2}{x-1} + \frac{-1}{x-2}\right), \exp\left(\frac{2}{x-1} + 0\right), \exp\left(\frac{1}{x-1} + \frac{-1}{x-2}\right), \exp\left(\frac{1}{x-1} + 0\right).$$

INPUT: A linear ordinary differential equation with polynomial coefficients.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := \exp\left(\frac{p_{j_1}}{(x-\xi_1)^{d_{j_1}}} + \frac{p_{j_2}}{(x-\xi_2)^{d_{j_2}}} + \cdots\right)$  do:

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := \exp\left(\frac{p_{j_1}}{(x-\xi_1)^{d_{j_1}}} + \frac{p_{j_2}}{(x-\xi_2)^{d_{j_2}}} + \cdots\right)$  do:
- 4. Make an ansatz f(x) = u(x) E

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := \exp\left(\frac{p_{j_1}}{(x-\xi_1)^{d_{j_1}}} + \frac{p_{j_2}}{(x-\xi_2)^{d_{j_2}}} + \cdots\right)$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := \exp\left(\frac{p_{j_1}}{(x-\xi_1)^{d_{j_1}}} + \frac{p_{j_2}}{(x-\xi_2)^{d_{j_2}}} + \cdots\right)$  do:

4. Make an ansatz 
$$f(x) = u(x) E$$

- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions

INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $\exp\left(\frac{p_j}{(x-\xi_i)^{d_j}}\right)$  $(j=1,2,\dots)$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := \exp\left(\frac{p_{j_1}}{(x-\xi_1)^{d_{j_1}}} + \frac{p_{j_2}}{(x-\xi_2)^{d_{j_2}}} + \cdots\right)$  do:

4. Make an ansatz 
$$f(x) = u(x) E$$

- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.





















































































































































For an order r equation with n singular points, there are  $r^n$  combinations.



For an order r equation with n singular points, there are  $r^n$  combinations. That's a lot.




► An algorithm for quickly finding the relevant combinations.

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of  $r^n$ ).

NIN

- ► An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r<sup>n</sup>).
- Needs at most  $n^4r$  arithmetic operations to find them.

ME

- ► An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r<sup>n</sup>).
- Needs at most  $n^4r$  arithmetic operations to find them.
- Is based on the principle of dynamic programming.

MIST

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r<sup>n</sup>).
- Needs at most  $n^4r$  arithmetic operations to find them.
- Is based on the principle of dynamic programming.
- ► Also makes use of *effective analytic continuation*.

MEL









vector space of all vector space of all series solution at  $\xi_1$  with series solution at  $\xi_2$  with a certain exponential part a certain exponential part  $\xi_1$  :  $\xi_2$  :  $\xi_3$  :  $\xi_4$ :









Fact. At most r of these  $O(r^2)$  intersections can be nonempty.





Fact. At most r of these  $O(r^2)$  intersections can be nonempty.













 $\xi_1, \xi_2, \xi_3:$  $\xi_4:$ 









# $\xi_1, \xi_2, \xi_3, \xi_4:$



How to carry out the required vector space intersections?



How to carry out the required vector space intersections? A priori, spaces for different  $\xi_i$  are not comparable. How to carry out the required vector space intersections? A priori, spaces for different  $\xi_i$  are not comparable.

**Example:** What is

$$\left[\exp\left(\frac{1}{x-1}\right)P_1(x-1), \quad \exp\left(\frac{1}{x-1}\right)P_2(x-1)\right]$$
  
 
$$\cap \left[\exp\left(\frac{1}{x-2}\right)Q_1(x-2), \quad \exp\left(\frac{1}{x-2}\right)Q_2(x-2)\right]$$

supposed to mean?



How to carry out the required vector space intersections? A priori, spaces for different  $\xi_i$  are not comparable.

Example: What is

$$\left[\exp\left(\frac{1}{x-1}\right)P_1(x-1), \quad \exp\left(\frac{1}{x-1}\right)P_2(x-1)\right]$$
$$\cap \left[\exp\left(\frac{1}{x-2}\right)Q_1(x-2), \quad \exp\left(\frac{1}{x-2}\right)Q_2(x-2)\right]$$

supposed to mean?

The (formal) series expansions at  $\xi = 1$  and those at  $\xi = 2$  don't live in the same ring.

MISIN

Ŷ

Fact. There is an algorithm for doing this.

Ŷ

More precisely (but still slightly oversimplified):

Ŷ

More precisely (but still slightly oversimplified):

For every generalized series solution F(x − ξ) at ξ and (almost) every open sector S ⊆ C with vertex ξ there exist r > 0 and a unique analytic function f: S ∩ U<sub>r</sub>(ξ) → C so that F is the asymptotic expansion of f for x → ξ within S.

More precisely (but still slightly oversimplified):

- For every generalized series solution F(x − ξ) at ξ and (almost) every open sector S ⊆ C with vertex ξ there exist r > 0 and a unique analytic function f: S ∩ U<sub>r</sub>(ξ) → C so that F is the asymptotic expansion of f for x → ξ within S.
- ► Given F, S, a path P from ξ to some z ∈ C leaving ξ through S, and N ∈ N, there is an algorithm due to J. van der Hoeven which computes the first N digits of the analytic continuation along P of f evaluated at z.







AISIA

$$\left[\exp\left(\frac{1}{x-1}\right)P_1(x-1), \quad \exp\left(\frac{1}{x-1}\right)P_2(x-1)\right]$$
  

$$\cap \left[\exp\left(\frac{1}{x-2}\right)Q_1(x-2), \quad \exp\left(\frac{1}{x-2}\right)Q_2(x-2)\right]$$

NEW

$$\begin{bmatrix} \tilde{P}_1(x-0), & \tilde{P}_2(x-0) \end{bmatrix}$$
  

$$\cap \begin{bmatrix} \tilde{Q}_1(x-0), & \tilde{Q}_2(x-0) \end{bmatrix}$$



$$\left[\tilde{R}_1(x-0)\right]$$



$$\left[\tilde{R}_1(x-0)\right]$$

#### Use interval arithmetic to do the linear algebra. Then:


$$\left[\tilde{R}_1(x-0)\right]$$

Use interval arithmetic to do the linear algebra. Then:

If V ∩ W appears to be empty, then it is really empty. The corresponding edge can be safely discarded.



$$\left[\tilde{R}_1(x-0)\right]$$

Use interval arithmetic to do the linear algebra. Then:

- If V ∩ W appears to be empty, then it is really empty. The corresponding edge can be safely discarded.
- If V ∩ W appears to be non-empty, then it may be really empty or the precision was too low. Keep the corresponding edge, to be on the safe side.



NISI INPUT: A linear ordinary differential equation with polynomial coefficients.

Alish INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.

NISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the generalized series solutions  $F_{i,i}(x-\xi_i)$  (j=1,2,...) to some order.

MISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the generalized series solutions  $F_{i,j}(x-\xi_i)$   $(j=1,2,\ldots)$  to some order.
- 3. Choose an ordinary point  $\xi_0$  and determine the expansions of the functions  $f_{i,j}$  corresponding to  $F_{i,j}$  at  $\xi_0$  numerically.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the generalized series solutions  $F_{i,j}(x-\xi_i)$   $(j=1,2,\ldots)$  to some order.
- 3. Choose an ordinary point  $\xi_0$  and determine the expansions of the functions  $f_{i,j}$  corresponding to  $F_{i,j}$  at  $\xi_0$  numerically.
- 4. Use these to determine possible candidates as described above. If during the algorithm, the number of partial candidates exceeds 2r, say, abort and try again with higher precision.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the generalized series solutions  $F_{i,j}(x - \xi_i)$  (*j* = 1, 2, ...) to some order.
- 3. Choose an ordinary point  $\xi_0$  and determine the expansions of the functions  $f_{i,j}$  corresponding to  $F_{i,j}$  at  $\xi_0$  numerically.
- 4. Use these to determine possible candidates as described above. If during the algorithm, the number of partial candidates exceeds 2r, say, abort and try again with higher precision.
- 5. Return the resulting list of candidates.



INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NER

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NER

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NISI

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NISI

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NEW

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- 4. Make an ansatz f(x) = u(x) E
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- 7. For each solution u(x), output f(x) = u(x) E.

NISIO

NER INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alsia INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alsia INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alsia INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,i_1} E_{2,i_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

NER INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,i_1} E_{2,i_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- Find its rational solutions 6.
- 7. For each solution u(x), output f(x) = u(x) E.

Alsin INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:

4. Make an ansatz 
$$f(x) = u(x) E$$

- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alsin INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,i_1} E_{2,i_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- Find its rational solutions 6.
- For each solution u(x), output f(x) = u(x) E. 7.

ALSIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alisin INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

Alish INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .

- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- Construct an auxiliary equation for u(x)5.
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .

- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .

- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

NISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .

- 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
- Make an ansatz f(x) = u(x) E4.
- 5. Construct an auxiliary equation for u(x)
- 6. Find its rational solutions
- For each solution u(x), output f(x) = u(x) E. 7.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - For each solution u(x), output f(x) = u(x) E. 7.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - For each solution u(x), output f(x) = u(x) E. 7.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - Construct an auxiliary equation for u(x)5.
  - 6. Find its rational solutions
  - For each solution u(x), output f(x) = u(x) E. 7.

Alisia INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - 4. Make an ansatz f(x) = u(x) E
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - For each solution u(x), output f(x) = u(x) E. 7.

Alisia INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - Construct an auxiliary equation for u(x)5.
  - 6. Find its rational solutions
  - For each solution u(x), output f(x) = u(x) E. 7.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - Construct an auxiliary equation for u(x)5.
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

AISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \dots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \dots)$ .
  - 3. For each combination  $E := E_{1,j_1} E_{2,j_2} \cdots$  do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,i_1} E_{2,i_2} \cdots$  do:
  - 4. Make an ansatz f(x) = u(x) E
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIA INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,i_1} E_{2,i_2} \cdots$  do:
  - 4. Make an ansatz f(x) = u(x) E
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.

MISIN INPUT: A linear ordinary differential equation with polynomial coefficients.

- 1. Let  $\xi_1, \xi_2, \ldots$  be the roots of the leading coefficient.
- 2. For each  $\xi_i$ , compute the exponential parts  $E_{i,1}, E_{i,2}, \ldots$  of the local solutions at  $\xi_i$ .
- $2\frac{1}{2}$ . Use the algorithm from the previous slide to produce a short list of tuples  $(j_1, j_2, \ldots)$ .
  - 3. For each combination  $E := E_{1,j_1}E_{2,j_2}\cdots$  with  $(j_1, j_2, \dots)$ from this list do:
  - Make an ansatz f(x) = u(x) E4.
  - 5. Construct an auxiliary equation for u(x)
  - 6. Find its rational solutions
  - 7. For each solution u(x), output f(x) = u(x) E.