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Abstract. We present a Sage implementation of Ore algebras. The main features for the
most common instances include basic arithmetic and actions; gcrd and lclm; D-finite closure
properties; natural transformations between related algebras; guessing; desingularization;
solvers for polynomials, rational functions and (generalized) power series. This paper is a
tutorial on how to use the package.

1. Introduction

In computer algebra, objects are often described implicitly through equations they satisfy.
For example, the exponential function exp(x) is uniquely specified by the linear differential
equation f ′(x) − f(x) = 0 and the initial value f(0) = 1. Likewise, the sequence Fn of
Fibonacci numbers is uniquely determined by the linear recurrence Fn+2 − Fn+1 − Fn = 0
and the two initial values F0 = 0, F1 = 1. Especially for representing functions or sequences
that cannot be expressed in “closed form”, the differential or difference equations they may
satisfy provide an attractive way to store them on the computer. The question is then how
to calculate with objects which are given in this form.

Algorithms for Ore algebras provide a systematic answer to this question [3, 5]. Invented
in the first half of the 20th century [15] with the objective of providing a unified theory for
various kinds of linear operators, they have been used for many years in computer algebra
systems, for example in the Maple packages OreTools [1], gfun [16] or mgfun [4], or in the
Mathematica packages by Mallinger [14] and Koutschan [12, 11].

The purpose of this paper is to introduce an implementation of a collection of algorithms
related to Ore algebras for the computer algebra system Sage [17]. It is addressed to first-
time users who are already familiar with Sage, and with the theory of Ore algebras and its use
for doing symbolic computation related to special functions. Readers unfamiliar with Sage
are referred to [17], and readers unfamiliar with Ore algebras may wish to consult the recent
tutorial [10] and the references given there for an introduction to the subject.

At the time of writing, the package we describe here is still under construction and has not
yet been incorporated into the official Sage distribution. Readers who want to try it out are
invited to download the current version from

http://www.risc.jku.at/research/combinat/software/ore_algebra

and are encouraged to send us bug reports or other comments. We hope that the community
will find the code useful.

The following instructions show how to load the code and then create an Ore algebra A of
linear differential operators and an Ore algebra B of recurrence operators. Observe the correct
application of the respective commutation rules in both cases.
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sage: from ore_algebra import *

sage: R.<x> = PolynomialRing(ZZ); A.<Dx> = OreAlgebra(R)

sage: A

Z[x]〈Dx〉
sage: A.random_element()

(2x− 2) Dx2 +
(
−6x2 − 2x− 1

)
Dx− 9x2 − 21

sage: Dx*x

xDx + 1

sage: B.<Sx> = OreAlgebra(R)

sage: B

Z[x]〈Sx〉
sage: Sx*x

(x+ 1) Sx

More details on the construction of Ore algebras are given in the following section. The
construction and manipulation of elements of Ore algebras is discussed in Section 3.

The package also supports Ore algebras with several generators already. However, so far
we offer hardly more functionality than addition and multiplication for these. Much more
functionality is available for algebras with one generator. Some of it is described in Section 4.
We plan to add more code for the multivariate case in the future.

2. Ore Algebras

An Ore algebra is determined by a base ring and a finite number of generators. In the
examples above, the base ring was Z[x], and the generators were Dx and Sx, respectively.
If no other information is provided in the arguments, the OreAlgebra constructor chooses
the nature of the generators according to their name: a generator called Dt represents the
standard derivation d/dt acting on the generator t of the base ring, a generator called Sn
represents the standard shift operator sending the generator n of the base ring to n+ 1.

For this way of generating algebras, generator names must be composed of one of the following
single-letter prefixes followed by the name of a generator of the base ring.

Prefix Name Commutation rule
D Standard derivation d/dx Dxx = xDx + 1
S Standard shift x x+ 1 Sxx = (x+ 1) Sx

T or Θ Eulerian derivation x d/dx Txx = xTx + x
F or ∆ Forward difference ∆x Fxx = (x+ 1)Fx + 1

Q q-shift x q x Qxx = q xQx
J q-derivation (“Jackson derivation”) Jxx = q x Jx + 1
C commutative generator Cxx = xCx

For the q-shift and the q-derivation, the base ring must contain an element q. The element
playing the role of q can be specified as an optional argument.
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sage: R.<x> = PolynomialRing(ZZ[’q’])

sage: A.<Qx> = OreAlgebra(R)

sage: Qx*x

qxQx

sage: A.<Qx> = OreAlgebra(R, q=2)

sage: Qx*x

2xQx

In general, the commutation rules of a generator X of an Ore algebra A with base ring R
are governed by two maps, σ : R → R and δ : R → R, where σ is a ring endomorphism (i.e.,
σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b) for all a, b ∈ R) and δ is a skew-derivation for σ
(i.e., δ(a+ b) = δ(a)+δ(b) and δ(ab) = δ(a)b+σ(a)δ(b) for all a, b ∈ R). With two such maps
being given, the generator X satisfies the commutation rule Xa = σ(a)X + δ(a) for every
a ∈ R. If there is more than one generator, then each of them has its own pair of maps σ, δ.
Different generators commute with each other; noncommutativity only takes place between
generators and base ring elements.

It is possible to create an Ore algebra with user specified commutation rules. In this form,
each generator must be declared by a tuple (X,σ, δ), where X is the name of the generator (a
string), and σ and δ are dictionaries which contain the images of the generators of the base
ring under the respective map. Here is how to specify an algebra of difference operators in
this way:

sage: R.<x> = ZZ[’x’]

sage: A = OreAlgebra(R, (’X’, {x:x+1}, {x:1}))

sage: X = A.gen()

sage: X*x

(x+ 1)X + 1

As another example, here is how to define an algebra of differential operators whose base ring
is a differential field K = Q(x, y, z) where y represents exp(x) and z represents log(x):

sage: K = ZZ[’x’,’y’,’z’].fraction_field()

sage: x,y,z = K.gens()

sage: A = OreAlgebra(K, (’D’, {}, {x:1, y:y, z:1/x}))

sage: D = A.gen()

sage: D*x, D*y, D*z (
xD + 1, yD + y, zD +

1

x

)
In the dictionary specifying σ, omitted generators are understood to be mapped to themselves,
so that {} in the definition of A in the example above is equivalent to {x:x,y:y,z:z}. In
the dictionaries specifying δ, omitted generators are understood to be mapped to zero.
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For Ore algebras with several generators, it is possible to mix specifications of generators via
triples (X,σ, δ) with generators using the naming convention shortcuts as explained before.
Continuing the previous example, here is a way to define an algebra A over K with two
generators, a D that behaves like before, and in addition an Sx which acts like the standard
shift on x and leaves the other generators fixed.

sage: A = OreAlgebra(K, (’D’, {}, {x:1, y:y, z:1/x}), ’Sx’)

sage: D, Sx = A.gens()

sage: D*x, Sx*x

(xD + 1, (x+ 1)Sx)

sage: D*y, Sx*y

(yD + y, ySx)

sage: D*z, Sx*z (
zD +

1

x
, zSx

)

Not every ring is suitable as base ring of an Ore algebra. Base rings must themselves be
polynomial rings (univariate or multivariate), or fraction fields of polynomial rings. Their
base rings in turn may be either Z, Q, a prime field GF (p), or a number field Q(α), or —
recursively — some ring which itself would be suitable as base ring of an Ore algebra.

sage: ZZ[’x’].fraction_field()[’y’,’z’] ### OK

Frac(Z[x])[y, z]

sage: GF(1091)[’x’,’y’,’z’][’u’] ### OK

F1091[x, y, z][u]

sage: ( ZZ[’x’,’y’,’z’].quotient_ring(x^2+y^2+z^2-1) )[’u’] ### not OK

Z[x, y, z]/
(
x2 + y2 + z2 − 1

)
Z[x, y, z][u]

sage: GF(9, ’a’)[’x’] ### not OK

F32 [x]

Note that the maps σ and δ must leave all the elements of the base ring’s base ring fixed.
They may only have nontrivial images for the top level generators.

The constituents of an Ore algebra A can be accessed through the methods summarized in
the following table. Further methods can be found in the documentation.
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Method name short description
associated_commutative_algebra() returns a polynomial ring with the same base

ring as A and whose generators are named like
the generators of A

base_ring() returns the base ring of A
delta(i) returns a callable object representing the delta

map associated to the ith generator (default:
i = 0)

gen(i) returns the ith generator (default: i = 0)
sigma(i) returns a callable object representing the sigma

map associated to the ith generator (default:
i = 0)

var(i) returns the name of the ith generator (default:
i = 0)

Examples:

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: A

Z[x]〈Dx〉

sage: A.associated_commutative_algebra()

Z[x][Dx]

sage: A.base_ring()

Z[x]

sage: A.gen()

Dx

sage: s = A.sigma(); d = A.delta();

sage: s(x^5), d(x^5) (
x5, 5x4

)

3. Ore Polynomials

Ore polynomials are elements of Ore algebras, i.e., Sage objects whose parent is an Ore
algebra object as described in the previous section. They can be constructed by addition and
multiplication from generators and elements of the base ring.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: (5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)
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5x2 + 3x− 7

)
Dx2 +

(
3x2 + 8x− 1

)
Dx + 9x2 − 3x+ 8

Alternatively, an Ore polynomial can be constructed from any piece of data that is also
accepted by the constructor of the associated commutative algebra. The associated commu-
tative algebra of an Ore algebra is the commutative polynomial ring with the same base ring
as the Ore algebra and with generators that are named like the generators of the Ore algebra.
In particular, it is possible to create an Ore polynomial from the corresponding commutative
polynomial, from a coefficient list, or even from a string representation.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: Ac = A.associated_commutative_algebra()

sage: Ac

Z[x][Dx]

sage: A(Ac.random_element())

(x− 3) Dx2 +
(
x2 + x+ 445

)
Dx− x2 + x+ 1

sage: A([5*x,7*x-3,3*x+1])

(3x+ 1) Dx2 + (7x− 3) Dx + 5x

sage: A("(5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)")(
5x2 + 3x− 7

)
Dx2 +

(
3x2 + 8x− 1

)
Dx + 9x2 − 3x+ 8

Ore polynomials can also be created from Ore polynomials that belong to other algebras,
provided that such a conversion is meaningful.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R)

sage: L = (5*x^2+3*x-7)*Dx^2 + (3*x^2+8*x-1)*Dx + (9*x^2-3*x+8)

sage: L.parent()

Z[x]〈Dx〉
sage: B = OreAlgebra(QQ[’x’], ’Dx’)

sage: L = B(L)

sage: L.parent()

Q[x]〈Dx〉

In accordance with the Sage coercion model, such conversions take place automatically (if
possible) when operators from different algebras are added or multiplied. Note that the
result of such an operation need not belong to either of the parents of the operands but may
instead have a suitable “common extension” as parent.

sage: A = OreAlgebra(ZZ[’t’][’x’], ’Dx’)

sage: B = OreAlgebra(QQ[’x’].fraction_field(), ’Dx’)

sage: L = A.random_element() + B.random_element()

sage: L.parent()
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Frac(Q[t][x])〈Dx〉

4. Selected Methods

Besides basic arithmetic for Ore operators, the package provides a wide range of methods to
create, manipulate and solve several different kinds of operators. Some of these methods are
accessible in any Ore algebra while others are tied specifically to, e.g., recurrence operators
or differential operators.

In this section, we give an overview of the functionality provided by the package. Because
of space limitation, only some of the available methods can be discussed here. For further
information, we refer to the documentation.

4.1. Methods for General Algebras. A univariate Ore algebra over a field is a left Eu-
clidean domain, which means that it is possible to perform left division with remainder.
Building upon this, the greatest common right divisor (GCRD) and the least common left
multiple (LCLM) of two Ore polynomials can be computed. The package provides a number
of methods to carry out these tasks.

Method name short description
A.quo_rem(B) returns the left quotient and the left remainder of A and B.
A.gcrd(B) returns the greatest common right divisor of A and B.
A.xgcrd(B) returns the greatest common right divisor of A and B and

the according Bézout coefficients.
A.lclm(B) returns the least common left multiple of A and B.
A.xlclm(B) returns the least common left multiple L of A and B and the

left quotients of L and A and of L and B.
A.resultant(B) returns the resultant of A and B (see [13] for its definition

and properties).

All these methods are also available for Ore operators living in univariate Ore algebras over
a base ring R which does not necessarily have to be a field. The operators are then implicitly
assumed to live in the respective Ore algebra over the quotient field K of R. The output will
be the GCRD (LCLM, quotient, remainder) in the Ore algebra over K but not over R, in
which these objects might not exist or might not be computable.

sage: A = OreAlgebra(ZZ[’n’], ’Sn’)

sage: G = A.random_element(2)

sage: L1, L2 = A.random_element(7), A.random_element(5)

sage: while L1.gcrd(L2) != 1: L2 = A.random_element(5)

sage: L1, L2 = L1*G, L2*G

sage: L1.gcrd(L2) == G.normalize()

True

sage: L3, S, T = L1.xgcrd(L2)

sage: S*L1 + T*L2 == L3

True
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sage: LCLM = L1.lclm(L2)

sage: LCLM % L1 == LCLM % L2 == 0

True

sage: LCLM.order() == L1.order() + L2.order() - G.order()

True

The GCRD is only unique up to multiplication (from the left) by an element from the base
ring. The method normalize called in line 6 of the listing above multiplies a given operator
from the left by some element from the base ring such as to produce a canonical representative
from the class of all the operators that can be obtained from each other by left multiplication
of a base ring element. This facilitates the comparison of output.

The efficiency of computing the GCRD depends on the size of the coefficients of intermediate
results, and there are different strategies to control this growth via so called polynomial
remainder sequences (PRS). The default is the improved PRS described in [7], which will
usually be the fastest choice. Other strategies can be selected by the option prs.

sage: A = OreAlgebra(ZZ[’n’], ’Sn’)

sage: L1, L2 = A.random_element(3), A.random_element(2)

sage: algs = ["improved", "classic", "monic", "subresultant"]

sage: [L1.gcrd(L2, prs=a) for a in algs]

[1, 1, 1, 1]

If L1, L2 are operators, then the solutions of their GCRD are precisely the common solutions
of L1 and L2. The LCLM, on the other hand, is the minimal order operator whose solution
space contains all the solutions of L1 and all the solutions of L1. Because of this property,
GCRD and LCLM are useful tools for constructing operators with prescribed solutions. For
example, here is how to construct a differential operator which has the solutions x5 and
exp(x), starting from the obvious operators annihilating x5 and exp(x), respectively.

sage: R.<x> = ZZ[]; A.<Dx> = OreAlgebra(R)

sage: L = (Dx - 1).lclm(x*Dx - 5)

sage: L (
x2 − 5x

)
Dx2 +

(
−x2 + 20

)
Dx + 5x− 20

sage: L(x^5)

0

sage: L(exp(x)).full_simplify()

0

Observe how in the last two lines we apply the operator L to other objects. Such applications
are not defined for every algebra and in general have to be specified by the user through an
optional argument:
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sage: A.<Qqn> = OreAlgebra(ZZ[’q’][’qn’])

sage: var(’q’, ’n’, ’x’)

(q, n, x)

sage: (Qqn^2+Qqn+1)(q^n, action=lambda expr: expr.substitute(n=n+1))

qn + q(n+2) + q(n+1)

sage: (Qqn^2+Qqn+1)(x, action=lambda expr: expr.substitute(x=q*x))

q2x+ qx+ x

Thanks to the LCLM operation discussed above, we have the property that when f and
g are two objects which are annihilated by some operators L1, L2 belonging to some Ore
algebra A then this algebra contains also an operator which annihilates their sum f + g. In
other words, the class of solutions of operators of A is closed under addition. It turns out
that similar closure properties hold for other operations. The following table lists some of
the corresponding methods. Methods for more special closure properties will appear further
below.

Method name short description
lclm() computes an annihilating operator for f + g from

annihilating operators for f and g
symmetric_product() computes an annihilating operator for fg from an-

nihilating operators for f and g
symmetric_power() computes an annihilating operator for fn from an

annihilating operator for f and a given positive in-
teger n

annihilator_of_associate() computes an annihilating operator for M(f) from
an annihilating operator for f and a given opera-
tor M

annihilator_of_polynomial() computes an annihilating operator for the object
p(f, ∂f, ∂2f, . . . ) from an annihilating operator for
f and a given multivariate polynomial p.

As an example application, let us prove Cassini’s identity for Fibonacci numbers:

F 2
n+1 − FnFn+2 = (−1)n.

The idea is to derive, using commands from the table above, a recurrence satisfied by the left
hand side, and then show that this recurrence is also valid for the right hand side.

sage: A.<Sn> = OreAlgebra(ZZ[’n’])

sage: fib = Sn^2 - Sn - 1

sage: R.<x0,x1,x2> = ZZ[’n’][’x0’,’x1’,’x2’]

sage: fib.annihilator_of_polynomial(x1^2 - x0*x2)
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Sn + 1

As this operator obviously annihilates (−1)n, the proof is complete after checking that the
identity holds for n = 0. Another way of carrying out the same computation using the other
commands would be as follows.

sage: A.<Sn> = OreAlgebra(ZZ[’n’])

sage: fib = Sn^2 - Sn - 1

sage: L1 = fib.annihilator_of_associate(Sn).symmetric_power(2)

sage: L2 = fib.annihilator_of_associate(Sn^2).symmetric_product(fib)

sage: L1.lclm(L2)

Sn3 − 2Sn2 − 2Sn + 1

Observe that the resulting operator again annihilates (−1)n, but its order is higher than the
operator obtained before, so we need to check more initial values to complete the proof. For
larger computations, the command annihilator_of_polynomial would also consume less
computation time than the step-by-step approach.

4.2. Methods for Special Algebras. For the elements of some of the most important
algebras, additional methods have been implemented. The following table lists some of the
additional methods available for differential operators, i.e., elements of an Ore algebra of the
form R[x]〈Dx〉 or K(x)〈Dx〉.

Method name short description
to_S() converts to a recurrence operator for the Taylor se-

ries solutions at the origin
to_F() converts to a difference operator for the Taylor se-

ries solutions at the origin
to_T() rewrites in terms of the Euler derivative
annihilator_of_integral() converts an annihilator for f(x) to one for

∫
f(x)dx

annihilator_of_composition() converts an annihilator for f(x) to one for f(a(x))
where a(x) is algebraic over the base ring

desingularize() computes a left multiple of this operator with poly-
nomial coefficients and lowest possible leading coef-
ficient degree

associate_solutions(p) applied to an operator P , this computes, if possible,
an operator M and a rational function m such that
DM = p+mP (see [2] for further information)

polynomial_solutions() computes the polynomial solutions of this operator
rational_solutions() computes the rational function solutions of this op-

erator
power_series_solutions() computes power series solutions of this operator
generalized_series_solutions() computes generalized series solutions of this opera-

tor
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As an example application, we compute an annihilator for the error function 2√
π

∫ x
0 exp(−t2)dt,

starting from the differential equation for exp(x), and produce the recurrence for the Taylor
series coefficients at the origin. Finally, we compute the series solutions of the differential
operator at infinity.

sage: R.<x> = ZZ[’x’]; A.<Dx> = OreAlgebra(R, ’Dx’)

sage: (Dx - 1).annihilator_of_composition(-x^2)

Dx + 2x

sage: L = (Dx + 2*x).annihilator_of_integral()

sage: L

Dx2 + 2xDx

sage: L.to_S(OreAlgebra(ZZ[’n’], ’Sn’))(
n2 + 3n+ 2

)
Sn2 + 2n

sage: L.power_series_solutions(10)[
x− 1

3
x3 +

1

10
x5 − 1

42
x7 +

1

216
x9 +O(x10), 1 +O(x10)

]
sage: L.annihilator_of_composition(1/x).generalized_series_solutions()[

exp
(
−x−2

)
· x ·

(
1− 1

2
x2 +

3

4
x4 +O(x5)

)
, 1 +O(x5)

]
The last output implies that the operator annihilating

∫ x
0 exp(−t2)dt also admits a solution

which behaves for x→∞ like 1
x exp(−x2).

The next example illustrates the methods for finding rational and polynomial solutions of an
operator L. These methods accept as an optional parameter an inhomogeneous part consisting
of a list (or tuple) of base ring elements, (f1, . . . , fr). They return as output a list of tuples
(g, c1, . . . , cr) with L(g) = c1f1 + · · ·+ crfr where g is a polynomial or rational function and
c1, . . . , cr are constants, i.e., elements of the base ring’s base ring. The tuples form a vector
space basis of the solution space.

In the example session below, we start from two polynomials p, q, then compute an operator L
having p and q as solutions, and then recover p and q from L. Note that for consistency also
the solutions of homogeneous equations are returned as tuples. At the end we give an example
for solving an inhomogeneous equation.

sage: R.<x> = ZZ[]

sage: p = x^2 + 3*x + 8; q = x^3 - 7*x + 5

sage: A.<Dx> = OreAlgebra(R)

sage: L = (p*Dx - p.derivative()).lclm(q*Dx - q.derivative())

sage: L(
x4 + 6x3 + 31x2 − 10x− 71

)
Dx2 +

(
−4x3 − 18x2 − 62x+ 10

)
Dx + 6x2 + 18x+ 14

sage: L.polynomial_solutions()[(
−3x3 + 2x2 + 27x+ 1

)
,
(
−8x3 + 5x2 + 71x

)]
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sage: M = (2*x+3)*Dx^2 + (4*x+5)*Dx + (6*x+7)

sage: sol = M.polynomial_solutions([1,x,x^2,x^3])

sage: sol [
(1, 7, 6, 0, 0) , (x, 5, 11, 6, 0) ,

(
x2, 6, 14, 15, 6

)]
sage: map(lambda s: M(s[0]) == s[1]+s[2]*x+s[3]*x^2+s[4]*x^3, sol)

[True,True,True]

The functions polynomial_solutions and rational_solutions are not only defined for
differential operators but also for recurrence operators, i.e., elements of an Ore algebra of the
form R[x]〈Sx〉 or K(x)〈Sx〉. Some other methods defined for recurrence operators are listed
in the following table.

Method name short description
to_D() converts annihilator for the coefficients in a power

series to a differential operator for the sum
to_F() converts shift operator to a difference operator
to_T() converts to a differential operator in terms of the

Euler derivative
annihilator_of_sum() converts an annihilator for f(n) to one for the sum∑n

k=0 f(k)
annihilator_of_composition() converts an annihilator for f(n) to one for f(bun+

vc) where u, v ∈ Q
annihilator_of_interlacing() interlaces two or more sequences
desingularize() computes a left multiple of this operator with poly-

nomial coefficients and lowest possible leading coef-
ficient degree

associate_solutions(p) applied to an operator P , this computes, if possible,
an operator M and a rational function m such that
(S−1)M = p+mP (see [2] for further information)

polynomial_solutions() computes the polynomial solutions of this operator
rational_solutions() computes the rational function solutions of this op-

erator
generalized_series_solutions() computes asymptotic expansions of sequences anni-

hilated by the operator
to_list() computes terms of a sequence annihilated by the

operator

As an example application, we compute an annihilator for the sequence c(n) =
∑n

k=0 1/k!:

sage: R.<n> = ZZ[]; A.<Sn> = OreAlgebra(R)

sage: inverse_factorials = (n + 1) * Sn - 1

sage: partial_sums = inverse_factorials.annihilator_of_sum()

sage: partial_sums
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(n+ 2) Sn2 + (−n− 3) Sn + 1

The to_list method returns the first few values of a sequence, given the initial values:

sage: L = partial_sums.to_list([1, 2], 8)

sage: L [
1, 2,

5

2
,
8

3
,
65

24
,
163

60
,
1957

720
,
685

252

]
sage: N(L[7])

2.71825396825397

We compute the asymptotic expansion of the sequence of terms to estimate how many terms
we need to approximate e to a given number of digits:

sage: digits = 10^5

sage: asymp = inverse_factorials.generalized_series_solutions(3)

sage: target = lambda x: log(abs(asymp[0](RR(x))), 10) + digits

sage: num_terms = ceil(find_root(target, 1, 10^6))

sage: num_terms

25207

In some cases, for example when the base ring is Z or Z[x], isolated values of a sequence
can be computed asymptotically faster for large n than by listing all values, using the binary
splitting technique. The forward_matrix_bsplit method, called with argument n, returns
a matrix P and a polynomial Q such that P/Q multiplied by a column vector of initial values
c0, c1, . . . yields cn, cn+1, . . .. This way, computing 105 digits of e takes a fraction of a second:

sage: e_approx = N(e, 400000)

sage: P, Q = partial_sums.forward_matrix_bsplit(num_terms)

sage: u = Matrix([[e_approx], [e_approx]]) - P * Matrix([[1], [2]]) / Q

sage: u.change_ring(RealField(20))(
1.3053× 10−100009

5.1780× 10−100014

)
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4.3. Guessing. Guessing is, in some sense, the reverse operation of to_list for recurrence
operators, or of power_series_solutions for differential operators. It is of the most popular
features of packages like gfun, and there are even some special purpose packages dedicated
to this technique [9, 6]. The basic idea is simple. Given a finite array of numbers, thought
of as the first terms of an infinite sequence, we want to know whether this sequence satisfies
a recurrence. The algorithm behind a guessing engine searches for small equations matching
the given data. Generically, no such equations exist, so if some are found, it is fair to “guess”
that they are in fact valid equations for the whole infinite sequence.

We provide a guessing function which takes as input a list of terms and an Ore algebra, and
returns as output an operator which matches the given data and which, in some measure,
would be unlikely to exist for random data.

sage: data = [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

sage: L = guess(data, OreAlgebra(ZZ[’n’], ’Sn’))

sage: L

−Sn2 + Sn + 1

sage: L(data)

[0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: M = guess(data, OreAlgebra(ZZ[’x’], ’Dx’))

sage: M (
−x3 − x2 + x

)
Dx− x2 − 1

sage: M(x/(1-x-x^2))

0

If an algebra of differential operators is supplied as second argument, the data is understood
as the first few coefficients of a power series. The output operator is expected to have this
power series as solution.

It can happen that the procedure is unable to find an operator matching the given data.
In this case, an exception is raised. There are two possible explanations for such an event.
Either the sequence in question does not satisfy any equations, or it does but the equations
are so big that more data is needed to detect them.

Several options are available for customizing the search for relations. In order to explain them,
we first need to give some details on the underlying algorithms. For simplicity of language,
we restrict here to the case of recurrence operators. The situation for differential operators
is very similar.

For the most typical situations, there are two important hyperbolas. One describes the region
in the (r, d)-plane consisting of all points for which there exists an operator of order r and
degree d truly satisfied by the sequence in question. (See [8] for an explanation why the
boundary of this region is usually a hyperbola.) The second describes the region of all points
(r, d) for which an operator of order r and degree d can be detected when N terms are provided
as input. This region is determined by the requirement (r + 1)(d+ 2) < N .
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The method tests a sequence of points (r1, d1), (r2, d2), . . . right below this second hyperbola.
Success at a point (ri, di) means that some evidence for an operator of order ≤ ri and degree
≤ di has been found. This operator however is not explicitly computed. Instead, the method
uses the partial information found about this operator to calculate an operator which with
high probability is the minimal order operator satisfied by the sequence in question. This
operator is usually more interesting than the one at (ri, di), and its computation is usually
more efficient.

Using the option path, the user can specify a list of points (ri, di) which should be used
instead of the standard path. By setting the options min_degree, max_degree, min_order,
max_order, all points (r, d) of the path are discarded for which r or d is not within the
specified bounds. These options can be used to accelerate the search in situations where the
user has some knowledge (or intuition) about the size of the expected equations.

r

d

min
degree

max
degree

min order max order

A

B

The figure on the right illustrates the typical situation
for guessing problems that are not too small and not
too artificial. The gray region indicates the area which
is not accessible with the given amount of data. Only
the points (r, d) below it can be tested for an operator
of order r and degree d that fits to the given data. Let’s
assume that operators exist on and above the solid black
hyperbola. The user will usually not know this curve
in advance but may have some expectations about it
and can restrict the search accordingly, for example to
the dashed area shown in the figure. The method will
detect the existence of an operator, say at point A, and
construct from the information gained at this point an
operator of minimal possible order, which may correspond to point B. This operator is
returned as output. Note that the degree of the output may exceed the value of max_degree,
and its order may be smaller than min_order:

sage: data = [(n+1)^10*2^n + 3^n for n in xrange(200)]

sage: L = guess(data, OreAlgebra(ZZ[’n’],’Sn’), min_order=3, max_degree=5)

sage: L.order(), L.degree()

(2, 10)

In order to test a specific point (r, d), the data array must contain at least (r + 1)(d + 2)
terms. If it has more terms, the guess becomes more trustworthy, but also the computation
time increases. By setting the option ensure to a positive integer e, the user can request that
only such points (r, d) should be tested for which the data array contains at least e more terms
than needed. This increases the reliability. By setting the option cut to a positive integer c,
the user requests that for testing a point (r, d), the method should take into account at most c
more terms than needed. If the data array contains more terms, superfluous ones are ignored
in the interest of better performance. We must always have 0 ≤ e ≤ c ≤ ∞. The default
setting is e = 0, c =∞.
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