Holonomic Closure Properties and Guessing

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Interpolation of the first 5 terms gives $n^2 - 1$, which also happens to match the next 5 terms. If the pattern continues, the next will be 120.

Part A Holonomic Closure Properties

Definition. A sequence (a_n) is called C-finite if it satisfies a linear recurrence equation with constant coefficients:

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0.$$

Definition. A sequence (a_n) is called C-finite if it satisfies a linear recurrence equation with constant coefficients:

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0.$$

Example: Fibonacci numbers F_n are C-finite because they satisfy

$$F_n + F_{n+1} - F_{n+2} = 0.$$

Theorem. A sequence (a_n) is C-finite **if and only if** it admits a closed form representation

$$a_n = p_1(n)\phi_1^n + p_2(n)\phi_2^n + \dots + p_s(n)\phi_s^n$$

where ϕ_1, \ldots, ϕ_s are constants and $p_1(n), \ldots, p_s(n)$ are polynomials.

Theorem. A sequence (a_n) is C-finite **if and only if** it admits a closed form representation

$$a_n = p_1(n)\phi_1^n + p_2(n)\phi_2^n + \dots + p_s(n)\phi_s^n$$

where ϕ_1, \ldots, ϕ_s are constants and $p_1(n), \ldots, p_s(n)$ are polynomials.

Example: For the Fibonacci numbers we have

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Example: $a_n := \sum_{k=0}^n F_k$ and $b_n := F_n^2 + F_{2n}$ are C-finite.

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Example: $a_n := \sum_{k=0}^n F_k$ and $b_n := F_n^2 + F_{2n}$ are C-finite. Indeed, they satisfy the recurrence equations

$$a_n - 2a_{n+2} + a_{n+3} = 0,$$

 $b_n - 2b_{n+1} - 2b_{n+2} + b_{n+3} = 0$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = a_{n+1} + 3a_{n+2} - a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = -a_{n+1} - 2a_{n+2} + 4a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = 4a_{n+1} + 11a_{n+2} - 6a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$

$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$

$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

Then we have:

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

In general, each a_{n+i} can be written in terms of a_n, a_{n+1}, a_{n+2} .

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

Then we have:

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

In general, each a_{n+i} can be written in terms of a_n, a_{n+1}, a_{n+2} . Similarly, each b_{n+i} can be written in terms of b_n, b_{n+1} .

 $C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{aligned} & C_0 a_n b_n \\ &+ C_1 a_{n+1} b_{n+1} \\ &+ C_2 (a_{n+2} b_n + 2a_{n+2} b_{n+1}) \\ &+ C_3 (2a_n b_n + 2a_{n+1} b_n + 5a_n b_{n+1} + \dots - 5a_{n+2} b_{n+1}) \\ &+ C_4 (-5a_n b_n - 10a_{n+1} b_n - 12a_n b_{n+1} + \dots + 48a_{n+2} b_{n+1}) \\ &+ C_5 (48a_n b_n + 132a_{n+1} b_n + 116a_n b_{n+1} + \dots - 174a_{n+2} b_{n+1}) \\ &+ C_6 (-174a_n b_n - 406a_{n+1} b_n + \dots + 1190a_{n+2} b_{n+1}) = 0 \end{aligned}$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$a_{n}b_{n}(C_{0} + 2C_{3} - 5C_{4} + 48C_{5} - 174C_{6}) + a_{n+1}b_{n}(6C_{3} - 10C_{4} + 132C_{5} - 406C_{6}) + a_{n+2}b_{n}(C_{2} - 2C_{3} + 20C_{4} - 72C_{5} + 493C_{6}) + a_{n}b_{n+1}(5C_{3} - 12C_{4} + 116C_{5} - 420C_{6}) + a_{n+1}b_{n+1}(C_{1} + 15C_{3} - 24C_{4} + 319C_{5} - 980C_{6}) + a_{n+2}b_{n+1}(2C_{2} - 5C_{3} + 48C_{4} - 174C_{5} + 1190C_{6}) = 0.$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

We have 7 variables and 6 equations.

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

We have 7 variables and 6 equations.

 \Rightarrow There must be a nontrivial solution.
Make an ansatz for a recurrence

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Here it is:

$$C_0 = -1$$
 $C_1 = 6$ $C_2 = 15$ $C_3 = -8$
 $C_4 = -19$ $C_5 = 2$ $C_6 = 1$

In all cases, a recurrence for the new sequence can be computed with linear algebra.

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Note: If a sequence (a_n) satisfies a recurrence

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0$$

then it is the zero sequence if and only if

 $a_0 = a_1 = \dots = a_{r-1} = 0.$

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Note: If a sequence (a_n) satisfies a recurrence

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0$$

then it is the **zero sequence** if and only if $a_0 = a_1 = \cdots = a_{r-1} = 0.$

This can be used for proving identities.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

Hence it suffices to check the identity for n = 0, 1, 2.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

Hence it suffices to check the identity for n = 0, 1, 2.

Every identity among C-finite sequences involving only of +, \times , \sum and dilation can be automatically proven in this way.

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

►
$$2^n$$
: $a_{n+1} - 2a_n = 0$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

▶ 2^n : $a_{n+1} - 2a_n = 0$ ▶ n!:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

▶ 2^n : $a_{n+1} - 2a_n = 0$ ▶ n!: $a_{n+1} - (n+1)a_n = 0$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

2ⁿ: a_{n+1} − 2a_n = 0
n!: a_{n+1} − (n + 1)a_n = 0
∑ⁿ_{k=0} (−1)^k/_{k!}:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

2ⁿ: a_{n+1} − 2a_n = 0
n!: a_{n+1} − (n + 1)a_n = 0
∑ⁿ_{k=0} (-1)^k/k!: (n + 2)a_{n+2} − (n + 1)a_{n+1} − a_n = 0

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

- ► 2^n : $a_{n+1} 2a_n = 0$
- ► n!: $a_{n+1} (n+1)a_n = 0$
- $\sum_{k=0}^{n} \frac{(-1)^k}{k!} : \qquad (n+2)a_{n+2} (n+1)a_{n+1} a_n = 0$
- Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal Delannoy numbers, Motzkin numbers, Catalan numbers, Apery numbers, Schröder numbers, ...

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

- ► 2^n : $a_{n+1} 2a_n = 0$
- ► n!: $a_{n+1} (n+1)a_n = 0$
- $\sum_{k=0}^{n} \frac{(-1)^k}{k!}$: $(n+2)a_{n+2} (n+1)a_{n+1} a_n = 0$
- Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal Delannoy numbers, Motzkin numbers, Catalan numbers, Apery numbers, Schröder numbers, ...
- Many sequences which have no name and no closed form.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Not holonomic:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

 $\triangleright 2^{2^n}$

The sequence of prime numbers.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

- ► 2^{2^n} .
- The sequence of prime numbers.
- Many sequences which have no name and no closed form.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

- $\triangleright 2^{2^n}.$
- The sequence of prime numbers.
- Many sequences which have no name and no closed form.

This means that these sequences can (provably) not be viewed as solutions of a linear recurrence equation with polynomial coefficients.

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Approximately 25% of the sequences in Sloane's Online Encyclopedia of Integer Sequences fall into this category.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Examples:

 $\blacktriangleright \exp(x)$:

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

$$\blacktriangleright \log(1-x):$$
$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$
• $\log(1-x)$: $(x-1)f''(x) - f'(x) = 0$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Examples:

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

►
$$\log(1-x)$$
: $(x-1)f''(x) - f'(x) = 0$

►
$$\frac{1}{1+\sqrt{1-x^2}}$$
: $(x^3-x)f''(x) + (4x^2-3)f'(x) + 2xf(x) = 0$

 Bessel functions, Hankel functions, Struve functions, Airy functions, Polylogarithms, Elliptic integrals, the Error function, Kelvin functions, Mathieu functions, ...

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

►
$$\log(1-x)$$
: $(x-1)f''(x) - f'(x) = 0$

►
$$\frac{1}{1+\sqrt{1-x^2}}$$
: $(x^3-x)f''(x) + (4x^2-3)f'(x) + 2xf(x) = 0$

- Bessel functions, Hankel functions, Struve functions, Airy functions, Polylogarithms, Elliptic integrals, the Error function, Kelvin functions, Mathieu functions, ...
- Many functions which have no name and no closed form.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

►
$$\exp(\exp(x) - 1)$$
.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

- ► $\exp(\exp(x) 1)$.
- The Riemann Zeta function.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

- $\exp(\exp(x) 1)$.
- The Riemann Zeta function.
- ► Many functions which have no name and no closed form.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

Not holonomic:

- ► $\exp(\exp(x) 1)$.
- The Riemann Zeta function.

Many functions which have no name and no closed form.

This means that these functions can (provably) not be viewed as solutions of a linear differential equation with polynomial coefficients.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

Approximately 60% of the functions in Abramowitz and Stegun's handbook fall into this category.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

•
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

▶
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$
▶ $(x^3 - x)f''(x) + (4x^2 - 3)f'(x) + 2xf(x) = 0$ $(n+4)a_{n+2} - (n+1)a_n = 0$

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

▶
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$
▶ $(x^3 - x)f''(x) + (4x^2 - 3)f'(x) + 2xf(x) = 0$ $(n+4)a_{n+2} - (n+1)a_n = 0$

Given a differential equation, we can compute a corresponding recurrence equation and vice versa.

This is similar as for algebraic numbers.

This is similar as for algebraic numbers.

Naive question: What are the roots of the polynomial $x^5 - 3x + 1$?

This is similar as for algebraic numbers.

Naive question: What are the roots of the polynomial $x^5 - 3x + 1$?

Expert answer: RootOf($_Z^5 - 3_Z + 1$, index = 1), RootOf($_Z^5 - 3_Z + 1$, index = 2), RootOf($_Z^5 - 3_Z + 1$, index = 3), RootOf($_Z^5 - 3_Z + 1$, index = 4), RootOf($_Z^5 - 3_Z + 1$, index = 5).

For holonomic sequences:

For holonomic sequences:

Naive question: What are the solutions of the recurrence

$$(3n+2)a_{n+2} - 2(n+3)a_{n+1} + (2n-7)a_n = 0 ?$$

For holonomic sequences:

Naive question: What are the solutions of the recurrence

$$(3n+2)a_{n+2} - 2(n+3)a_{n+1} + (2n-7)a_n = 0 ?$$

A holonomist's answer: There is exactly one solution with $a_0 = 0$, $a_1 = 1$, exactly one solution with $a_0 = 1$, $a_1 = 0$, and every other solution is a linear combination of those two.

Key property: Every holonomic sequence can be specified uniquely by its recurrence and a finite number of initial values.

Key property: Every holonomic sequence can be specified uniquely by its recurrence and a finite number of initial values.

When computing with holonomic objects, we use this data rather than closed form expressions.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

•
$$(a_n b_n)_{n=0}^{\infty}$$
 is holonomic.

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.
- ▶ if $u, v \in \mathbb{Q}$ are positive, then $(a_{|un+v|})_{n=0}^{\infty}$ is holonomic.

Theorem. Let $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ be holonomic sequences. Then:

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.
- ▶ if $u, v \in \mathbb{Q}$ are positive, then $(a_{\lfloor un+v \rfloor})_{n=0}^{\infty}$ is holonomic.

Recurrence equations for all these sequences can be computed from given defining equations of $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

Theorem. Let a(x) and b(x) be holonomic power series. Then: • a(x) + b(x) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- a'(x) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- ► a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.
- if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- ► a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.

• if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Differential equations for all these functions can be computed from given defining equations of a(x) and b(x).

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Let $c_n = a_n b_n$.

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Let $c_n = a_n b_n$.

We want to find a recurrence of the form

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0.$

$$c_n = a_n b_n$$

$$c_n = a_n b_n$$
$$c_{n+1} = a_{n+1} b_{n+1}$$

$$c_n = a_n b_n$$
$$c_{n+1} = a_{n+1} b_{n+1}$$
$$c_{n+2} = a_{n+2} b_{n+2}$$

$$c_n = a_n b_n$$

$$c_{n+1} = a_{n+1} b_{n+1}$$

$$c_{n+2} = -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1}$$

$$+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1}$$

$$c_n = a_n b_n$$

$$c_{n+1} = a_{n+1} b_{n+1}$$

$$c_{n+2} = -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1}$$

$$+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1}$$

$$c_{n+3} = a_{n+3} b_{n+3}$$

$$\begin{aligned} c_n &= a_n b_n \\ c_{n+1} &= a_{n+1} b_{n+1} \\ c_{n+2} &= -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1} \\ &+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1} \\ c_{n+3} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \end{aligned}$$

$$\begin{split} c_n &= a_n b_n \\ c_{n+1} &= a_{n+1} b_{n+1} \\ c_{n+2} &= -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1} \\ &+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1} \\ c_{n+3} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \\ c_{n+4} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \end{split}$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

 $P_0(n)a_nb_n$

$$+ P_{1}(n)a_{n+1}b_{n+1} + P_{2}(n) \left(-\frac{(n+8)(3n+2)}{(n+3)(2n+1)}a_{n}b_{n} + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)}a_{n}b_{n+1} \right. + \frac{(n+8)(n+1)}{(n+3)(2n+1)}a_{n+1}b_{n} - \frac{2(n+1)^{2}}{(n+3)(2n+1)}a_{n+1}b_{n+1} \right) + P_{3}(n) \left(\frac{(\cdots)}{(\cdots)}a_{n}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n}b_{n+1} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n+1} \right) + P_{4}(n) \left(\frac{(\cdots)}{(\cdots)}a_{n}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n}b_{n+1} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n+1} \right) = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$ can be rewritten into

$$a_{n}b_{n}\left(P_{0}(n) - \frac{(n+8)(3n+2)}{(n+3)(2n+1)}P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n+1}b_{n}\left((\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n}b_{n+1}\left((\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n+1}b_{n+1}\left(P_{1}(n) + (\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right) = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

We have 5 variables and 4 equations.

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

We have ${\bf 5}$ variables and ${\bf 4}$ equations.

 \Rightarrow There must be a nontrivial solution.

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$ Here it is:

$$\begin{split} P_0(n) &= (n+2)(n+3)(n+8)(n+9)(3n+2)(3n+5)(25n^2+114n+136) \\ P_1(n) &= -2(n+1)(n+3)(n+9)(3n+5) \\ &\times (25n^4+189n^3+469n^2+263n-176) \\ P_2(n) &= -(n+2)(275n^7+554n^6-16919n^5-118907n^4 \\ &\quad -341694n^3-497343n^2-355526n-95160) \\ P_3(n) &= 2(n+1)(n+3)(n+4)(2n+3) \\ &\times (25n^4+189n^3+576n^2+992n+730) \\ P_4(n) &= (n+1)(n+2)(n+4)(n+5)(2n+3)(2n+5)(25n^2+64n+47) \end{split}$$

In general, if $\left(a_{n}\right)$ satisfies a recurrence of order r and $\left(b_{n}\right)$ satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

In general, if (a_n) satisfies a recurrence of order r and (b_n) satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

In general, if (a_n) satisfies a recurrence of order r and (b_n) satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

An ansatz for a recurrence equation of order rs leads to a linear system with rs + 1 variables and rs equations.

In general, if $\left(a_{n}\right)$ satisfies a recurrence of order r and $\left(b_{n}\right)$ satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

An ansatz for a recurrence equation of order rs leads to a linear system with rs + 1 variables and rs equations.

This proves that $(a_n b_n)$ is holonomic.

The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you. The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Once we have a recurrence equation for A - B, we can prove by induction that it is identically zero.

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Once we have a recurrence equation for A - B, we can prove by induction that it is identically zero.

Let's see two examples.

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x)\right)$$

Legendre polynomials:

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

▶ $P_0(x) = 1$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

▶
$$P_0(x) = 1$$

 $\blacktriangleright P_1(x) = x$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

- ► $P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- ► $P_2(x) = \frac{1}{2}(3x^2 1)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \right)$$

- ► $P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- $P_2(x) = \frac{1}{2}(3x^2 1)$
- ► $P_3(x) = \frac{1}{2}(5x^3 3x)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

- $\blacktriangleright P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- $P_2(x) = \frac{1}{2}(3x^2 1)$
- ► $P_3(x) = \frac{1}{2}(5x^3 3x)$
- $P_4(x) = \frac{1}{8}(35x^4 30x^2 + 3)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \right)$$

▶ $P_0(x) = 1$ ▶ $P_1(x) = x$ ▶ $P_2(x) = \frac{1}{2}(3x^2 - 1)$ ▶ $P_3(x) = \frac{1}{2}(5x^3 - 3x)$ ▶ $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$ ▶ $P_5(x) = \frac{1}{8}(15x - 70x^3 + 63x^5)$ ▶

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

$$P_{n+2}(x) = -\frac{n+1}{n+2}P_n(x) + \frac{2n+3}{n+2}xP_{n+1}(x)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

$$P_{n+2}(x) = -\frac{n+1}{n+2}P_n(x) + \frac{2n+3}{n+2}xP_{n+1}(x)$$
$$P_0(x) = 1$$
$$P_1(x) = x$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

►
$$P_0^{(1,-1)}(x) = 1$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

• $P_0^{(1,-1)}(x) = 1$ • $P_1^{(1,-1)}(x) = 1 + x$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

• $P_0^{(1,-1)}(x) = 1$ • $P_1^{(1,-1)}(x) = 1 + x$ • $P_2^{(1,-1)}(x) = \frac{3}{2}(x + x^2)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$P_{n+2}^{(1,-1)}(x) = -\frac{n}{n+1}P_n^{(1,-1)}(x) + \frac{2n+3}{n+2}xP_{n+1}^{(1,-1)}(x)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$\begin{aligned} P_{n+2}^{(1,-1)}(x) &= -\frac{n}{n+1} P_n^{(1,-1)}(x) + \frac{2n+3}{n+2} x P_{n+1}^{(1,-1)}(x) \\ P_0^{(1,-1)}(x) &= 1 \\ P_1^{(1,-1)}(x) &= 1+x \end{aligned}$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

How to prove this identity?

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

How to prove this identity? \longrightarrow By induction!

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x)\right) = 0$$

How to prove this identity? \longrightarrow By induction!

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

How to prove this identity? \longrightarrow By induction!

Compute a recurrence for the left hand side from the defining equations of its building blocks.

$$\sum_{k=0}^{n} \underbrace{\frac{2k+1}{k+1}}_{\substack{\text{recurrence} \\ \text{of order 1}}} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\sum_{k=0}^{n} \underbrace{\frac{2k+1}{k+1}}_{\substack{\text{recurrence} \\ \text{of order 1}}} \underbrace{P_{k}^{(1,-1)}(x)}_{\substack{\text{recurrence} \\ \text{of order 2}}} - \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x)\Big) = 0$$

$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) -$	$-\frac{1}{1-x}\Big(2-P_n(x)-P_{n+1}(x)\Big)=0$
recurrence recurrence of order 1 of order 2	
recurrence of order 2	
recurrence of order 5	

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\begin{split} \mathrm{lhs}_{n+7} &= (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+6} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+5} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+4} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+3} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+2} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+1} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_n \end{split}$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\begin{aligned} \mathrm{lhs}_{n+7} &= (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+6} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+5} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+4} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+3} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+2} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+1} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_n \end{aligned}$$

Therefore the identity holds for all $n \in \mathbb{N}$ if and only if it holds for $n = 0, 1, 2, \dots, 6$.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

 $\blacktriangleright H_0(x) = 1$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

 $\blacktriangleright H_0(x) = 1$

$$\blacktriangleright H_1(x) = 2x$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

 $\blacktriangleright H_0(x) = 1$

$$\blacktriangleright H_1(x) = 2x$$

► $H_2(x) = 4x^2 - 2$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$
- ► $H_2(x) = 4x^2 2$
- ► $H_3(x) = 8x^3 12x$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$
- ► $H_2(x) = 4x^2 2$
- ► $H_3(x) = 8x^3 12x$
- $H_4(x) = 16x^4 48x^2 + 12$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$

►
$$H_2(x) = 4x^2 - 2$$

•
$$H_3(x) = 8x^3 - 12x$$

- $H_4(x) = 16x^4 48x^2 + 12$
- $H_5(x) = 32x^5 160x^3 + 120x$

••••

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$H_{n+2}(x) = 2xH_{n+1}(x) - 2(n+1)H_n(x)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\begin{split} H_{n+2}(x) &= 2x H_{n+1}(x) - 2(n+1) H_n(x) \\ H_0(x) &= 1 \\ H_1(x) &= 2x \end{split}$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of $\rm LHS-RHS$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of $\rm LHS-RHS$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS – RHS

Then prove by induction that they are all zero.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS - RHS

Then prove by induction that they are all zero.

Then the power series is zero.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\substack{n! \\ \text{ord. 2}}} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\substack{\text{rec. of}\\ \text{ord. 2} \text{ ord. 2}}} \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

rec. of order 4

rec. of order 4

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\text{rec. of rec. of rec. of ord. 2 ord. 2 ord. 1}}_{\text{rec. of order 4}} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

differential equation of order 5

differential equation of order 5

 \rightsquigarrow recurrence equation of order 4

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \ln \mathbf{s}_{n+4} &= \frac{4xy}{n+4} \ln \mathbf{s}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \ln \mathbf{s}_{n+2} \\ &+ \frac{16xy}{n+4} \ln \mathbf{s}_{n+1} - \frac{16(n+1)}{n+4} \ln \mathbf{s}_n \,. \end{aligned}$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \text{lhs}_{n+4} &= \frac{4xy}{n+4} \, \text{lhs}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \, \text{lhs}_{n+2} \\ &+ \frac{16xy}{n+4} \, \text{lhs}_{n+1} - \frac{16(n+1)}{n+4} \, \text{lhs}_n \, . \end{aligned}$$

Because of $lhs_0 = lhs_1 = lhs_2 = lhs_3 = 0$, we have $lhs_n = 0$ for all n.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \text{lhs}_{n+4} &= \frac{4xy}{n+4} \, \text{lhs}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \, \text{lhs}_{n+2} \\ &+ \frac{16xy}{n+4} \, \text{lhs}_{n+1} - \frac{16(n+1)}{n+4} \, \text{lhs}_n \, . \end{aligned}$$

Because of $lhs_0 = lhs_1 = lhs_2 = lhs_3 = 0$, we have $lhs_n = 0$ for all n.

This completes the proof.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

But once this is done, closure properties algorithms come in handy to complete the proof of the identity.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

But once this is done, closure properties algorithms come in handy to complete the proof of the identity.

This is typical: closure properties algorithms are most useful in combination with other tools.

Summary
Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.
- These closure properties are constructive and are used for proving identities for holonomic objects with the computer.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.
- These closure properties are constructive and are used for proving identities for holonomic objects with the computer.
- Typically this happens in combination with other (less trivial) algorithms for summation and integration.

Holonomic Closure Properties and Guessing

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Interpolation of the first 5 terms gives $n^2 - 1$, which also happens to match the next 5 terms. If the pattern continues, the next will be 120.

Holonomic?

Holonomic?

Definition (discrete case). A sequence $(a_n)_{n=0}^{\infty}$ in a field K is called holonomic (or *P*-finite or *D*-finite or *P*-recursive) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Holonomic?

Definition (discrete case). A sequence $(a_n)_{n=0}^{\infty}$ in a field K is called holonomic (or *P*-finite or *D*-finite or *P*-recursive) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Definition ("continuous" case). A function f is called *holonomic* (or *D*-finite or *P*-finite) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Part B Guessing

Task: Given the first N terms a_0, a_1, \ldots, a_N of an infinite sequence $(a_n)_{n=0}^{\infty}$, as well as two numbers $d, r \in \mathbb{N}$, find all the recurrence equations

$$p_0(n)a_n + p_1(n)a_{n+1} + \dots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n)$ of degree at most d, satisfied by the sequence $(a_n)_{n=0}^{\infty}$ (at least) for $n = 0, \ldots, N - r$.

Task: Given the first N terms a_0, a_1, \ldots, a_N of an infinite sequence $(a_n)_{n=0}^{\infty}$, as well as two numbers $d, r \in \mathbb{N}$, find all the recurrence equations

$$p_0(n)a_n + p_1(n)a_{n+1} + \dots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n)$ of degree at most d, satisfied by the sequence $(a_n)_{n=0}^{\infty}$ (at least) for $n = 0, \ldots, N - r$. *Example.* (demo) *Task:* Given the first N terms $a_0 + a_1x + a_2x^2 + \cdots + a_Nx^N$ of a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$, as well as two numbers $d, r \in \mathbb{N}$, find all the differential equations

$$p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x) = O(x^{N-r})$$

with polynomial coefficients $p_i(x)$ of degree at most d, satisfied by the series f(x) (at least) up to order x^{N-r} .

Example. (demo)

Suppose we are given the following data:

$a_0 = 1,$	$a_5 = 6802,$
$a_1 = 2,$	$a_6 = 56190,$
$a_2 = 14,$	$a_7 = 470010,$
$a_3 = 106,$	$a_8 = 3968310,$
$a_4 = 838,$	$a_9 = 33747490.$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for $n = 0, \ldots, 7$ (at least).

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for $n = 0, \ldots, 7$ (at least).

 $n=0: \ (c_{0,0}+c_{0,1}0)1+(c_{1,0}+c_{1,1}0)2+(c_{2,0}+c_{2,1}0)14=0$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

$$\begin{split} n = 0: & (c_{0,0} + c_{0,1}0)1 + (c_{1,0} + c_{1,1}0)2 + (c_{2,0} + c_{2,1}0)14 = 0 \\ n = 1: & (c_{0,0} + c_{0,1}1)2 + (c_{1,0} + c_{1,1}1)14 + (c_{2,0} + c_{2,1}1)106 = 0 \end{split}$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for $n = 0, \ldots, 7$ (at least).

$$\begin{split} n = 0: & (c_{0,0} + c_{0,1}0)1 + (c_{1,0} + c_{1,1}0)2 + (c_{2,0} + c_{2,1}0)14 = 0\\ n = 1: & (c_{0,0} + c_{0,1}1)2 + (c_{1,0} + c_{1,1}1)14 + (c_{2,0} + c_{2,1}1)106 = 0\\ n = 2: & (c_{0,0} + c_{0,1}2)14 + (c_{1,0} + c_{1,1}2)106 + (c_{2,0} + c_{2,1}2)838 = 0 \end{split}$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

÷

We want the recurrence to be true for $n = 0, \ldots, 7$ (at least).

$$n=0: (c_{0,0}+c_{0,1}0)1 + (c_{1,0}+c_{1,1}0)2 + (c_{2,0}+c_{2,1}0)14 = 0$$

$$n=1: (c_{0,0}+c_{0,1}1)2 + (c_{1,0}+c_{1,1}1)14 + (c_{2,0}+c_{2,1}1)106 = 0$$

$$n=2: (c_{0,0}+c_{0,1}2)14 + (c_{1,0}+c_{1,1}2)106 + (c_{2,0}+c_{2,1}2)838 = 0$$

$$n=7: (c_{0,0} + c_{0,1}7)470010 + (c_{1,0} + c_{1,1}7)3968310 + (c_{2,0} + c_{2,1}7)33747490 = 0$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c}_{0,0} + \mathbf{c}_{0,1}n)a_n + (\mathbf{c}_{1,0} + \mathbf{c}_{1,1}n)a_{n+1} + (\mathbf{c}_{2,0} + \mathbf{c}_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

$ \begin{bmatrix} 2 & 2 & 14 & 14 & 106 & 106 \\ 14 & 28 & 106 & 212 & 838 & 1676 \\ 106 & 318 & 838 & 2514 & 6802 & 2040 \\ 838 & 3352 & 6802 & 27208 & 56190 & 22476 \\ 6802 & 34010 & 56190 & 280950 & 470010 & 23500 \\ 56190 & 337140 & 470010 & 2820060 & 3968310 & 238093 \\ 470010 & 3290070 & 3968310 & 27778170 & 33747490 & 236232 \\ \end{bmatrix} $	$\begin{bmatrix} 5 \\ 0 \\ 50 \\ 60 \\ 60 \end{bmatrix} \begin{pmatrix} -0, 1 \\ c_{1,1} \\ c_{2,0} \\ c_{2,1} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
--	---

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

We have 8 equations but only 6 variables.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c}_{0,0} + \mathbf{c}_{0,1}n)a_n + (\mathbf{c}_{1,0} + \mathbf{c}_{1,1}n)a_{n+1} + (\mathbf{c}_{2,0} + \mathbf{c}_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

$\begin{pmatrix} 1 \\ 2 \\ 14 \\ 106 \\ 838 \\ 6802 \\ 56190 \\ 470010 \end{pmatrix}$	$\begin{array}{c} 0 \\ 2 \\ 28 \\ 318 \\ 3352 \\ 34010 \\ 337140 \\ 3290070 \end{array}$	$\begin{array}{c} 2\\ 14\\ 106\\ 838\\ 6802\\ 56190\\ 470010\\ 3968310 \end{array}$	$\begin{array}{c} 0 \\ 14 \\ 212 \\ 2514 \\ 27208 \\ 280950 \\ 2820060 \\ 27778170 \end{array}$	$\begin{array}{c} 14 \\ 106 \\ 838 \\ 6802 \\ 56190 \\ 470010 \\ 3968310 \\ 33747490 \end{array}$	$\begin{array}{c} 0\\ 106\\ 1676\\ 20406\\ 224760\\ 2350050\\ 23809860\\ 236232430 \end{array}$	$\begin{pmatrix} c_{0,0} \\ c_{0,1} \\ c_{1,0} \\ c_{1,1} \\ c_{2,0} \\ c_{2,1} \end{pmatrix}$	$=\begin{pmatrix}0\\0\\0\\0\\0\\0\end{pmatrix}$
---	--	---	---	---	---	--	---

We have 8 equations but only 6 variables.

 \Rightarrow There ought to be **no solution**.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

$ \begin{bmatrix} 14 & 28 & 106 & 212 & 838 & 1676 \\ 106 & 318 & 838 & 2514 & 6802 & 20406 \\ 838 & 3352 & 6802 & 27208 & 56190 & 224760 \\ 6802 & 34010 & 56190 & 280950 & 470010 & 2350050 \\ 56190 & 337140 & 470010 & 2820060 & 3968310 & 2380860 \\ 470010 & 3290070 & 3968310 & 27778170 & 33747490 & 236232430 \\ \end{bmatrix} $	$ = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $
---	---

Unexpected solution: (0, 9, -14, -10, 2, 1).

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We have found that the recurrence

$$9n a_n + (-14 - 10n) a_{n+1} + (2n+1)a_{n+2} = 0,$$

holds for $n = 0, \ldots, 7$.

► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.

- ► A dense overdetermined linear system is very unlikely to have
 - a nonzero solution.

An underdetermined system is **certain** to have solutions. But these are just "noise." To get an overdetermined system, choose r and d such that N > (r + 1)(d + 2).

- A dense overdetermined linear system is very unlikely to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.

- A dense overdetermined linear system is very unlikely to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.
Why should this recurrence hold for n>7 ?

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.

If we have some further terms, say a_{10}, a_{11}, a_{12} , we can check whether they match the recurrence to gain further confidence.

Why should this recurrence hold for n>7 ?

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.

If we have some further terms, say a_{10}, a_{11}, a_{12} , we can check whether they match the recurrence to gain further confidence.

However: Without further knowledge about the origin of the sequence, no finite amount of data will suffice to prove the correctness of the guess.

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

Then what's the point?

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

Then what's the point?

Guessing is much faster than proving, and practically as reliable.

Let ${\cal F}(z,q)$ be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

Let ${\cal F}(z,q)$ be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + 28 + 12q^2 + q^4)z^4 + \cdots$$

Let F(z,q) be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + 28 + 12q^2 + q^4)z^4 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

Let F(z,q) be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = \mathbf{1} + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + \mathbf{28} + 12q^2 + q^4)z^4 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

Experimental approach: Calculate the first few hundred terms in the expansion of f(z), and use them to determine the differential equation by guessing.

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

Experimental approach: Calculate the first few hundred terms in the expansion of f(z), and use them to determine the differential equation by guessing.

This needs 30sec, including the generation of data.

The following tricks can sometimes be used to get a speed-up:

Trade order against degree

- Trade order against degree
- Use modular arithmetic

- Trade order against degree
- Use modular arithmetic
- Boot strapping

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Some are easier to find than others.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Experience: equations with $r \approx d$ tend to require the least number N of terms.

The interesting minimal order operator can (with high probability) be obtained from two different nonminimal operators by taking their greatest common right divisor as operators.

- Trade order against degree
- Use modular arithmetic
- Boot strapping

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Guessing requires solving large dense linear systems.

Guessing requires solving large dense linear systems.

If this is done naively, it will produce extremely large intermediate expressions.
Guessing requires solving large dense linear systems.

If this is done naively, it will produce extremely large intermediate expressions.

A proper implementation will work with homomorphic images:

Compute the nonminimal operators only modulo some primes.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Modern guessing programs do this automatically for you. (Demo.)

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Modern guessing programs do this automatically for you. (Demo.) But also the user can sometimes take advantage of modular computations.

170 170 170 57125 57125 57125 48268101 48268101 48268101 34260690332 34260690332 24950283288564 28950283288564 28950283288564 28950283288564 24602777889341700 24602777889341700 24602777889341700 3512004029335396264 3512004029335396268 3512004029335396300 4636941943446398583 463694194344624575 4636941943446437571 1673190115103417387 16731901151058359959 16731901151070452995 13561571021375624155 1356157105453157 13327761355361409199 1322770321832822743 13327714149818529515 14135275161253345008 14156428691527110768 14167005456663993648 143802714269693539175 18179265693910531235 5637810232751292815 748986848795513175 18179265693910531235 15637602357189384500 140582750285 1306425343726879423155584450684595156 73222935192567028 1242169677218181673 124882714269695539 12492155875456012980 130642523437268794231555844540684595155 7230840730230649 12251032821660517429 1505674106894750910 1245229349600306782	0	0	0
48268101 48268101 48268101 34260690332 34260690332 34260690332 28950283288564 28950283288564 28950283288564 24602777889341700 24602777889341700 24602777889341700 3512004029335396264 3512004029335396283 3512004029335396264 463694194344639858 463694194344642575 4636941943446437571 16731901151034173887 167319011510583359959 16731901151070452995 13561571021375624155 13561571044217255635 13561571055638071375 18327681355361409199 18327703218332822743 18327714149818529515 1413527516125345008 81415642691527110768 141670569939048 5637602357189385604 14984004752674089390 710461876760909598 12482169677218181673 124826967721818167124269605553124921585754560129800 13064253343726879423 15658485480684595156 77322931925667068 142522536223966504 10758223940000306782 824742898598764285 1306425343726879423 15658485480684595156 7732293397562910 9611069490645864805 12251039281660517429 1056674106894750910 9611069490645864805 <td>170</td> <td>170</td> <td>170</td>	170	170	170
34260690332 34260690332 28950283288564 28950283288564 24602777889341700 24602777889341700 3512004029335396264 3512004029335396268 3512004029335396300 4636941943446398583 463694194344624575 4636941943446437571 16731901151034173887 16731901151058359959 1673190115107452995 13561571021375624155 1355157104421725633 1336157105638071375 18327768135334100199 18327703218332822743 18327714149818529515 14135275161253345008 14156428691527110768 14167005456663993648 5637819232275028612 784986848795513175 18179265693910531235 6637602357189385604 14984004752674089390 710461876706099588 12482169677218181673 124882714269655539 1292155875556012980 130642536405 12550392816605117429 105667410894750910 061106940964586404 12551039281660517429 105667410894750910 061106940964586405 12850017095861857 1273080730230649 829591048746708080 108565150039621396651131849376672484172 15099820958134393 12384893332224311501184574668080973 7	57125	57125	57125
28950283288564 28950283288564 28950283288564 24602777889341700 24602777889341700 24602777889341700 551204029335396264 351204029335396264 28950283288564 2463041943446398583 4636941943446424575 463694194344639558 351204029335396264 16351204029335396264 3512004029335396264 3512004029335396264 351204029335396264 16351201021375624155 13561571021375624155 13561571055638071375 13561571055638071375 18327681355361409199 18327703218332822743 183277114149818529515 14135275161253345008 14156428691527110768 141670054566539310531235 6637602357189385604 14984004752674089390 710461876706909598 12482169677218181673 1248827142696955539 12492155875456012980 13064253333726879423 1555845480684595156 77322295192567068 146522536223966504 10758223940600306782 8824742998598764285 1073883460840998658 788062827186764443 505674106894750910 96110694064586405 125103928160517429 1056611245293359755 2211804365157896289 1518501070958618575 127308807730230649 8829591048746708080 108565150039621338615184827662840973 <td>48268101</td> <td>48268101</td> <td>48268101</td>	48268101	48268101	48268101
24602777889341700 24602777889341700 3512004029335396264 351200402933539628 3512004029335396264 4636941943446398583 4636941943446424575 463694194344637571 16731901151034173887 16731901151058359959 16731901151070452995 13561571021375624155 1356157104421725563513561571055638071375 18327681355361409199 1832770321832822743 14135275161253345008 1415642869152711076814167005456663993648 5637819232275028612 7849868848795513175 18179265693910531235 6637602357189385604 14984004752674089390710461876706909598 1248216967721818167312488827142696955539124921558754560129800 13064253343726879423 15658485480684595156 7732229531925667068 1465252536223966504 10758223940600306782 82824742898598764285 10738834608406986658 78802827186764443 5056674106894750910 961106949064586405 122510392816605171429 105061124529395755 2211804365157896289 13185001070958618875127308807730320649 820295104874670808 1085651500396213966511318493766728410726 1500998290858134393 128328488933322220438119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 <t< td=""><td>34260690332</td><td>34260690332</td><td>34260690332</td></t<>	34260690332	34260690332	34260690332
3512004029335396264 3512004029335396288 3512004029335396300 4636941943446398583 4636941943446424575 4636941943446437571 16731901151034173871673190115105835995916731901151070452995 13561571021375624155 13561571044217255635 13561571055638071375 183277681355361409199 1832770321833282274318327714149818529515 14135275161253345008 1415642869152711076814167005456663993648 5637819232275028612 7849868848795513175 18179265693910531235 6637602357189385604 1498400475267408939071046187670609958 124821696772181816731248882714269695553912492155875456012980 13064253343726879423 15658485480684595156 773222953192567068 14625225362239686504 10758223940600306782 8824742898598764285 1073834608406986658 788602827186764443 5056674106894750910 961106649064586405 12251039281660517429105061124529359755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 15009982905831439312832848893332224038119511874668080933 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562567830915054 14734387943773226198 16693159135573847818 2788562567830915054 147343893467898009161198777703659233237160091651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300886138518812765226267821078126 160101694556452535	28950283288564	28950283288564	28950283288564
4636941943446398583 4636941943446424575 4636941943446437571 167319011510341738871673190115105835995916731901151070452995 135615710213756241551356157104421725563513561571055638071375 1433276813553614091991832770321833282274318327714149818529515 141352751612533450081415642869152711076814167005456653993648 5637619232275028612 7849868848795513175 18172965693910531235 5637619232275028612 7849868848795513175 18172965693910531235 5637602357189385604 14984004752674089390710461876706909598 12482169677218181673 12488271426969555391249215875456012980 130642533472687942315658485480684595156773222951925667068 1462522536223966650410758223940600306782882474298598764285 1073883460840986658 788602827186764443 5056674106894750910 961106649064586405 1225103928166051742910550611245293959755 2211804365157896289 15185001070958618575127308807730230649 8829591048746708080 108565150039621396651318493766728410726 150098829085813439312838284893332224038119518876668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818278856267830915054 154335993487989900916119877770365982382471600991651671889 899837740350271174 119469500248400311814756123186994554460 6952192533311026338 1376559235250704369611362094742791890224 176973008861381812762226266782107781261001109455452630	24602777889341700	24602777889341700	24602777889341700
16731901151034173887 16731901151058359959 16731901151070452995 13561571021375624155 13561571044217255635 13561571055638071375 18327681355361409199 18327703218332822743 18327714149818529515 14135275161253345008 14156428691527110768 14167005456663993648 5637602357189385604 14156428691527110768 14167005456653993648 5637602357189385604 14984004752674089390710461876706909598 12482169677218181673 12488827142696955539 12492158875456012980 13064253343726879423 15658485480684595156 7732229531925667068 14625225362239686504 10758223940600306782 8824742898598764285 1073834408406986658 788602237186764443 5056674106894750910 961106949064586405 12251039281660517429 1050611245293959755 2211804365157896289 1518501070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500998290858134393 12838284889333222403 8119518874668080973 7627367407386026140 8420246272424470758 1316924822363097435 14734287943773226198 16693159135573847818278856265783091651 1454335934879890091611987777035598233247160091651671889 899837740350271794 11946950024840031118 14756123186994554460 695219253371026338 13765592352507043696 11362094742791890224 176973008861385188127652262667821078126 16010169456542593	3512004029335396264	3512004029335396288	3512004029335396300
13561571021375624155 13561571044217255635 13561571055638071375 18327681355361409199 1832770321833282274318327714149818529515 14135275161253345008 14156428691527110768 14167005456663993648 5637819232275028612 7849968848795513175 18179265693910351335 6637602357189385604 14984004752674089390 710461876706909598 12482169677218181673 12488827142696955539 1249215875456012980 13064253343726879423 15658485480684595156 7732229531925667068 14625225362239686504 10758223940600306782 8824742898598764285 10738834608406986658 788602827186764443 5056674106894750910 961106949064586405 12251039281660517429 1050611245293959755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 10856515003921306213465113489376678480973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 14734287943773226198 16693159135573847818 2788562657830915054 14734369348708900 1611987777036598233247160091651671889 899837740350271794 11946950024840031118 14756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652262667821078126 16010169455452353	4636941943446398583	4636941943446424575	4636941943446437571
183276813553614091991832770321833282274318327714149818529515 141352751612533450081415642869152711076814167005456653993648 563781923227502861278496884879551317518172965693910531235 663760235718938560414984004752674089390710461876706909598 12482169677218181673124888271426969555391249215875456012980 1306425323472687942315658485406845951567732229531925667068 14625225362239686504107582239406003067828824742898598764285 1073883460840986587886028271867644435056674106894750910 961106949064586405122510392816605174291055611245239359755 221180436515789628915185001070958618575127308807730230649 88295910487467080801085651500396213966511318493766728410726 1500998829085813439312382848893332224038119518874668080973 7627367407386026140842024627242447075813169248223630914435 14734287943773226198166931591355738478182788562567830915054 1543359934879899009161198777703659823832471600991651671889 899837740350271174119465502484003111814756123186994554460 69521925333710263381376559235250704369611382094742791890224 1769730088613851881276522626782107812616010169456545623593	16731901151034173887	16731901151058359959	16731901151070452995
14135275161253345008 14156428691527110768 14167005456663993648 5637819232275028612 7849868848795513175 18179265693910531235 6637602357189385604 14984004752674089390710461876706909598 12482169677218181673 1248882714269695539 12492158875456012980 13064253343726879423 15658485480684595156 7732229531925667068 14625225362239686504 10758223940600306782882474298598764285 1073838406846098658 788602827186764443 5056674106894750910 961106949064586405 12251039281660517429 1050611245293959755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500998290658134393 12838248893332224038119518874668080973 7627367407386026140 8402046272424470758 1316924822363097435 14734287943773226198 16693159135573847818 2788562657830915054 14543359934879899009 161198777703659823832471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 14174304902082598370 11862232204708398073 183796549587781514	13561571021375624159	13561571044217255635	13561571055638071375
5637819232275028612 7849868848795513175 18179265693910531235 6637602357189385604 14984004752674089390710461876706909598 124821696772181816731248882714269695553912492155875456012980 13064253243726879423 15658485480684595156 7732229531925667068 14625225362239686504 10758223940600306782 8824742898598764285 10738834608406986658 788602827186764443 5056674106894750910 961106949064586405 122510392816605174291050611245293959755 2211804365157896289 15185001070958618575127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500998290858134393 12838284889333222403 8119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 14784339348708990091611987777036598233247160091651671889 899837740350271794 11946950024840031118 14756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300886138518812765226267821078126 1601016945545235393	18327681355361409199	18327703218332822743	18327714149818529515
6637602357189385604 14984004752674089390710461876706909598 12482169677218181673 1248882714269695553912492155875456012980 13064253347268794231565848540684951567732229531925667068 14625225362239686504 10758223940600306782 8824742898598764285 107388346084098658 788602827186764443 5056674106894750910 961106949064586405 12251032816605174291050611245239359755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 15009988290858134393 1238284889333222403 811951 8874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 1543359934879899009161198777703659823832471600991651671889 899837740350271174 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300886138518812765226266781078126 16011694565452353	14135275161253345008	314156428691527110768	14167005456663993648
124821696772181816731248882714269695553912492155875456012980 13064253343726879423156584854806845951567732229531925667068 1462522536223968650410758223940600306782824742898598764285 10738334608406996658788602827186764443 5056674106894750910 961106949064586405 122510392816605174291050611245293959755 2211804365157996289 15188001070958618575127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 15009988290858134393128382848893332224038119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198166931591355738478182788562657830915054 15483359934879899009161198777703659823832471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 141743049020825983701186223222047083980731837996549587781514	5637819232275028612	7849868848795513175	18179265693910531235
13064253343726879423 156584854806845951567732229531925667068 14625225362239686504 10758223940600306782 8824742898598764285 10738834608406986658 788602827186764443 5056674106894750910 961106949064586405 12251039281660517429 1050611245293959755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500988290858134393 12838284889333222403 8119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 14734287943773226198 16693159135573847818 2788562657830915054 154833593487989900916119877770365982382347160091651671889 899837740350271794 11946950024840031118 14756123186994554460 6952192533371026338 13765592352507043696 11362094742791890224 17697300886138518812765226267821078126 16010169456545623593 14174304902082598370 11862232204708398073 1837996549587781514	6637602357189385604	14984004752674089390	710461876706909598
14625225362239686504 10758223940600306782 8824742898598764285 1073883460840698658 788602827186764443 5056674106894750910 961106949064586405 12251032816605174291050611245293959755 2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500998290858134393 12838248893332224038119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 15483359934879899009161198777703659823832471600991651671889 899837740350271174 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300886138518812765226627821078126 160116945654523593 14174304902082598370 118622322047083980731837996549587781514	12482169677218181673	312488827142696955539	12492155875456012980
10738834608406986658788602827186764443 5056674106894750910 961106949064586405 122510392816605174291050611245293959755 2211804365157896289 15185001070958618575127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 15009988290858134393 128382848893332224038119518874668080973 7627367407386026140 8420246272424470758 1316924822363097435 14734287943773226198166931591355738478182788562657830915054 15483359934879899009161198777703659823832471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008613851881276522662782107812 161010169456545623593 14174304902082598370 118622322047083980731837996549587781514	13064253343726879423	315658485480684595156	7732229531925667068
961106949064586405 122510392816605174291050611245293959755 2211804365157896289 15188001070958618575127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 15009988290858134393 12838248893332224038119518874668080973 7627367407386026140 8402046272424470758 13169248223630974435 147434287943773226198 16693159135573478182788562657830915054 154333599348798990009161198777703659823832471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 14174304902082598370118622322047083980731837996549587781514	14625225362239686504	10758223940600306782	8824742898598764285
2211804365157896289 15185001070958618575 127308807730230649 8829591048746708080 1085651500396213966511318493766728410726 1500988290858134393 12838284893332224038119518874668080973 7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 16693159135573847818 2788562657830915054 154833599348798990091611987770365982383 2471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 14174304902082598370 118622322047083980731837996549587781514	10738834608406986658	3788602827186764443	5056674106894750910
$\begin{array}{r} 8829591048746708080 & 10856515003962139665 11318493766728410726 \\ 15009988290858134393 12838254889333222403 8119518874668080973 \\ 7627367407386026140 & 8420246272424470758 & 1316924822363097435 \\ 14734287943773226198 16693159135573847818 2788562657830915054 \\ 15483359934879899009 16119877770365982383 2471600991651671889 \\ 899837740350271794 & 11946950024640031118 14756123186994554460 \\ 695219253371026338 & 13765592352507043696 11362094742791890224 \\ 1769730086133518812 765226267821078126 & 16010169456545623593 \\ 14174304902082598370 11862232204708398073 1837996549587781514 \\ \end{array}$			
15009988290858134393128382848893332224038119518874668080973 7627367407386026140 8420246272424470758 1316924822363097435 14734287943773226198166931591355738478182788562657830915054 15483359934879899009161198777703659823832471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300861385188127652266267821078126 16010169456545623593 141743049020825983701186223222047083980731837996549587781514	2211804365157896289	15185001070958618575	127308807730230649
7627367407386026140 8420246272424470758 13169248223630974435 14734287943773226198 166931591355738478182788562657830915054 1548335993487989900916119877703659823823471600991651671889 899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 17697300886138518812765226267821078126 16010169456545623593 14174304902082598370118622322047083980731837996549587781514	8829591048746708080	10856515003962139665	11318493766728410726
$\begin{array}{l} 14734287943773226198166931591355738478182788562657830915054\\ 15483359934879899009161198777703659823832471600991651671889\\ 899837740350271794 \\ 1194695002484003111814756123166994554460\\ 695219253371026338 \\ 1376559235250704369611362094742791890224\\ 176973008861385188127652266267821078126 \\ 16010169456545623593\\ 14174304902082598370118622322047083980731837996549587781514\\ \end{array}$			
$\begin{array}{r} 15483359934879899009161198777703659823832471600991651671889\\ 899837740350271794 \\ 1194695002484003111814756123186994554460\\ 695219253371026338 \\ 1376559235250704369611362094742791890224\\ 17697300886138518812765226267821078126 \\ 16010169456545623593\\ 14174304902082598370118622322047083980731837996549587781514\\ \end{array}$			
899837740350271794 1194695002484003111814756123186994554460 6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 14174304902082598370118622322047083980731837996549587781514			
6952192533371026338 1376559235250704369611362094742791890224 176973008861385188127652266267821078126 16010169456545623593 14174304902082598370118622322047083980731837996549587781514	15483359934879899009	16119877770365982383	2471600991651671889
$\frac{176973008861385188127652266267821078126}{16010169456545623593}\\\frac{14174304902082598370118622322047083980731837996549587781514}{16010169456545623598370118622322047083980731837996549587781514}$			
14174304902082598370118622322047083980731837996549587781514	6952192533371026338	13765592352507043696	11362094742791890224
9566720042687775664 6633630390749590552 1873712421652022656			
	9566720042687775664	6633630390749590552	1873712421652022656

0	0	0	0
170	170	170	170
57125	57125	57125	57125
48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543
16731901151034173887	16731901151058359959	16731901151070452995	16731901151155104247
13561571021375624155	13561571044217255635	13561571055638071375	13561571135583781555
18327681355361409199	18327703218332822743	18327714149818529515	18327790670218476919
14135275161253345008	14156428691527110768	14167005456663993648	14241042812622173808
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620
12482169677218181673	12488827142696955539	12492155875456012980	12515457005136597883
13064253343726879423	15658485480684595156	7732229531925667068	7588670477925634811
			13737486829569602371
10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934
961106949064586405	12251039281660517429		1730796780127391701
2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836
8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083
			11805308573535485946
			16982273330702579648
			17719370099115195915
	16119877770365982383		
899837740350271794			11226634917845487051
	13765592352507043696		
	7652266267821078126		
	11862232204708398073		
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327

0	0	0	0	0
170	170	170	170	170
57125	57125	57125	57125	57125
48268101	48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384	3512004029335396394
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543	4636941943446539373
16731901151034173887	16731901151058359959	16731901151070452995	16731901151155104247	16731901151165181777
13561571021375624155	13561571044217255635	13561571055638071375	13561571135583781555	13561571145101128005
18327681355361409199	18327703218332822743	18327714149818529515	18327790670218476919	18327799779789899229
14135275161253345008	14156428691527110768	14167005456663993648	14241042812622173808	14249856783569576208
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907	6859153945430415570
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620	18028251197597986227
12482169677218181673	12488827142696955539	12492155875456012980	12515457005136597883	9443773603570734321
13064253343726879423	15658485480684595156	7732229531925667068	7588670477925634811	13281286656044656459
14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371	15200796479896019943
10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934	17425730095808525587
961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701	635703020769662299
2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836	5446680587098832013
8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083	2644477152643434420
15009988290858134393	12838284889333222403	8119518874668080973	11805308573535485946	12562094561654048160
7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648	6264853543132966636
14734287943773226198	16693159135573847818	2788562657830915054	17719370099115195915	14351987686736218119
15483359934879899009	16119877770365982383	2471600991651671889	5095243575810575316	12472610336651567052
899837740350271794	11946950024840031118	14756123186994554460	11226634917845487051	13567859892950511514
6952192533371026338	13765592352507043696	11362094742791890224	6644727374610071491	3992711139584800062
17697300886138518812	7652266267821078126	16010169456545623593	5224069660619876239	13020528712638715163
14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270	6569058788386309488
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327	7459210887944253892

mod 340282366920938460843936948965011886881 184467440737095515211844674407370955143718446744073709551427

34020230032033040004333303403030110000001	1044014401510555152	1044014401510555145	10440144015105551421
0	0	0	0
170	170	170	170
57125	57125	57125	57125
48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700
21958748103044947821	3512004029335396300	3512004029335396384	3512004029335396394
19982460773770890734814	4636941943446437571	4636941943446528543	4636941943446539373
18589778412414172744395308	16731901151070452995	516731901151155104247	16731901151165181777
17556405435959384905586216420	13561571055638071375	51356157113558378155	513561571145101128005
16804193264871415986848637912866	18327714149818529515	518327790670218476919	18327799779789899229
16258906633984352510780895055898688	14167005456663993648	314241042812622173808	314249856783569576208
15878645003134966488517342432611820340	18179265693910531235	516698067314877451907	6859153945430415570
318340667549431200127814008146743619195	710461876706909598	11476126187194330620	18028251197597986227
198503164393958539577067845488686416077	12492155875456012980	012515457005136597883	39443773603570734321
214670443338013688390580445819797373152	7732229531925667068	7588670477925634811	13281286656044656459
138812086818822165420022065635983834073	8824742898598764285	1373748682956960237	15200796479896019943
34887405067523117228515541823719337570	5056674106894750910	16856311482456444934	17425730095808525587
8677603847870660183707228009978911587	1050611245293959755	1730796780127391701	
151755704527465931623446269946736011627	127308807730230649	2923290836694930836	5446680587098832013
157520674316210552357179003218400644894	11318493766728410726	516555821147378467083	32644477152643434420
83401389361404009186691170000994753262	8119518874668080973	11805308573535485946	512562094561654048160
199107465433248163983566865568541300580	1316924822363097443	516982273330702579648	36264853543132966636
171646799941657083902142563883114122236	2788562657830915054	1771937009911519591	514351987686736218119
255701011924435651472375478434132710558			12472610336651567052
65204696697886220698264621831639730752			13567859892950511514
147021196331035236134827717045673809472		46644727374610071491	
304204745393541316784616770985857479782			13020528712638715163
69115067553184129907739559131736482619		1149810384458158270	
338027952164498897207398828653950753404	1873712421652022656	1558097947781835832	7459210887944253892

mod			7 18446744073709551427
	0	0	0
	170 57125	170 57125	170 57125
	48268101	48268101	48268101
	34260690332	34260690332	34260690332
	28950283288564	28950283288564	28950283288564
	24602777889341700	24602777889341700	24602777889341700
	21958748103044947821		3512004029335396394
	19982460773770890734814		4636941943446539373
	18589778412414172744395308		716731901151165181777
	17556405435959384905586216420		513561571145101128005
	16804193264871415986848637912866		918327799779789899229
	16258906633984352510780895055898688		814249856783569576208
	15878645003134966488517342432611820340		76859153945430415570
	15631047178991661938104976711572278528840		018028251197597986227
	15494275516175484896146558165069374931768650	1251545700513659788	39443773603570734321
	15452119731275448721521690374123048169473745090	7588670477925634811	13281286656044656459
	15492944429910290948927453354128640277129701928270	1373748682956960237	1 15200796479896019943
	15608195638318139575397871729737310479957231181434400	1685631148245644493	417425730095808525587
	15791696434663015062086294548870131152897244600962599710	1730796780127391701	
	3484838833388197199812530639829581721184342340071326129298	2923290836694930836	5446680587098832013
	1648757840168344542387637018871763179732374825323564456876	1655582114737846708	32644477152643434420
	98850683949423615211578699701347807145350036885633235694	1180530857353548594	612562094561654048160
	526520284143404569767963343550807344171168366801172331356	1698227333070257964	86264853543132966636
	424185829625587809592566352271431402775173490353367407331	1771937009911519591	514351987686736218119
	4536991382758228630399221995435899884055743908863240725052	5095243575810575316	12472610336651567052
	3136412773560944376264550097061623603163416527516137221129	1122663491784548705	1 13567859892950511514
	5967388207129134077295313527201750659161648724805358750622	6644727374610071491	3992711139584800062
	853298661596862590652819419782007714434001836607900281638	5224069660619876239	13020528712638715163
	58401078608611669601836308424511522173492016757242657971	1149810384458158270	6569058788386309488
	1566681274568203485091061424628061282383374029659900022897	1558097947781835832	77459210887944253892

mod	115792089237316192812296663087828730790152317073519228853714845075653663303437 0 170 57125 48268101 34260690332 28950283288564 24602777889341700 21958748103044947821 19982460773770890734814 18589778412414172744395308 17556405435959384905586216420 16804193264871415986848637912866 16258906633984352510780895055898688 15878645003134966488517342432611820340 15631047178991661938104976711572278528840 15645015175484896146558165069374931768650 1549275516175484896146558165069374931768650 15492755161754847921521690374123048169473745090 1549294429910290948927453354128640277129701928270 1560819563318139575397871729737310479957231181434400 15791696434663015062086294548870131152897244600962599710 16039042304161558566190267565720083550110055872936313121300 16347221676787084843662011452830514441011394615536628043480 1671432763634462639186204195581231479283012114874109321235914440 171393569636727933886992170062469983655590180182671305065963412450	18446744073709551427 0 170 57125 48268101 34260690332 28950283288564 24602777889341700 3512004029335396394 4636941943446539373 16731901151165181777 13561571145101128005 1832779977978989229 18326783569576208 6859153945430415570 18028251197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 182825197597986227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519759786227 18282519757977977978989229 18282519757785787 18282519757787878787877 182825197577878787777777777777777777777777777
	15791696434663015062086294548870131152897244600962599710	635703020769662299
	16347221676787084843566201114528305144441011394615536628043480	2644477152643434420
	1816284121679328342256209142129107852163072365770212242450775628308698700 1876266561499822007839830366311098144372506555360938018652662698220539694616	12472610336651567052 13567859892950511514
	85739315027447066623349695032233960274282399822723913455610238505779125926029 2064728830981047793411634851943034475673596449669175636454501699351701964789	3992711139584800062 13020528712638715163
	23492476077323556255109014236440192037570229930868243250459695379292868666014 111190808983862952620363685720790529707785524738898437692221876477166726606643	6569058788386309488 7459210887944253892

These may be many.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

This will typically require much fewer primes in total.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

This will typically require much fewer primes in total. (Demo.)

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

On the other hand, once we have a recurrence, generating data (almost) for free.

On the other hand, once we have a recurrence, generating data (almost) for free.

Chicken-egg-problem: In order to find a recurrence, we sometimes seem to already need to know it.

On the other hand, once we have a recurrence, generating data (almost) for free.

Chicken-egg-problem: In order to find a recurrence, we sometimes seem to already need to know it.

Boot-strapping sometimes helps to resolve this conflict.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Suppose $a_{k,l,m,n}$ is hypergeometric in all four indices, so that we know four first order recurrence equations

$$a_{k+1,l,m,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l+1,m,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l,m+1,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l,m,n+1} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.
Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

Calculating $a_{n,n,n,n}$ recursively with the given equations requires $O(n^4)$ time and space. We won't be able to get 1000 terms in this way.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$. Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. *Boot-strapping* is more promising:

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

Boot-strapping is more promising:

• First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. Boot-strapping is more promising:

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}
- Use these guessed equations to compute $a_{n,n,n,n}$ for $n = 0, \ldots, 1000$.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. Boot-strapping is more promising:

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}
- Use these guessed equations to compute $a_{n,n,n,n}$ for $n = 0, \ldots, 1000$.
- Use this data to guess the recurrence for $a_{n,n,n,n}$.

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q),z,q) = 0$$

(where POLY is now too large to fit on this slide.)

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q), z, q) = 0$$

(where POLY is now too large to fit on this slide.) We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + \cdots$$

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q), z, q) = 0$$

(where POLY is now too large to fit on this slide.) We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Boot-Strapping is more promising:

• Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.
- Pick the q^0 -coefficient of all of them.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.
- Pick the q^0 -coefficient of all of them.
- Use this data for guessing the differential equation.

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Summary

• Computer algebra can produce rigorous proofs.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.
- Conjectures are typically much cheaper than proofs.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.
- Conjectures are typically much cheaper than proofs.
- Computer generated conjectures are almost always true.