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ABSTRACT. We present a method to obtain congruences modulo powers of 2 for se-
quences given by recurrences of finite depth with polynomial coefficients. We apply
this method to Catalan numbers, Ful—Catalan numbers, and to subgroup counting
functions associated with Hecke groups and their lifts. This leads to numerous new
results, including many extensions of known results to higher powers of 2.

1. INTRODUCTION

Ever since the work of Sylow [35], Frobenius [12, 13], and P. Hall [17], the study
of congruences for subgroup numbers and related numerical quantities of groups has
played an important role in group theory.

Divisibility properties of subgroup numbers of (finitely generated) infinite groups
may to some extent be viewed as some kind of analogue to these classical results for
finite groups. To the best of our knowledge, the first significant result in this direction
was obtained by Stothers [34]: the number of indez-n-subgroups in the inhomogeneous
modular group PSLy(Z) is odd if, and only if, n is of the form 2% — 3 or 2" — 6, for
some positive integer k > 2. A different proof of this result was given by Godsil, Imrich,
and Razen [14].

The systematic study of divisibility properties of subgroup counting functions for
infinite groups begins with [27]. There, the parity of subgroup numbers and the number
of free subgroups of given finite index are determined for arbitrary Hecke groups $(q) =
Cy % C, with ¢ > 3. Subsequently, the results of [27] were generalised to larger classes of
groups and arbitrary prime modulus in [3, 20, 25, 26, 28]. A first attempt at obtaining
congruences modulo higher prime powers was made in [29], where the behaviour of
subgroup numbers in PSLy(Z) = $(3) is investigated modulo 8 and a congruence
modulo 16 is derived for the number of free subgroups of given index in PSLy(Z).

A common feature of all the above listed sequences of subgroup numbers is that
they obey recurrences of finite depth with polynomial coefficients. The purpose of this
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paper is to present a new method for determining congruences modulo arbitrarily large
powers of 2 for sequences described by such recurrences. Our method is inspired by the
observation that many of the aforementioned results say in essence that the generating
function for the subgroup numbers under consideration, when reduced modulo a 2-
power, can be expressed as a polynomial in the basic series

d(z2) = Zz2n (1.1)

n>0

with coefficients that are Laurent polynomials in z. What our method affords is an
algorithmic procedure to find such polynomial expressions, provided they exist. By
applying our method to Catalan numbers, to (certain) Fufi-Catalan numbers, and to
various subgroup counting problems in Hecke groups and their lifts, we obtain far-
reaching generalisations and extensions of the previously mentioned results. In order
to give a concrete illustration, the recent result [22, Theorems 6.1-6.6] of Liu and
Yeh determining the behaviour of Catalan numbers Cat,, modulo 64 can be compactly
written in the form

) Caty 2" =322 + 162" + 62” + 13z + 1 + (322" + 322% 4 202° + 44z + 40) B(2)

n=0

12 28
+ (16z3 + 562% + 302 + 52 + —) D3 (2) + (3223 + 602 + 60 + —) D3 (z2)
z z
35
+ (3223 +162% + 482 + 18 + —) DU (z) + (322° + 44) D°(2)
z

50 4
+ (482 + 8+ —) PO(2) + (322 + 32+ —) d7(z) modulo 64, (1.2)
z z

as may be seen by a straightforward (but rather tedious) computation. Our method
can not only find this result, but it produces as well corresponding formulae modulo
any given power of 2 in a completely automatic fashion, see Theorems 13 and 14 in
Section 5.

In a sense, which is made precise in Section 4, our method is very much in the spirit of
Doron Zeilberger’s philosophy that mathematicians should train computers to automat-
cally produce theorems. Indeed, Theorems 13, 19, 21, 33, 36 imply that our algorithm is
able to produce a theorem on the behaviour modulo any given 2-power of the subgroup
counting functions featuring in these theorems, and, if fed with a concrete 2-power,
our implementation will diligently output the corresponding result (provided the input
does not cause the available computer resources to be exceeded ...). Moreover, when
discussing subgroup numbers of lifts of PSLy(Z), (such as the homogeneous modular
group SLs(Z)), a crucial role is also played by an application of the holonomic func-
tions approach to finding recurrences for multi-variate hypergeometric sums, pioneered
by Wilf and Zeilberger [37, 39], and further developed in [4, 5, 19].

The rest of this introduction is devoted to a more detailed description of the contents
of this paper. In Section 2 we discuss our main character, the formal power series ®(z)
defined in (1.1). While ®(z) is transcendental over Q[z] (or, equivalently, over Z|[z]),
it is easy to see that it is algebraic modulo powers of 2. The focus in that section is
on polynomial identities for ®(z) modulo a given 2-power which are of minimal degree.
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Then, in Section 4, we describe our method of expressing the generating function of
a recursive sequence, when reduced modulo a given 2-power, as a polynomial in ®(z)
with coefficients that are Laurent polynomials in z. The method relies in an essential
way on the polynomial identities from Section 2. The problem how to extract the
explicit value of a concrete coefficient in a polynomial expression in ®(z) (such as (1.2))
modulo a given 2-power is discussed in Section 3, where we present an efficient algorithm
performing this task. This algorithm is of theoretical value (minimal length relations
between powers of ®(z) such as the ones in Proposition 2 are established by applying
this algorithm to the powers of ®(z); see also Appendix A) as well as of practical
significance, as is demonstrated by the derivations of Theorems 27 and 31.

As a first illustration of our method, we apply it to Catalan numbers, thereby sig-
nificantly improving numerous earlier results in the literature; see Section 5. This is
contrasted in Section 6 with an example (concerning particular Fu-Catalan numbers)
where our method is bound to fail. The reason is spelled out in Theorem 15, which,
at the same time, also gives a new description for the parity pattern of the numbers of
free subgroups of given index in the Hecke group $(7).

The subsequent sections contain several applications of our method to the problem
of determining congruences modulo a given 2-power for numbers of subgroups of Hecke
groups $(q) and their lifts

L(q) = Cop 2 Com = <x,y ‘ =yt =1, 2 = yq>, m > 1. (1.3)
Ubiquitous in these applications is — explicitly or implicitly — the intimate relation
between subgroup numbers of a group I' and numbers of permutation representations
of ', in the form of identities between the corresponding generating functions. This is
directly visible in the folklore result (11.1) (which is not only used in Sections 11, 12,
and 14, but also lies behind the crucial differential equation (9.1) in Section 9; cf. its
derivation in [14]), and also indirectly in Lemma 17 via the A-invariants A,,((q)), see
27, Sec. 2.2]. In the cases relevant here, the numbers of permutation representations of
I satisfy linear recurrences with polynomial coefficients — to make these explicit may
require the algorithmic machinery around the “holonomic paradigm” (cf. [4, 5, 19, 23,
31, 37, 39]), see Sections 11 and 12 for corresponding examples. Via the aforementioned
generating function relation, such a recurrence can be translated into a Riccati-type
differential equation for the generating function of the subgroup numbers that we are
interested in. It is here, where our method comes in: it is tailor-made for being applied
to formal power series F'(z) satisfying this type of differential equation, and it affords
an algorithmic procedure to find a polynomial in ®(z) which agrees, after reduction of
the coefficients of F'(z) modulo a given power of 2, with the power series F(z).

We start in Section 7 with free subgroup numbers of lifts I',,,(¢), for primes ¢ > 3,
where we prepare the ground for application of our method. More specifically, in
Proposition 18 we present a lower bound for the 2-adic valuation of the number of
free subgroups of index n in I';,,(q), where ¢ is a Fermat prime. In particular, this result
implies that the sequence of free subgroup numbers under consideration is essentially
zero modulo a given 2-power in the case when m is even. In Section 8, we show that our
method provides an algorithm for determining these numbers of free subgroups of I',,(3)
modulo any given 2-power in the case when m is odd. The corresponding results (see
Theorems 19 and 20) go far beyond the previous result [29, Theorem 1] on the behaviour
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of the number of free subgroups of PSLy(Z) modulo 16. Our method provides as well an
algorithm for determining the number of all subgroups of index n in P.SLy(Z) modulo
powers of 2, as we demonstrate in Section 9. Not only are we able to provide a new
proof of Stothers’ result [34] (which was stated in the second paragraph above), but our
method leads as well to refinements modulo arbitrary powers of 2 of Stothers’ result
and of the mod-8 results in [29, Theorem 2] mentioned earlier; see Theorems 21 and
24. For the homogeneous modular group SLy(Z) (being isomorphic to the lift I'y(3))
and for the lift I'5(3), however, our method from Section 4 fails already for the modulus
8 = 23. We overcome this obstacle by instead tuning our computations with the target
of obtaining results modulo 16 = 2*. Indeed, this leads to the determination of the
number of subgroups of index n in SLy(Z) and in I'3(3) modulo 8 (see Theorems 26
and 30), but direct application of our method does not produce corresponding results
modulo 16. Only by an enhancement of the method, which we outline in Appendix D,
we are able to produce descriptions of the subgroup numbers of SLy(Z) modulo 16, see
Theorem 28. For the subgroup numbers of I'3(3) even this enhancement fails, and this
shows that the generating function for these subgroup numbers, when coefficients are
reduced modulo 16, cannot be represented as a polynomial in ®(z) with coefficients
that are Laurent polynomials in z. Still, the results in Theorems 26, 28, and 30 go
significantly beyond the earlier parity results [20, Eq. (6.3) with |H| = 1] for these
groups. This is explained in Sections 11 and 12, with Section 10 preparing the ground
by providing formulae for the number of permutation representations of SLy(7Z) as well
as other lifts of PSLy(Z). A further example where our method works for any 2-power
is the subject of Section 13: there we apply the method to a functional equation (see
(13.1)) extending the functional equation for Catalan numbers (producing Fufi—Catalan
numbers), and show that it works for any given 2-power; see Theorem 33. In fact, we
apply a variation of the method here, in that the basic series ®(z) gets replaced by
a slightly different series, which we denote by ®,(z) (see (13.3)). If Theorem 33 is
combined with results from [27], then it turns out that our method provides as well an
algorithm for determining the number of free subgroups of index n in a Hecke group $(q)
and its lifts, where ¢ is a Fermat prime, modulo any given 2-power; see Corollary 34. The
same assertion holds as well for the problem of determining the number of subgroups
of index n in the Hecke group $(5), again modulo any given 2-power (see Theorems 36
and 37 in Section 14). We conjecture that the same is true for Hecke groups $(q), with
q a Fermat prime (see Conjecture 38). The results of Sections 13 and 14 discussed above
largely generalise the parity results [27, Cor. A’, respectively Theorem B] for subgroup
numbers of Hecke groups, although our results are not independent, in the sense that
we base our analyses on prior results from [27].

Concluding the introduction, we remark that there is no principal obstacle to gen-
eralising our method to other basic series and moduli. For example, one may think of
analysing the behaviour of recursive sequences modulo powers of any prime p in terms
of the obvious generalisation of ®(z), i.e., the series > _,zF". It is in fact not difficult
to see that our results from Sections 5 and 13 for FuB-Catalan numbers characterised by
the functional equation (13.1) for their generating function have rather straightforward
analogues for Fu3—Catalan numbers whose generating function satisfies the functional
equation

27" (2) = f2)+1=0. (1.4)
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However we are not aware of any applications of this (or of variants) to congruence
properties of subgroup numbers modulo powers of primes p different from 2. In fact,
the known results (cf. [28] or [29, Theorem 3]) strongly point to the fact that the
phenomena that appear modulo primes different from 2 cannot be captured by series
of the type > -, 2”". So, currently, we do not know of interesting applications in this
direction, but we hope to be able to return to this circle of ideas in future publications.

Note. This paper is accompanied by several Mathematica files and a Mathematica
notebook so that an interested reader is able to redo (most of) the computations that
are presented in this article. Files and notebook are available at the article’s website
http://www.mat.univie.ac.at/~kratt/artikel/modlifts.html.

2. THE 2-POWER SERIES ®(z)

Here we consider the formal power series ®(z) defined in (1.1). This series is the
principal character in the method for determining congruences of recursive sequences
modulo 2-powers, which we describe in Section 4. It is well known that this series
is transcendental over Z|[z| (this follows for instance from the density argument used
in the proof of Lemma 1 below). However, if the coefficients of ®(z) are considered
modulo a 2-power 27, then ®(z) obeys a polynomial relation with coefficients that are
polynomials in z. The focus of this section is on what may be said concerning such
polynomial relations, and, in particular, about those of minimal length.

Here and in the sequel, given power series (or Laurent series) f(z) and g(z), we write
f(2) = g(2) modulo 27

to mean that the coefficients of 2* in f(z) and g(z) agree modulo 27 for all 7.

We say that a polynomial A(z,t) in z and ¢ is minimal for the modulus 27, if it is monic
(as a polynomial in t), has integral coefficients, satisfies A(z, ®(z)) = 0 modulo 27, and
there is no monic polynomial B(z,t) with integral coefficients of ¢-degree less than that
of A(z,t) with B(z,®(2)) = 0 modulo 27. (Minimal polynomials are not unique; see
Remark 3.) Furthermore, we let v2(«r) denote the 2-adic valuation of the integer «, that
is, the maximal exponent e such that 2¢ divides a.

The lemma below provides a lower bound for the degree of a polynomial that is
minimal for the modulus 27.

Lemma 1. If A(z,t) is minimal for the modulus 27, then the degree d of A(z,t) int
satisfies vy(d!) > 7. In particular, the series ®(z) is transcendental over Z|z].

Proof. We introduce the following density function with respect to a given modulus 27
for a power series f(z) in z:

D(f,2%n) :=|{e: 2" <e<2"and (z°) f(z) # 0 modulo 27}|, n=12...,

where (z¢) f(z) denotes the coefficient of 2¢ in f(z). Setting

En(z):= Y~ Zmemees (2.2)
simple counting yields that

—1 1
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(The modulus 27 does not play a role here.) Furthermore, by considering the binary
representations of possible exponents e such that the coefficient of 2¢ in ®™(z) does not
vanish, we have

D(®",2%;n) = O (™), as n — 00. (2.4)
Indeed, by direct expansion, we see that
" (z) = m! E,(2) + Rp(2), (2.5)

where all monomials z¢ which appear with non-vanishing coefficient in R,,(z) have a
binary expansion with at most m — 1 digits 1. Consequently, again by elementary
counting, we have

n—1 n—1 n—1
D m’2'y; S )
i< (0 70)+ (1 25) + ()

and hence D(R,,,27;n) = O(n™" %) as n — oo.

Let us, by way of contradiction, suppose that the degree d of A(z,t) satisfies vy(d!) <
7. Considering (2.5) with m = d, we see that E,(z) appears in ®¢(z) with a non-zero
coefficient modulo 27. Furthermore, the other terms in ®%(z) (denoted by R4(z) in
(2.5)) have a density function modulo 27 which is asymptotically strictly smaller than
the density function of E;(z). Consequently, if we remember (2.3), we have

d!
d—n"

Moreover, by (2.4), all powers ®™(z) with m < d have a density function modulo 27
which is asymptotically strictly smaller than n?!'. Altogether, it is impossible that a
linear combination of powers ®™(d), m = 0,1,...,d, with coefficients that are poly-
nomials in z sums up to zero modulo 27, a contradiction to our assumption that d is
the degree of a minimal polynomial A(z,t). The particular statement is an immediate
consequence of the inequality just proven. O

D(®4 27 n) ~ d=1 — gpd-1, as n — 0o.

Proposition 2. Minimal polynomials for the moduli 2,4, 8,16, 32,64,128 are

U modulo 2,
t*+t+ 2)? modulo 4,
th+ 6% + (22 + 3)t* + (22 + 6)t + 2z + 527 modulo 8,
(P +t+2)(t" 4+ 6t° + (22 + 3)> + (22 + 6)t + 22 + 52°) modulo 16,
(t* + 613 + (22 4+ 3)t* + (22 + 6)t + 22 + 522)? modulo 32,
(t* + 613 + (22 4+ 3)t? + (22 + 6)t + 22 + 522)? modulo 64,

t® + 124t7 + 19(68z + 18) + t°(1242 + 24) + t* (622° + 642 + 81)
+ 1% (202 + 762 + 28) + ¢* (1162° + 1142 + 122 + 92)
+ ¢ (1162° + 282* + 82 + 16) + 92" + 1242° + 122 + 1122 modulo 128.

Proof. In order to be consistent with Section 3, let us change notation and write

L QN1 4 9N2 4.4 2"m
H1,1 ..... 1(2) = E z
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(with m occurrences of 1 in H; ;. 1(2)). Note that the above series is identical with
the series which we earlier denoted by E,,(z). Straightforward calculations yield that

P2 (2) = ®(2) +2H, 1 (2) — 2, (2.6)
¥(z) = -2 27" 4+ 3(1 - 2)@(2) + 6H1(2) + 6Hy11(2) — 32, (2.7)
n>0
Olz) = —12) P =8 D AT N 2 L (13- 182)0(2)
n>0 ni1>ng >0 ni1>ng >0

+ (30 — 122)H1’1<Z) + 36H171’1(Z) + 24H1’171,1(Z> -+ 522 —13z. (28)

In particular, relation (2.6), together with Lemma 1, immediately implies the claims
about minimal polynomials for the moduli 2 and 4. Moreover, a simple computation
using (2.6)—(2.8) shows that

D(2) + 60°(2) + (22 + 3)@*(2) + (22 +6)®(2) + 22 +52° =0 modulo 8.  (2.9)

Together with Lemma 1, this establishes the claims about minimal polynomials for the
moduli 8, 16, 32, and 64. In order to prove the claim for the modulus 128, one uses the
expressions for ®'(z), i = 2,3,...,8, given above and in Appendix A. O

Remark 3. Minimal polynomials are highly non-unique: for example, the polynomial
(P +t+2)+2(82 +t+ 2)
is obviously also a minimal polynomial for the modulus 4.

Based on the observations in Proposition 2 and Lemma 1, we propose the following
conjecture.

Conjecture 4. The degree of a minimal polynomial for the modulus 27, v > 1, s the
least d such that ve(d!) > 7.

Remark 5. (1) Given the binary expansion of d, say
d:d0+d12+d24++dr2r, OS’%SL
by the well-known formula of Legendre [21, p. 10], we have

va(dl) i {%J = i {Z dizi—fJ = i Z ;2"

/=1 {=1 L1i=0 (=1 i={

M-

idﬂ” = idi (2 —1) =d - s(d), (2.10)

=1 {=

where s(d) denotes the sum of digits of d in its binary expansion. Consequently, an
equivalent way of phrasing Conjecture 4 is to say that the degree of a minimal polyno-
mial for the modulus 27 is the least d with d — s(d) > ~.

(2) We claim that, in order to establish Conjecture 4, it suffices to prove the conjecture
fory=2°—1,6=1,2,.... If we take into account Lemma 1 plus the above remark,
this means that it is sufficient to prove that, for each § > 1, there is a polynomial
As(z,t) of degree 2° such that

As(z,®(2)) =0 modulo 2%, (2.11)
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For, arguing by induction, let us suppose that we have already constructed A;(z,t),
Ay(z,t),. .., Am(z,t) satisfying (2.11). Let

a=a1-24+ay-4+---4+a, 2" 0<aq; <1,

be the binary expansion of the even positive integer . In this situation, we have

[TA4% (2 ®(2)) =0 modulo J[220® 1 =[] 220® 1 = 2075l (2.12)
6=1 6=1 6=0
On the other hand, the degree of the left-hand side of (2.12) as a polynomial in ®(z) is
S a2’ = a.

Let us put these observations together. In view of (2.10), Lemma 1 says that the
degree of a minimal polynomial for the modulus 27 cannot be smaller than the least
integer, d) say, for which d)—s(d)) > ~. (We remark that d) must be automatically
even.) If we take into account that the quantity o — s(«), as a function in «, is weakly
monotone increasing in «, then (2.12) tells us that, as long as d) <2 4+44 .. 427 =
2m+l — 2 we have found a monic polynomial of degree d), B,(z,t) say, for which
B,(2,®(z)) = 0 modulo 27, namely the left-hand side of (2.12) with a replaced by d",
to wit

UL
By (=) = [[ 45" (=.1).
0=1

where d = d{" -2+ d” -4+ .- +d3) - 2™ is the binary expansion of d?). Hence, it
must necessarily be a minimal polynomial for the modulus 2”.

Since (21 —2)—s(2m+1 —2) = 21 —2—m_ we have thus found minimal polynomials
for all moduli 27 with v < 2™+ —m —2. Now we should note that the quantity o — s(a)
makes a jump from 2" —m — 2 to 2™ — 1 when we move from o = 2™ — 2 to
a = 2™ (the reader should recall that it suffices to consider even «). If we take
A2 (z,t), which has degree 2 - 2™ = 2™F! then, by (2.11), we also have a minimal
polynomial for the modulus (22m_1)2 = 22""'=2 and, in view of the preceding remark,
as well for all moduli 27 with v between 2™*! —m — 1 and 2™*! — 2.

So, indeed, the first modulus for which we do not have a minimal polynomial is the
modulus 22" =1, This is the role which A,,41(2,t) (see (2.11) with m + 1 in place of
) would have to play.

The arguments above show at the same time that, supposing that we have already
constructed A;(z,t), As(2,t),..., An(z,t), the polynomial A2 (z,t) is a very close “ap-
proximation” to the polynomial A, 1(z,t) that we are actually looking for next, which
is only “off” by a factor of 2. In practice, one can recursively compute polynomials
As(z,t) satisfying (2.11) by following the procedure outlined in the next-to-last para-
graph before Lemma 6 in the next section. It is these computations (part of which are
reported in Proposition 2) which have led us to believe in the truth of Conjecture 4.

3. COEFFICIENT EXTRACTION FROM POWERS OF ®(z)

In the next section we are going to describe a method for expressing formal power
series satisfying certain differential equations, after the coefficients of the series have
been reduced modulo 2*, as polynomials in the 2-power series ®(z) (which has been
discussed in the previous section; for the definition see (1.1)), the coefficients being
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Laurent polynomials in z. Such a method would be without value if we could not, at
the same time, provide a procedure for extracting coefficients from powers of ®(z). The
description of such a procedure is the topic of this section.

Clearly, a brute force expansion of a power ®% (2), where K is a given positive integer,
yields

« ZK 3 K|
(D (Z) = a |a .. -a |Ha17a27---7ar<2)7 (31)
r=1 ay,..,ar>1 1=52: "
a1+-Far=K
where
R a12"1+a22"2+--4a,2""
Ha a0, (2) i = > FuTTe =
ni>ng>-->n, >0
The expansion (3.1) is not (yet) suited for our purpose, since, when ay, as, . .., a, vary

over all possible choices such that their sum is K, the series Hy, 4, .. 4, (%) are not linearly
independent over the ring Z|[z, 271] of Laurent polynomials in z over the integers', and,
second, coefficient extraction from a series Hy, 4,...4,(2) can be a hairy task if some of
the a;’s are even.

However, we shall show (see Corollary 7) that, if we restrict to odd a;’s, then the
corresponding series Hy, 4, 4,.(%), together with the (trivial) series 1, are linearly in-
dependent over Z[z, z7'], and there is an efficient algorithm to express all other series
Hy, by, b, (2), where we do not make any restriction on the b;’s, as a linear combination
over Z[z,z7'] of 1 and the former series (see Lemma 9). Since coefficient extraction
from a series Hg, 4,...4,(2) with all a;’s odd is straightforward (see Remark 8), this
solves the problem of coefficient extraction from powers of ®(z).

As a side result, the procedure which we described in the previous paragraph, and
which will be substantiated below, provides all the means for determining minimal
polynomials in the sense of Section 2: as explained in Item (2) of Remark 5 at the end of
that section, it suffices to find a minimal polynomial for the modulus 226_1, 0=1,2,....
For doing this, we would take a minimal polynomial As_;(z,t) for the modulus 22671_1,
expand the square A2 |(z,t), and replace each coefficient c, s of a monomial 2*t* in
A2 1 (2,t) by cap + 226_2906%5, where z, 5 is a variable, thereby obtaining a modified
polynomial, Bs_1(z,t) say. Now we would substitute ®(z) for ¢, so that we obtain
Bs_1(z,®(z)). Here, we express powers of ®(z) in terms of the series Hy, 4,....q,(2) With
all a;’s being odd, and collect terms. By reading the coefficients of 27Hy, 4, 4. (2) in
this expansion of Bs_1(z,®(z)) and equating them to zero modulo 22°-1  we produce
a system of linear equations modulo 22’1 in the unknowns Zq,p. By the definition of
As_1(z, 1), after division by 2% =2, this system reduces to a system modulo 2, that is,
to a linear system of equations over the field with two elements. A priori, this system
need not have a solution, but experience seems to indicate that it always does; see
Conjecture 4.

We start with an auxiliary result pertaining to the uniqueness of representations of
integers as sums of powers of 2 with multiplicities, tailor-made for application to the
series Hy, gy, 0, (2).

IThe same is true for an arbitrary ring in place of the ring Z of integers.
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Lemma 6. Let d,r, s be positive integers with r > s, ¢ an integer with |c| < d, and let

ai,Qs, ..., a, respectively by, bo, ..., by be two sequences of odd integers, with 1 < a; < d
for1<i<r,andl1<b;<d forl1<i<s. If

41274 4 0,220V 4, 2% = 2™ 4 By2"2 e 4 52" (3.2)
for integers ny,ng,...,ng withny >mng > -+ >ng, >0, thenr =5, c=0, a; = b;, and

n; =2d(r+1—1) fori=1,2,...,r.

Proof. We use induction on r.
First, let » = 1. Then s = 1 as well, and (3.2) becomes

(1,122d = b12n1 + c. (33)

If n; > 2d, then the above equation, together with the assumption that a; is odd,
implies

224 = ¢ modulo 2%,

However, by assumption, we have |c| < d < 22¢, which is absurd.

If d < ny < 2d, then it follows from (3.3) that ¢ must be divisible by 2™. Again
by assumption, we have |¢| < d < 2% < 2™ so that ¢ = 0. But then (3.3) cannot be
satisfied since b; is assumed to be odd.

If 0 < n; <d, then we estimate
b2 +e<d(2'+1) <(27-1)(2"+1) < 2%,

which is again a contradiction to (3.3).

The only remaining possibility is ny = 2d. If this is substituted in (3.3) and the
resulting equation is combined with |¢|] < d < 2%¢, then the conclusion is that the
equation can only be satisfied if ¢ = 0 and a; = by, in accordance with the assertion of
the lemma.

We now perform the induction step. We assume that the assertion of the lemma is
established for all r < R, and we want to show that this implies its validity for r = R.
Let ¢ be maximal such that n; > 2d. Then reduction of (3.2) modulo 22¢ yields

b1 2 4 by 022 o 452" + ¢ =0 modulo 2% (3.4)
Let us write b - 224 for the left-hand side in (3.4). Then, by dividing (3.2) (with R
instead of ) by 22¢, we obtain
ap 22 By 92 BDd g 924 = oM pogne=2d o pom 2 gp (3.5)
We have
0 <b< 22 (221 4 922 4 .y g2t | 1)

S 272dd (22d o 22d78+t 4 1) S d.

Consequently, we also have |b— ag| < d. This means that we are in a position to apply
the induction hypothesis to (3.5). The conclusion is that t = R—1, b—ag =0, a; = b;,
and n; =2d(R+1—1i) fori=1,2,..., R — 1. If this is used in (3.2) with » = R, then
we obtain
aRQZd =c
or
G,R22d = bR2nR + C,
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depending on whether s = R —1 or s = R. The first case is absurd since ¢ < d < 2% <
ar2*. On the other hand, the second case has already been considered in (3.3), and
we have seen there that it follows that ¢ = 0, ar = bg, and ng = 2d.

This completes the proof of the lemma. Il

The announced independence of the series Hy, 4, 4, (%) with all @;’s odd is now an
easy consequence.

Corollary 7. The series Hg, ..., (%), with all a;’s odd, together with the series 1 are
linearly independent over (Z/27)|z, 2], and consequently as well over (Z/2VZ)[z, z7]
for an arbitrary positive integer v, and over Z[z, 2.

Proof. Let us suppose that

N
po(2) + Zlpi(Z)Hagi)@gx._’agg(Z) =0, (3.6)

where the p;(z)’s are non-zero Laurent polynomials in z over Z/27Z (respectively over
Z/27Z or over Z), the r;’s are positive integers, and ay), j=12,....r,i=1,2,..., N,
are odd integers. We may also assume that the tuples (agi), agi), ce a%)), 1=1,2,...,N,
are pairwise distinct. Choose 7y such that 7;, is maximal among the 7;’s. Without loss
of generality, we may assume that the coefficient of z° in p;,(2) is non-zero (otherwise we
could multiply both sides of (3.6) by an appropriate power of z). Let d be the maximum
of all ag-i)’s and the absolute values of exponents of z appearing in monomials with non-
zero coefficient in the Laurent polynomials p;(z), i = 0,1,..., N. Then, according to

Lemma 6 with r = r;,, a; = agiO), j=12...,r;, the coefficient of

Zag’m)22rd+aéi0)22(r71)d+m+a<ri0)22d

..... ali (z), where e is a

is 1in H Gy o) (o) (2), while it is zero in series 2°H (o) (i) )
ay Ay ) a; % ay io

non-zero integer with |e| < d, and in all other series 2°H o) o a@(z), 1=1,...,iy—
1 Qg "5y

l,ig + 1,..., N, where e is a (not necessarily non-zero) integer with |e| < d. This

contradiction to (3.6) establishes the assertion of the corollary. 0J

Remark 8. Coeflicient extraction from a series Hy, 4, a4, (2) with all a;’s odd is straight-
forward: if we want to know whether z™ appears in Hy, 4,...4.(2), that is, whether we
can represent M as
M = a12™ + ap2™ + -+ - 4+ a,2""

for some ny,no,...,n, with ny > ny > --- > n, > 0, then necessarily n, = vo(M),
ny_1 = vo(M — a,2™), etc. The term 2" appears in H,, 4, 4, (2) if, and only if, the
above process terminates after exactly r steps. This means, that, with n,,n,._1,...,n;
constructed as above, we have

M — (G,SQnS —|— e + a,,_12n“1 + alr2nr) > 0
for s > 1, and
M — (alznl + o+ aT’*l2nT—1 + ar2’nr) — 0

It should be noted that, given ai,as,...,a,, this procedure of coefficient extraction
needs at most O(log M) operations, that is, its computational complexity is linear.
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Our next goal is to show that a series Hy, 4, ., (2) can be expressed as a linear
combination over Z[z, 27!] of the series 1 and the series Hy, 4, 4, (2), where all a;’s are
odd. In doing this, we are forced to consider the more general series

B1,B2,---,Bs ._ b12™1 +ba2"2 4 4bg27S
Hbl,bg,...,bs () = z o
n1+061>n2+P2>->ns+Hs>0
where, as before, by, bs, ..., b, are positive integers, and [, s, ..., s are integers.
Lemma 9. For positive integers by, bs,...,bs and integers By, s, ..., Bs, the series

Hfl’l,ﬁ2"",’)ﬁs(z) can be expressed as a linear combination over Z[z'/*‘] (for a suitable
1,92,...,0s

integer €) of the series 1 and series of the form Hg, 4y a.(2), where all a;’s are odd.
. , ‘ _ 770,0,..,0
Moreover, in the above expansion of the series Hy, p, ».(2) = H, ;") (2) we have

e = 0; that is, in that case all coefficients are in Z|z].

Proof. We describe an algorithmic procedure for expressing Hl’i 1”£ Qb’B *(2) in terms of

' VL2 ‘ —
series H)172-7r(z), where either r < s, or r = s and

max{i : a; is even or 7; # 0} < max{i : b; is even or f; # 0}.
In words, in the second case the length of the string of consecutive 0’s at the tail of the
upper parameters respectively the length of the string of consecutive odd numbers at
the tail of the lower parameters has been increased.
Our algorithmic procedure consists of four recurrence relations, (3.7)—(3.10) below.

For the first two of these, let by = b.2%, where e; = vy(bs). By definition, the number
b, is odd. Then we have

Hy3il (2)

= Z 127 by 22 by 27 B 20 Fes
n1+p1—PBs+es>>ns_1+Bs—1—Bs+es>ns+es>—PBs+es

In the above sum on the right-hand side, let n’, = ny + e; be a new summation index.
Then, for e, < 5, one sees that

Hﬁ17ﬁ27”.7ﬁs(2) o Hﬁl_63“!‘33”82_53“"657~~76571_Bs"l‘es:()(z)

b1,b2,...,bs T T b1,ba,. o bs—1,bl
Bs—es
ng_k B1—Bs+es+k—1,82—Bs+es+k—1,...,851—Ps+es+k—1
+ Z < Hy by po s (2). (3.7)
k=1

On the other hand, for e, > S, one has

Hﬁ17ﬁ27”.7ﬁs(2) o Hﬁl_63“!‘33”82_[33“"657~~76571_Bs"l‘es:()(z)

b1,b2,...,bs T T b1,ba,. o bs—1,bl
es—fBs—1
ngk B1—Bs+es—k—1,82—Bs+es—k—1,...,8s1—Ps+es—k—1
- Z 2 Hy gy e (2). (3.8)
k=0

Now consider
ﬁl:"'7ﬁh707"'70
H, bs (2)7

b1y sbh R 150
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where 1 < h < s and all of by.q,...,bs are odd. Similar to the proceedings above, let
by, = )2, where e, = vy(by). Again, by definition, the number b} is odd. Then we
have

Hﬁl,...,ﬁh,o,...,() (Z)

b1, ;bR sbp 41,0050

fry E Zb12n1+"'+bh—l2nh_1+b/h2nh+eh+bh+12"h+l+"'+b32ns

n1+B1—PBrtep>>np_1+Bn_1—PBrtep>npten
np+Bp>npp1>->ns>0

In the above sum on the right-hand side, let n) = n;, + e, be a new summation index.
Then, for e, < 35, one sees that

B1;-,8h,0,-..,0 _ r7B1—Brten,,Bh—1—Br+en,0,0,...,0
by b p s (Z) = Hy, o) st ()

Brn—en—1
+ Z e th B renthk000) (3 g)

b1, On 1,00, +bn 4128 bp 2,505

On the other hand, for e, > ), one has

B1,--,8n,0,...,0 _ B1—Br+en,-,Bh—1—Br+en,0,0,...,0
b1 bh bR 150505 (Z> - Hbl7-~-»bh—17b%7bh+17-~-7b5 <Z>

€nh—

_ Z —Bnten—Fk,....0n—1—Brnt+ern—k,0,0,.. ’(Z) (310)

b1, bh—1,0}, 28 4+bp41,bh4 2,5

It is clear that, if we recursively apply (3.7)~(3.10) to a given series Hj';?*" 1;59( ), and

b1,b2,.
use H, (/)( ) = 1 as an initial condition, we will eventually arrive at a linear combination of
1 and series Hglogm’ o, (2) = Hqy ..., (2) With all a;’s being odd, where the coefficients
are polynomials in zl/ 2 for a suitable e. (Potential fractional exponents come from the
relation (3.7).) This proves the first assertion of the lemma.
Now let us consider the case where all the ;s are zero. Suppose that we have an

expansion as described in the first part of the lemma for Hy, 4, 5.(2),

Hy, o0, (2) = > _c(a)z® Ho(2), (3.11)

a

where the sum is taken over all finite tuples a = (ay, as,...) with all a;’s being odd,
and where only finitely many coefficients c¢(a) are non-zero. We also allow the tuple a
to be the empty tuple () and make the convention that H((z) = 1, so that the series 1
is as well included in the linear combination on the right-hand side of (3.11).

Let us now consider exponents e(a) that are not integral. Let € be a real number
strictly between 0 and 1, and concentrate on exponents e(a) with fractional part €; in
symbols {e(a)} = e. Then we isolate these exponents e(a) in the relation (3.11), and
since there are no fractional exponents on the left-hand side, we obtain

0= Z c(a) 2@ H,(2).
{e(a)}=e



14 M. KAUERS, C. KRATTENTHALER, AND T.W. MULLER

After dividing both sides through by z¢, an application of Corollary 7 shows that c(a) =
0 for all a with {e(a)} = e. Thus, all exponents e(a) actually occurring in (3.11) with
non-zero coefficients c(a) are in fact integral. This completes the proof of the lemma. O

Computer computations suggest that, if we restrict our attention to the series
Hy, b, ».(2), which are the ones that we are actually interested in, there is a strength-
ening of Lemma 9 (see also Appendix A).

Conjecture 10. For any positive integers by, ba, . .., bs, the series Hy, p, . (2) can be
expressed as a linear combination over Z[z, 27| of the series 1 and series of the form
He, a0 (2), where all a;’s are odd, v < s, and ay +as + --- +a, < by +by+---+bs.

To conclude this section, let us provide an illustration of the above discussion. We
set ourselves the task of determining the coefficient of z!999511640192 i §3(2). In order
to accomplish this task, we first express ®°(z) in terms of series H,, .. (z) with all a;’s
being odd. This is done by means of the expansion (3.1) and the algorithm described
in the proof of Lemma 9. The resulting expansion is displayed in Appendix A.

Now we have to answer the question, in which of the series H,, ., (z) that appear
in this expansion of ®°(z) do we find the monomial z1999°11640192 " {Jging the algorithm
described in Remark 8, we see that

1099511640192 = 5 - 27 4 1099511639552,
=3-28% 422 4+ 27 1+ 1099511611392,
:240+3_212+27’
=27+ 2% +3.27 + 1099511639040,
= 3.2 127 4+ 1099511627776,
=2% 4+ 3.27 + 1099511639552,
— 240 + 213 + 212 + 277
=1+3-2°4 1099511640188,
=3-2" + 1099511639808,
=14+22 42"+ 2% + 1099511640184,
=213 4+ 212 4 27 1 1099511627776,
=1+2"+2°+ 1099511640188,
=212 4+ 27 4+ 1099511635968,
=2+ 2! 4+ 1099511640188,
=1+ 2%+ 1099511640190,
=27 +1099511640064.

Here, the third line shows that z!99951640192 apnears in Hy34(2), and the seventh
line shows that it appears in Hy;11(2) (thereby making it impossible to appear in
Hi1111(2)), while the remaining lines show that it does not appear in any other term
in the expansion of ®°(z) displayed in Appendix A. Hence, by taking into account the
coeflicients with which the series H; 3;(2) and Hy11,1(2) appear in this expansion, the
coefficient of z1099511640192 iny §5(2) is seen to equal —40 + 240 = 200.
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4. THE METHOD
We consider a (formal) differential equation
Pz F(2), F'(2), F"(2),...,F¥(2)) =0, (4.1)

where P is a polynomial with integer coefficients, which has a power series solution
F(z) with integer coefficients. In this situation, we propose the following algorithmic
approach to determining the series F(z) modulo a 2-power 232" for some positive
integer . We make the Ansatz

20421
F(z) = Z a;(2)®(z) modulo 2*%" (4.2)
i=0
with ®(z) as given in (1.1), and where the a;(z)’s are (at this point) undetermined

Laurent polynomials in z. Now we substitute (4.2) into (4.1), and we shall gradually
determine approximations a; 5(z) to a;(z) such that (4.1) holds modulo 2°, for 8 =

1,2,...,3-2% To start the procedure, we consider the differential equation (4.1) modulo
2, with
2021
F(z) = Z a;1(2)®'(z) modulo 2. (4.3)
i=0

Using the elementary fact that ®'(z) = 1 modulo 2, we see that the left-hand side of
(4.1) is a polynomial in ®(z) with coefficients that are Laurent polynomials in z. We
reduce powers ®*(z) with k& > 2°+2 using the relation (which is implied by the minimal
polynomial for the modulus 8 given in Proposition 2)?

(@*(2) +60%(2) + (22 + 3)D*(2) + (22 +6)D(z) +2z—|—522)2a =0 modulo 2°?". (4.4)

Since, at this point, we are only interested in finding a solution to (4.1) modulo 2, the
above relation simplifies to

() + 0 (2) 4 2

2a+1

=0 modulo 2. (4.5)

Now we compare coefficients of powers ®*(2), k = 0,1,...,29"2 — 1 (see Remark 11).
This yields a system of 2°*2 (differential) equations (modulo 2) for the unknown Laurent
polynomials a;1(z), i = 0,1,...,2%™ — 1, which may or may not have a solution.

2Actually, if we would like to obtain an optimal result, we should use the relation implied by a
minimal polynomial for the modulus 232" in the sense of Section 2. But since we have no general
formula available for such a minimal polynomial (cf. Item (2) of Remark 5 in that section), and since
we wish to prove results for arbitrary moduli, choosing instead powers of a minimal polynomial for
the modulus 8 is the best compromise. In principle, it may happen that there exists a polynomial in
®(z) with coefficients that are Laurent polynomials in z, which is identical with F(z) after reduction
of its coefficients modulo 232", but the Ansatz (4.2) combined with the reduction (4.4) fails because
it is too restrictive. We are not aware of a concrete example where this obstruction occurs. The
subgroup numbers of SLs(Z) (which we treat modulo 8 in Section 11 by the method described here, and
modulo 16 by an enhancement of the method outlined in Appendix D) are a potential candidate when
considered modulo 232" for o > 1. On the other hand, once we are successful using this (potentially
problematic) Ansatz, then the result can easily be converted into an optimal one by further reducing

the polynomial thus obtained, using the relation implied by a minimal polynomial for the modulus
2327,
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Provided we have already found Laurent polynomials a;5(z), i = 0,1,...,2°72 — 1
for some g with 1 < § < 3-2% — 1, such that

20421
S ais(:)9(2) (46)
i=0
solves (4.1) modulo 2°, we put
aip1(2) = aip(2) + 2% 511(2), i=0,1,...,2°72 — 1, (4.7)

where the b; g11(2)’s are (at this point) undetermined Laurent polynomials in z. Next

we substitute
2 t+2_1

> aisn(2)2(:) (4.8)

instead of F(z) in (4.1). Using the fact that ®'(z) = >2°_ 27221 modulo 2°+!, we
expand the left-hand side as a polynomial in ®(z) (with coefficients being Laurent
polynomials in z), we apply again the reduction using relation (4.4), we compare co-

efficients of powers ®*(2), k = 0,1,...,2°"2 — 1 (again, see Remark 11), and, as a
result, we obtain a system of 2°*2 (differential) equations (modulo 2°*1) for the un-
known Laurent polynomials b; g+1(2), i =0,1,...,2°"? —1, which may or may not have

a solution. If we manage to push this procedure through until § = 3 - 2% — 1, then,
setting a;(2) = a;3.20(2), 1 =0,1,...,2%"2 — 1, the right-hand side of (4.2) is a solution
to (4.1) modulo 232", as required.

Remark 11. As the reader will have noticed, each comparison of coefficients of powers
of ®(z) is based on the “hope” that, if a polynomial in ®(z) is zero modulo a 2-
power 27 (as a formal Laurent series), then already all coefficients of powers of ®(z)
in this polynomial vanish modulo 2°. However, this implication is false in general (see
Lemma 39 below for the case of modulus 2* = 16). It may thus happen that the method
described in this section fails to find a solution modulo 2° to a given differential equation
in the form of a polynomial in ®(z) with coefficients that are Laurent polynomials in
z over the integers, while such a solution does in fact exist. As a matter of fact, this
situation occurs in the analysis modulo 16 of the subgroup numbers of SLy(Z), see
Theorem 28. In Appendix D, we outline an enhancement of the method, which (at
least in principle; Appendix D treats only the case of the modulus 16 explicitly) allows
us to decide whether or not a solution modulo a given power in terms of a polynomial
in ®(z) with coefficients that are Laurent polynomials in z over the integers exists, and,
if so, to explicitly find such a solution.

It is not difficult to see that performing the iterative step (4.7) amounts to solving
a system of linear differential equations in the unknown functions b; g41(z) modulo 2,
where all of them are Laurent polynomials in z, and where only first derivatives of the
b; p+1(z)’s occur. Solving such a system is equivalent to solving an ordinary system of
linear equations, as is shown by the lemma below.

Given a Laurent polynomial p(z) over the integers, we write p{®(z) for the odd part
2(p(2) — p(—2)) and p'9(2) for the even part 1(p(z) + p(—z)) of p(z), respectively.
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Lemma 12. Let¢; j(z) and d; ;(2),1 <i,j < N, andr;,(z),1 <i < N, be given Laurent
polynomials in z with integer coefficients. Then the system of differential equations

N
Zc”(z)fj(z) + Zd”(z)fj'(z) =r;(z) modulo 2, 1<i<N, (4.9)
j=1 Jj=1

has solutions f;(z), 1 < j < N, that are Laurent polynomials in z over the integers if,
and only if, the system of linear equations

N N
YAl @+ YA +§ZZ*%J f;7(2) =) modulo 2
j=1 J=1
N N
N0 + 3 () +Z‘W’ﬂW>°%>mmw7
j=1 Jj=1
1<i<N,
(4.10)

has a solution in Laurent polynomials f}l)(z), fj@(z) in z over the integers for 1 < j <
N.

Proof. We write f;(z) = f '(2) + f(o( ), and observe that

fi(z) = z’lfj(o)(z) modulo 2.
If this is used in (4.9), and if we separate the even and odd parts on both sides of the
equations, then (4.10) with f;l)(z) = f;e)(z) and f;z)(z) f 2),j=1,2,...,N
results after little manipulation.

Conversely, suppose that g( )( ),gj(?)(z), j=1,2,..., N, is a solution to the system
(4.10), that is,

Y

N N

N
S (2)g " (2) + ()P (2) + > e ()9 (2) = 119(2)  modulo 2,
‘ ‘ 2

Z cg?j)(z)gj(.l)(z) + Z () )+ Z _1d(0 (z) = 7‘50)(2) modulo 2,

1<i<N.
(4.11)

At this point, the g](-l)(z)’s need not be even Laurent polynomials, and the gj(?)(z)’s

need not be odd Laurent polynomials. We have to prove that there exists a solution

1) (2) S OrNY :
fi7(2), f;7(2), 5 =1,2,..., N, such that all f;”’(2)’s are even Laurent polynomials and

all fj@)(z)’s are odd Laurent polynomials.
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By separating even and odd parts of the g,(:)(z)’s and the g]@)(z)’s, we obtain the
equations

N N N
> @GN0 + D@0 ) + 3 @) e = )
Jj=1 j=1 )
modulo 2,
(4.12)
N N
€ NG o _
2.l @(g) =)+ el +2_ 2y )I(z) =0
Jj=1 j=1
modulo 2
N N
o Dy(e e 1 (o o Y
> @) ) + Y (=) +Z 149 (2)(¢?) (2) = 9 (2)
Jj=1 j=1
modulo 2,
(4.13)
N N N
> dd e () + D) ()6 () + D= () (g) (=) = 0
Jj=1 j=1 =
modulo 2,
1 <7< N.

Combining (4.12) and (4.13), we see that (¢5")(2), (9)(2), j = 1,2,...,N, is
a solution to (4.10), and now the (gj( ))(6)( )’s are indeed even polynomlals while the

(g§2))(0)(z)’s are indeed odd polynomials. Addition of both sides of (4.12) and (4.13)
then yields that

€ 2 o .
fi(2) = ()= + (67)9(2), 1<j<N,
is a solution to (4.9) in Laurent polynomials in z over the integers. O

In general, it is difficult to characterise when the system (4.10) has a solution. What
one has to do is to solve the system over the field of rational functions in z over Z/27Z,
and then to see whether possibly occurring denominators cancel out or, in the case of a
parametric solution, whether denominators can be made to cancel by a suitable choice
of the parameters. One simple case, where a characterisation is possible, is given in
Lemma 22, which is crucial for the proof that the generating function for the number
of subgroups of index n of PSLsy(Z), when these are reduced modulo a given power of
2, can always be expressed as a polynomial in ®(z) with coefficients that are Laurent
polynomials in z.

We remark that the idea of the method that we have described in this section has
certainly further potential. For example, the fact that the series ®(z) remains invariant
under the substitution z — 2% (or, more generally, under the substitution z — zzh,
where h is some positive integer) — up to a simple additive correction — can be

exploited in order to extend the range of applicability of our method to equations
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where we not only allow differentiation but also this kind of substitution. This is actually
already used in a very hidden way in Section 14 (cf. [27, Theorem 12|, setting in relation
subgroup numbers of the Hecke group $(¢) with subgroup numbers of C,*C; modulo 2;
in terms of generating functions, the meaning of this theorem is that the generating
function for the former numbers can be expressed in terms of the generating function for
the latter numbers by a relation which involves a substitution z — 22). Furthermore, as
we already mentioned in the introduction, there is no obstacle to modifying the method
presented here to work for recursive sequences which are reduced modulo powers of p,
in connection with the series Y _, 27", although at present we are not able to offer any
interesting applications in this direction.

5. A SAMPLE APPLICATION: CATALAN NUMBERS

The Catalan numbers, defined by Cat, = %H(QT?), n = 0,1,..., are ubiquitous in
enumerative combinatorics. (Stanley provides a list of 66 sequences of sets enumerated
by Catalan numbers in [32, Ex. 6.19], with many more in the addendum [33].) Recently,
there have been several papers on the congruence properties of Catalan numbers modulo
powers of 2, see [11, 22, 30, 38]. In particular, in [22] the Catalan numbers are deter-
mined modulo 64. As we already mentioned in the introduction, the corresponding
result (cf. [22, Theorems 6.1-6.6]) can be compactly written in the form (1.2). Clearly,
once we know the right-hand side of (1.2), the validity of the congruence (1.2) can be
routinely verified by substituting the right-hand side into the well-known functional

equation (cf. [36, (2.3.8)])
2C2(2) — O(z) + 1 =0, (5.1)

where C'(z) = )", Cat, 2" denotes the generating function for the Catalan numbers,
and reducing powers of ®(z) whose exponent exceeds 7 by means of the relation (4.4)
with a = 1. We shall now demonstrate that the method from Section 4 allows one not
only to find the congruence (1.2) algorithmically, but also to find analogous congruences
modulo arbitrary powers of 2.3

Theorem 13. Let ®(z) = > (2%, and let o be some positive integer. Then the

generating function C(z) for Catalan numbers, reduced modulo 23%", can be expressed
as a polynomial in ®(z) of degree at most 2°72 — 1 with coefficients that are Laurent
polynomials in z over the integers.

Proof. We apply the method from Section 4. We start by substituting the Ansatz (4.3)
in (5.1) and reducing the result modulo 2. In this way, we obtain

2021 20421
z Z a?(2)®%(2) + Z a;i1(2)®(2) +1=0 modulo 2. (5.2)
=0 =0

3In principle, one could use the generalisations of Lucas’ theorem due to Davis and Webb [8], and

to Granville [15], respectively, to analyse the classical expression %H(i?) for the Catalan numbers

modulo a given 2-power, or, more generally, the right-hand side of (13.2). But this approach would
be rather cumbersome in comparison with our method, and it is doubtful that one would be able to
derive results which are of the same level of generality as Theorems 13, 14, or 33.
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We may reduce ®?'(z) further using the relation (4.5). This leads to

2a+171 2001

2 30 (@) + 2 e () 9 )2 30 g (V)
=0

2¢—1 20+2_q
+z Z Z+2a+1 (2) + af 500 1(z ) @2"+2a+1(2)+ Z a;1(2)®(2)+1 =0 modulo 2.
i=0
(5.3)
Now we compare coefficients of ®(z), for i = 0,1,...,2°"2 — 1. For ¢ odd, we see

immediately that this implies that a;;(z) = 0 modulo 2. Proceeding inductively, we
now suppose that ass, ;(2) =0 modulo 2 for odd u and some positive integer 5, 5 < a.

Reading off coefficients of P2 , where 7 is odd, we then obtain

zagﬁu (2) + 22a+1+1a351+2a+1 1(2) + Z2a+1+1a§ﬁz+3 20 1(2)

+ zaggi+2a71(z) + Za35i+2&+171(2) + ags+1,1(2) =0 modulo 2.

However, due to our inductive assumption, all squared terms on the left-hand side of
this congruence vanish, and we conclude that ags+1;;(2) = 0 modulo 2.

So far, we have found that all coefficient Laurent polynomials a; ; (2) vanish modulo 2
except possibly ag1(z) and age+11(2). The corresponding congruences that we obtain

from extracting coefficients of ®°(z) and ®>*" (2), respectively, in (5.3), are

zag 1 (2) + 22 1(2) +ag1(2) +1=0 modulo 2, (5.4)

2030111 (2) + ago11(2) =0 modulo 2. (5.5)
The only solutions to (5.5) are age+11(z) = 0 modulo 2, respectively aga+1(z) = 271
modulo 2. The first option is impossible, since it would imply that, modulo 2, the series
C'(z) reduces to a polynomial; a contradiction to the well-known fact (easily derivable
from Legendre’s formula [21, p. 10] for the p-adic valuation of factorials; cf. (2.10)) that
the Catalan number Cat,, is odd if, and only if, n = 2¥ — 1 for some k. Thus,

L' modulo 2.

a/2a+1’1(2'> =z
Use of this result in (5.4) yields the congruence
Za?n(z) +apq1(2) + 214 1=0 modulo 2 (5.6)

for ap1(z). We let

2k_1
aop1(z) = apa(z +E

and substitute this in (5.6). Thereby, we get
zag,(2) + Z 21 ap1(2) + Z 2142214 120 modulo 2

or, after snnphﬁcatlon,

zag 1(2) + ao1(z) =0 modulo 2.
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Again, either @g1(z) = 0 modulo 2, or ag1(2) = 2z~ modulo 2. Here, the second option

is impossible, since it would imply that C(z) contains a negative z-power, which is
absurd.
In summary, we have found that
ap1(z) = 2*~1 modulo 2,
k=0

1

aga+11(2) = 2z~ modulo 2,

with all other a;1(z) vanishing, forms the unique solution modulo 2 in Laurent polyno-
mials @; (%) to the system of congruences resulting from (5.3).

After we have completed the “base step,” we now proceed with the iterative steps
described in Section 4. We consider the Ansatz (4.6)—(4.8), where the coeflicients a; g(2)

20421

are supposed to provide a solution Cy(z) = Y7 a;5(2)®'(2) to (5.1) modulo 2°.
This Ansatz, substituted in (5.1), produces the congruence

20421

2C3(2) — Cp(2) +2° Z bip1(2)®(2) +1 =0 modulo 2°T.
i=0

By our assumption on C(z), we may divide by 2°. Comparison of powers of ®(z) then
yields a system of congruences of the form

bisi1(z) + Poli(z) =0 modulo 2, i=0,1,...,2°72 1,

where Pol;(z), i = 0,1,...,2°"2 — 1, are certain Laurent polynomials with integer
coefficients. This system being trivially uniquely solvable, we have proved that, for an
arbitrary positive integer a, the algorithm of Section 4 will produce a solution Cj.9«(2)
to (5.1) modulo 232" which is a polynomial in ®(z) with coefficients that are Laurent
polynomials in z. O

For example, our computer program needs only about 30 seconds to come up with
the corresponding congruence modulo 232% — 4096.

n

Theorem 14. Let ®(2) = Y, (2% . Then we have

> Cat, 2" = 20482" + 30722" + 204822 + 3584z 4 64020 + 224027 + 322°

n=0

+ 83227 + 24122° 4 10422° + 27022* + 532% + 222 + 2 + 1
+ (20482'% + 384020 + 21122° + 211227 + 5522°
+31282° + 25122 + 40002° + 390427) ®(2)
+ (20482"% + 30722" + 15362" + 115227 4 10242° + 400027 + 34402°
+37882° + 30962 + 34162° + 23682 + 288z) ®*(z)

+ (20482 4 20482" + 23042° + 5122° + 275227 + 30722° + 7282°
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+35282" + 10322° + 31682” 4 3456z + 3904) ©°(2)

+ (20482 4 30722" + 10242'0 + 204827 + 11522° + 172827 4 22722° + 24642°
4 3 2 48 4
+34522" 4 315427 4 21362° + 38962 4 1600 + — | ®*(2)
z
+ (20482"° 4 204827 + 17922° + 179227 + 10882° + 15362°
s ; ) 2272\ 5
+1704z" + 36482° + 32882% 4 200z 4 3728 + —— | ®°(2)
z
+ (20482110242" + 15362° + 32002" + 28162° + 13122° + 38242*
) e

+ (20482° + 230427 + 23042° + 35202° + 9602* + 24562°

2760
z

+14023 + 59222 + 36922 + 488 +

4024
+21282% + 29362 + 1784 + ) d7(2)
z
+ (204820 + 102427 4 20482° + 51227 + 39682° + 10882 + 18882"
3 2 339 8
+8322° + 14447 4 26462 + 3258 + — | ©°(2)
z

+ (20482° + 33282° 4 15362” + 3008z"

3152
+3202° + 21682% + 11442 + 3992 + ) do(2)
z

+ (20482" + 307227 4 5122° 4 14082° + 25602*

2380
«+3424z3+-3408224-131624—36084—————) d0(2)
z

+ (204827 + 20482° 4 28162° + 3072z + 18562

3904
-+2688z24—1288z4—38804—————) 1 (z)
z

+ (20482° 4 102427 + 30722° + 20482° + 1408z*

358
«+2624z3%—1440224—224z%—948+————) d2(2)
z

2384
+»(2048z64—2048254—3328244-2816234-1984z24-384z4-24884--———) P13 (2)
z
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260
+(ﬂm&7+up@é+5mz#+zwmﬁ+1ﬂm£+am4m+3&y%——)@M@)
z

2696
+(XM&F+W%9+Qan?+Mz+2%2+———>@“@)
z

modulo 4096. (5.7)

The reader is reminded that coefficient extraction from an expression such as the
one on the right-hand side of (5.7) is straightforward, via the algorithm described in
Section 3 (see (3.1) and the proof of Lemma 9).

6. A NON-EXAMPLE

Consider the equation
2F%(2) — F(2)+1=0, (6.1)
which has a unique formal power series solution F'(z). We note that the coefficients
in the series are special instances of numbers that are now commonly known as Fujfi—
Catalan numbers, which have numerous combinatorial interpretations; cf. [2, pp. 59-60].
It was shown in [27, Eq. (36)] that the coefficient of 2% in the series F'(z) has the same
parity as the number of free subgroups of index 14\ in the Hecke group $(7) = Cy* Cy.
If we try our method from Section 4, then already at the mod-2 level we fail: let
F(2) = a1(2)®(z) + ag(z) modulo 2, for some Laurent polynomials ag(z) and a;(z).
Upon substitution in (6.1) and simplification using (cf. Proposition 2)

®?(2) + ®(2) + 1 = 0 modulo 2,
we obtain

za(2) + zag(2)ai(z) + ao(2) + zaf(2) + 1

+ ®(2) (2a5(2)ai(z) + zaj(2)ai(z) + a1(2)) =0 modulo 2.
or, equivalently,
zad(z) + zag(2)a3(z) + za$(z) + ag(z) + 1 =0 modulo 2 (6.2)

zag(2)at(z) + zad(2)at(z) + a1(z) =0 modulo 2. (6.3)
However, this congruence has no solution in Laurent polynomials ag(2) and a;(z). For,
the Laurent polynomials a§(z), ag(z)a?(z), a$(z), all of them being squares, contain only
even powers of z when the coefficients are reduced modulo 2. Consequently, the term
ao(z) + 1 on the left-hand side of (6.2) can only contain even powers (modulo 2). In
particular, ag(z) must contain the term 1. If we now suppose that ag(z) and/or a(2)
contain negative powers of z, then we obtain a contradiction regardless whether the
orders (the minimal e such that z¢ appears in a Laurent polynomial) of a¢(z) and a;(2)
are the same or not. This implies that both a¢(z) and a;(z) are actually polynomials
in z, with ag(z) being of the form ag(z) = 1+ag(z), where ao(z) is a polynomial without
constant term. If we now multiply both sides of (6.2) by a?(z) and both sides of (6.3)
by a3(z), and subsequently add the two congruences, then we obtain

zaf(2) + ap(2)a}(z) + ad(2)ay(z) + a(z) =0 modulo 2.
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Dividing by a4(z) and replacing ag(z) by 14ag(2), we obtain the equivalent congruence
zaj(z) + ap(2)ai(z) +as(z) + 1 =0 modulo 2.
This congruence has no solution since ag(z) has no constant term modulo 2.

In the next theorem, we reveal the deeper reason why our method must fail for F(z).
Namely, it shows that exponents e of terms z¢ which survive in F'(z) after reduction of
its coefficients modulo 2 may have an arbitrary number of blocks of consecutive 1’s. In
contrast, a polynomial in ®(z) of degree d with coefficients that are Laurent polynomials
in z can only have terms 2¢, where e contains at most d blocks of consecutive 1’s, apart
from a right-most block of bounded length.*

Theorem 15. Let F(z) be the unique formal power series solution to the functional
equation (6.1). Then the coefficient of z" in F(z) is odd if, and only if, the sequence
of binary digits of n is built by concatenating (in any order) blocks of 0011 and 01. In
particular, the number of free subgroups of index n in $(7) = Cyx C7 is odd if, and only
if, the above condition holds.

Proof. By replacing F'(z) by 1+ G(z) in (6.1), we obtain
2(1+G(2)" - G(2) =0,
or, equivalently,
G(z)
(1+G(2))8
so that G(z) is the compositional inverse of the series z/(1 + 2)®. By the Lagrange
inversion formula (cf. [32, Theorem 5.4.2 with k = 1]), we obtain for n > 1 that

P = () 6Le) = L ey L

1, ., 6 1/ 6n 1 6n +1
= — n 1 ’VL:_ = .
n<z >( +2) n(n—l) 6n—|—1( n )

By the well-known theorem of Legendre [21, p. 10] (cf. (2.10)), we see that the coefficient
of 2" in F'(z) is odd if, and only if,

s(6n+1) — s(bn+1) — s(n) =0, (6.4)

where, as in Section 2, s(m) denotes the binary digit sum of m. Another way to phrase
(6.4) is to say that, whenever we find a 1 in the binary expansion of n, then there must
also be a 1 in the binary expansion of 6n + 1 at the same digit place.

We are now ready to establish the claim of the theorem. In view of the above
considerations, it suffices to show that the condition on n in the statement of the
theorem is equivalent to (6.4).

Z =

Let n be a positive integer with the property that its binary expansion is formed by
concatenating blocks of the form 0011 and 01. We prove that (6.4) holds in this case by
induction on n. It is routine to check that our assertion holds true forn =1,2,...,15.
Now, let n = 4n; 4+ 1, with some positive integer n;. In other words, the right-most

4The length of this right-most block is in fact bounded by the maximal modulus of an exponent of
z occurring in a Laurent polynomial coefficient.
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digits in the binary expansion of n are 01 and the binary expansion of n; is formed by
concatenating blocks of the form 0011 and 01. In that case, we have

s(bn+1) —s(dn+1) — s(n)
=s(4(6n+1)+2+1) —s(4(bny +1) +2) — s(4ny + 1)
=s(6n;+1)+2—sbBn;+1)—1—-s(n;) —1=0, (6.5)

by the induction hypothesis applied to n;. On the other hand, if n = 16n, + 3 for some
positive integer nq, that is, if the right-most digits in the binary expansion of n are 0011
and the binary expansion of n; is formed by concatenating blocks of the form 0011 and
01, then

s(6n+1) — s(bn+ 1) — s(n)
=s(16(6n; +1)+2+1) —s(16(5ny + 1)) — s(16ny + 2+ 1)
=s5(6n1+1)+2—s(n; +1)—s(ny) —2=0, (6.6)
establishing again the truth of (6.4).

In order to prove the converse, let us suppose that n satisfies (6.4). We start by
showing that the binary expansion of n cannot contain any of the substrings 111, 000,
1011. We call an occurrence of any of these substrings a “violation.”

Assuming that the right-most violation is a substring of the form 111, we have

n= ...1110...,
2n = ...1110...0,
dn = ...1110...00,
6n+1= ...101 ...1,

since to the right of the substring 111 in n there are only blocks of the form 0011
and 01 according to our assumption, which implies that there cannot be any carries
“destroying” the substring 101 in 6n+1. However, this means that at the place where we
find the bold-face 1 in (the binary expansion of) n we find a 0 in (the binary expansion
of) 6n + 1, a contradiction to (6.4).

Now we assume that the right-most violation is a substring of the form 000. In that
case, we have

n= ...1000...,
o9 = ...1000...0,
4n = ...1000...00,
6n+l1= ...10 ...1,

a contradiction to (6.4) for the same reason.
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Finally we assume that the right-most violation is a substring of the form 1011. Then
we have

n= ...10110...,
2n = ...10110...0,
4n = ...10110...00,
6n+1= ...0001 ...1,

since to the right of the substring 1011 in n there are only blocks of the form 0011
and 01 according to our assumption, which implies that there cannot be any carries
“destroying” the substring 0001 in 6n+ 1. However, this means that at the place where
we find the bold-face 1 in n we find a 0 in 6n + 1, again a contradiction to (6.4).

Now let us suppose that n = 2%n; +ng, where ng is an a-digit (binary) number formed
by concatenating blocks of the form 0011 and 01. By applying the computations (6.5)
and (6.6) (possibly several times), one sees that n satisfies (6.4) if, and only if, n; does.

We claim that n; cannot be even. For, if it were, say n; = 2°n,, then ny has a 1 at
the digit place § while 6n1 + 1 has not, a contradiction to (6.4). But then the already
established fact that n, and hence ny, cannot contain any of the substrings 111, 000,
1011 implies that the right-most digits in the binary expansion of n; form either a block
01 or a block 0011. This provides an inductive argument that the binary expansion of
n is formed by concatenating blocks of the form 0011 and 01, and thus completes the
proof of the theorem. 0

7. FREE SUBGROUPS IN LIFTS OF HECKE GROUPS

For integers m,q with m > 1, ¢ > 3, and ¢ prime, we consider the group I',,(q) as
defined in (1.3). Denote by fiq) (m) the number of free subgroups of index 2gmA in

[',.(q). The purpose of this section is to estimate the 2-adic valuation of f)(\q) (m) in the
case when ¢ is a Fermat prime. This estimate is based on a recurrence relation for these
numbers, which, in turn, results from a specialisation of a differential equation in [27,
Sec. 2]. Moreover, this differential equation for the generating function of free subgroup
numbers in I';,(¢) will become of crucial importance in Sections 8 and 13.

In order to present the aforementioned differential equation, we first need to compute
several important invariants of I';,(¢). Using notation and definitions from [27, Sec. 2],

we have mr,, ) = 2¢m, x(I'n(q)) = — qq:z, and thus,

2

p(Tm(q)) =1 = mr,@x(Tm(9)) = ¢ =1 = p(H(q))-
Moreover, for the family of zeta-invariants {(.(I',,(q)) : & | 2¢gm} of T',,(¢), we find that

1, K =m,
Ce(Tm(q)) = =1, K =2gm, (7.1)
0, otherwise.

Our first result in this section compares the A-invariants of I',,(¢), as defined in [27,
Eq. (14)], to those of the underlying Hecke group $(q), and provides an estimate for
their 2-adic valuation.
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Lemma 16. (i) For an integer m > 1 and a prime q > 3, we have

Au(Co(q)) =mT AL (9(q), 0<pu<qg-—1.
(ii) We have
va(Au(H(q) > p, 0<p<qg-1

Proof. (i) In view of (7.1), we have, for 0 < u < ¢ — 1, that

1 < ,- . . et
Au(T(q)) = = Y (=17 <”) 2qm(j +1) T @emji+k) | (20m(i+1))
p: j=0 J 1<k<2gqm
(k,2gm)=m
1 & i
— ey (") T Comirw
7=0 1<k<2gm
(k,2gm)=m
1 & i
— 2 (M) T mezas + 1)
j=0 1<k’'<2q
(k' 2q)=1
1
) Z ( ) H (2q7 + k)
J 1<k/<2q
(K,29)=1
=m* ' A,(9(q)),
as claimed.
(ii) This follows from [27, Lemma 1]. O

Our next result is a recurrence relation for the subgroup numbers fiq) (m).

Lemma 17. For m,q as in Lemma 16 and X > 1, we have

q—

S (m

Y Y < g )(v!<2q>">lmq-”—lAm(q))

1
p=1v=1 p1,..,p0>0 A1, 2>0 Has e fho
M1ty =pA e A=A

o= (M T . 72

with initial value fl(q) (m) = matAy(H(q)).
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Proof. Setting ® =TI',,(¢) in [27, Eq. (18)], and using Part (i) of Lemma 16 to compute
A,(T'(q)) in terms of A,($(q)), leads to the differential equation

for the generating function G, (q; 2) == )55 f)(\i)l(m)zk. Comparing the coefficient of
2 in (7.3) for A > 1 yields (7.2); while, for A = 0, we obtain the required initial value

(2) OJ
i (m).

Given these preparations, we can now show the following estimate for the 2-adic
valuation of fiq)(m) in the case when ¢ is a Fermat prime.

Proposition 18. (i) Let m > 1 be an integer, and let ¢ > 3 be a Fermat prime. Then
we have

v (f19(m)) > va(m)(A+q—2), A>1. (7.4)

In particular, if m is even, then f/gQ)(m) 18 zero modulo any given 2-power for all suffi-

ciently large values of \.
(ii) For q = 3, equality occurs in Inequality (7.4) if, and only if, A + 1 is a 2-power.

Proof. (i) Since (7.4) is trivially true for m odd, we may suppose that va(m) > 0. We
use induction on A\. For A = 1, we have

(1 (m)) = va(mT Ag($(q))) = (g — va(m) = (A + g — 2)va(m),

as desired. Now suppose that our claim (7.4) holds for all f§‘1) (m) such that v < L,
with some integer L > 2, and consider an arbitrary summand

S =SV f1y oy s A1y e A)
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in the recurrence relation (7.2) with A = L — 1. We find that

w(S) > M — () — v+ (g — v — L)va(m)
(Mla e aﬂu)

+’U2 +ZU2 f)\—i-,u )

z@(m’f y ) — W) — v+ (g — v — Ds(m) + p

+ ) (N 1+ g — 2)va(m)

j=1

21}2( a )—U2<V!)—V+(Q—V—]_)?}2(m)+u
Hiyees fy

+ (L = Dva(m) + (¢ — 2)vwa(m)

> (L4 q—2)va(m) + (¢ — 3)vve(m) + vo (m Mu) + o — v — (V)

where we have used Part (ii) of Lemma 16 plus the induction hypothesis in the second

step. Since v < pu, the desired inequality for the 2-adic valuation of f 1@ (m) will follow,
if we can show that

ve(V!) < (q — 3)vve(m) + vg (Ml; M 7’%) : (7.5)

Since ¢ is a Fermat prime, we have ¢ — 1 = 2¢ for some a > 1. Thus, if v < ¢ — 1, then,
by Legendre’s formula for the p-adic valuation of factorials (cf. [21, p. 10]), we get

24 —1 ’
) <Z{ | < r=g-2,
i>1
and (7.5) holds, the left-hand side already being compensated by the term

(¢ — 3)vve(m) > q— 3.
On the other hand, for v = ¢ —1, we have py = v =q¢—1, 1y = -+ = pg1 = 1,

va(V!) = ¢ — 2, and
L
v = - =q—2,
2(#1,---,/@) 2((g = 1)) = ¢

and the desired conclusion holds again. We have thus shown that every summand S on
the right-hand side of (7.2) satisfies v2(S) > (L + ¢ — 2)va(m), which implies that

va(fi2(m)) > (L + q — 2)va(m),

completing the induction.
(i) For ¢ = 3, the recurrence relation (7.2), with A replaced by A — 1, takes the form

() =6mAfY (m) + > fAm)fPm), A=, (7.6)

w,v>1
ptr=A—1
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with initial value fl(g) (m) = 5m?. In order to establish our second claim, we rewrite
Equation (7.6) as

257, 190 (m), 12, L (m), A=0(2),

222?1 O m) 2, (m) + (f%(m)f’ A=

for A >2, (7.7)

£ (m) = 6mAfZ, (m) +

I
—_
—~
[\
~

and argue again by induction on A. For A = 1, Inequality (7.4) is sharp, as required.
Now suppose that, for A < L with some L > 2, Inequality (7.4) with ¢ = 3 is sharp if,

and only if, A+1 is a 2-power, and consider ff) (m) as given by (7.7). Setting m = 2*m/
with m’ odd, we have

v2(6mLffBl(m)) =1+a+vy(L)+ vz(fé?fl(m)) >a(lL+1)+ 1.

Consequently, if L is even then, by what we have already shown,
va(fP(m)) > a(L+1) + 1.

For L odd, all terms except possibly ( f&(m))2 are divisible by 2¢(+D+1 or a higher
2

2-power, while this exceptional term satisfies
2
v (2 (m)” = a(L + 1),

with equality occurring (according to our induction hypothesis) if, and only if, % +1=
27 for some v > 1; that is, if, and only if, L + 1 = 27*! is a 2-power. This completes
the induction, and the proof. (]

8. FREE SUBGROUP NUMBERS FOR LIFTS OF THE INHOMOGENEOUS MODULAR
GROUP

In this section, we investigate the behaviour of the numbers ff}’) (m) of free subgroups
in lifts of the inhomogeneous modular group PSLy(Z) = $(3) modulo powers of 2. As
mentioned in the introduction, the best previous result available in the literature is [29,
Theorem 1], which determines the behaviour of f)(\?’)(l) modulo 16. The results in this
section solve the problem of determining f)(\B) (m) modulo powers of 2 not only for m = 1
and the 2-power 2* = 16, but for all m and modulo any power of 2.

Let Foo(2) =14 > 5, fig) (m) z* be the generating function for these numbers. (In
the notation of the previous section, Fj,,(z) = 1 + 2G,,(3;2).) By specialising ¢ = 3 in
(7.3), one obtains the differential equation

(1= (6m — 2)2)F(2) — 6mz*F.(2) — 2F3(2) =1 — (1 —6m +5m*)z=0. (8.1)

Theorem 19. Let ®(z) = > .22, and let o be some positive integer. Then, for
every positive integer m, the generating function F,,(z), when reduced modulo 23*" can
be expressed as a polynomial in ®(z) of degree at most 297 — 1, with coefficients that
are Laurent polynomials in z over the integers.



MOD-2¥ BEHAVIOUR OF RECURSIVE SEQUENCES 31

Proof. In view of Proposition 18, the assertion is trivially true for even m, the polyno-
mial in ®(z) being a polynomial of degree zero in this case. We may thus assume from
now on that m is odd.

We apply the method from Section 4. We start by substituting the Ansatz (4.3) in
(8.1) and reducing the result modulo 2. In this way, we obtain

2a+2_1 2a+2_1
Z ai,l(z)q)i(fz) +z Z a§,1(2)¢2i(2) +1=0 modulo 2.
i=0 i=0

This congruence is identical with the congruence (5.2). Hence, we can copy the resulting
solution from there. Namely, the unique solution to (5.2) (and, hence, to the above
congruence) is given by
ap1(z) = Zz2k_1 modulo 2,
k=0

1

aga+11(2) = 2z~ modulo 2,

with all other a;;(2) vanishing.

After we have completed the “base step,” we now proceed with the iterative steps
described in Section 4. We consider the Ansatz (4.6)—(4.8), where the coefficients a; 5(z)

20421

are supposed to provide a solution F, 5(2) = >.r,  aig(2)®'(2) to (8.1) modulo 2°.
This Ansatz, substituted in (8.1), produces the congruence

20+2_1

28 Z bipr1(2)®"(2) + (1 — (6m — 2)2)F,, 5(2)

— 6mz>F), 4(2) — 2Fp 5(2) =1 = (1 =6m+5m*)z=0  modulo 2°"".

By our assumption on F, 5(z), we may divide by 2°. Comparison of powers of ®(2)
then yields a system of congruences of the form

bigs1(2) + Poli(2) =0 modulo 2,  i=0,1,...,2°7 —1,

where Pol;(z), i = 0,1,...,2°"2 — 1, are certain Laurent polynomials with integer
coefficients. This system being trivially (uniquely) solvable, we have proved that, for
an arbitrary positive integer «, the algorithm of Section 4 will produce a solution

F,, 9322 (2) to (8.1) modulo 2**" which is a polynomial in ®(z) with coefficients that
are Laurent polynomials in z. 0J

We have implemented this algorithm. As an illustration, the next theorem contains
the result for the modulus 64.°

Theorem 20. Let $(z) = ano 22", Then, for all positive odd integers m, we have

L+ [ (m) 2 = 3227 + 4827 + 3225 + (16m + 8)2° + (16m + 8)=*

A>1
+ (Zm2 + 34) 24 (4m2 —4m + 24) 22 4+ (5m2 + 12) z+1

5To be precise, our implementation finds an expression for each fixed m. These particular results
can then be put together “manually” into the uniform expression displayed in (8.2).
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+ (482" + 242° 4 1227 + 60z + 40) (2)

12
+ (16z5 + (16m + 32)2* + (4m* — 32m + 68)2° + 3627 + 222 + 12 + —) % (z)
z
5 4 3 2 28 3
+ (322° 4 322" + (16m — 16)2° + 402" + 42 + 52 + — | @°(2)
z
+ <3227 +322° + 322" + (16m + 24)2° + (16m + 40)2*

35
+(2m* + 16m + 38) z + 24 + —> d4(z2)
z
+ (322° 4+ 162% 4 (16m — 8)z + 44) °(z)

50
+ <16z3 +16mz* + (4m® — 16m + 20) z + 44 + —) °(z)
v

4
+ (3223 43222 + (16m + 16)z + 40 + —) ®"(z)  modulo 64. (8.2)
z

9. SUBGROUP NUMBERS FOR THE INHOMOGENEOUS MODULAR GROUP

For a finitely generated group I', let s,(I") denote the number of subgroups of index
nin I', and write Sp(z) for the (shifted) generating function ) -, s,41(I) 2™

In this section, we focus on the sequence (Sn(PSLQ(Z)))n>1 and its generating func-
tion S(2) := Spsr,z)(2). We shall show that our method solves the problem of deter-
mining these subgroup numbers modulo any given power of 2, thus refining the parity
result of Stothers [34] and the mod-8 result from [29, Theorem 2| mentioned in the
introduction.

By the first displayed equation on top of p. 276 in [14] (cf. also [20, Eq. (5.29)] with
H = {1} and a = b= h = 1), the series S(z) obeys the differential equation

(=1 4423 +22% +42° — 227 — 429)5(2) + (27 — 2'9)(S'(2) + S?(2))

14 z+427 442 — 24 4 42° - 220 -2 =0. (9.1)

The differential equation (9.1) has a unique solution since comparison of coefficients of
2N fixes the initial values, and yields a recurrence for the sequence (sn(PSL2(Z)))n>1

which computes s,1(PSLy(Z)) from terms involving only s;(PSLs(Z)) with i < n.

Theorem 21. Let ®(z) = > .2, and let o be some positive integer. Then the
generating function S(z) = Spsr,z)(2), when reduced modulo 232", can be expressed

as a polynomial in ®(z) of degree at most 2°72 — 1 with coefficients that are Laurent
polynomials in z over the integers.
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Proof. We apply the method from Section 4. We start by substituting the Ansatz (4.3)
in (9.1) and reducing the result modulo 2. In this way, we obtain

> ain(2)@(2) + (T2 D) dai ()7 ()@ (2) + a),(2)®(2)

2a+2_1 ( 2a+2_1 2o¢+2_1

=0 =0 i=0
20+2_1
+ Z ail(z)CI)%(z)) +14+2z+42*=0 modulo 2.
i=0

We may reduce ®?'(z) further using Relation (4.5). This leads to

2a+2_1 ( 2a+2_1 2a+2_1

Z a;1(2)®(2) + (27 + 219 Z ia;1 (2)D1 (2)® (2) + a (2)®(2)

1=0

gatl_1q 2%—1

+ Z <CL?71(Z) + Z2a+1&?+2a+171(2)> (I)Qi<2) -+ Z 22a+1a?+3.2a’1<2)q)2i(2>

=0 i=0
2%—1

- (aF gar11(2) + @7y 3.901(2)) (I>2i+2a+l(z)> +1+4+2z+2*=0 modulo2. (9.2)
i=0

In the same way as in the proof of Theorem 19, one sees that all coefficients a; 1(z)
vanish modulo 2, except possibly ag1(2) and age+11(z). The corresponding congruences
obtained by extracting coefficients of ®°(z) and ®2*"' (z), respectively, in (9.2), are

20+l 9

a1 (2)+(z"+2") <a671(2) +ag,(2) + 2 a2a+171(z)) +14+2+2*=0 modulo 2 (9.3)
and

aset11(2) + (27 + 2'%) (aharr 1 (2) + a3a111(2)) =0 modulo 2. (9.4)

The only solutions to (9.4) are aga+11(z) = 0 modulo 2, respectively aga+11(2) =277 +

2~* modulo 2. The first option is impossible, since there is no Laurent polynomial
ap1(z) solving the equation resulting from (9.3). Thus, we have

4

agat11(2) = 277+ 27 modulo 2. (9.5)

Use of this result in (9.3) yields the congruence
ao.1(2)+2"(142°) (ag,(2) + aal(z))+22a+177(1+z3)3+1+z+z4 =0 modulo 2. (9.6)

for ag1(z). We let

ap1(2) = ap(2) + 27 T+ 27+ 270+ (14 27) 22T
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and substitute this in (9.6). Thereby, we get

ap1(z) + 2714 2°) (Eig’l(z) + 5371(z)) 272t 2 (14 2P L2 T
k=2

+ 2’7(1 + 23) (Z_8 + Z—4 + ZZQk—S + Z—14 + 2—8 + 2_6 + (1 + 23)2 22k+1_14>
k=2 k=2

+ 22714+ 2P 414242 =0 modulo 2,
or, after simplification,
a1 (2) + 2" (1+2%) (ap,(2) + a5,(2)) =0 modulo 2.

Again, either ag;(z) = 0 modulo 2 or @g;(z) = 277 + =% modulo 2. Here, the second
option is impossible, since it would imply that S(z) contains a negative z-power, which
is absurd.

In summary, we have found that

ap1(2) =2z "+ 27+ 27+ (1 +2°) 2"~ modulo 2,

aga+11(2) = 277+ 27" modulo 2,

with all other a;,(z) vanishing, forms the unique solution modulo 2 to the system of
congruences resulting from (9.2) in Laurent polynomials a; ; (). It should be noted that

all a;1(2)’s, 1 <4< 22" — 1, are divisible by 1 — 2* modulo 2, as is ag(z) — 1.

After we have completed the “base step,” we now proceed with the iterative steps
described in Section 4. The arguments turn out to be slightly more delicate here than
in the proof of Theorem 19. To be more precise, when considering the Ansatz (4.6)—

(4.8), where, inductively, the coefficients a; 3(z) are supposed to provide a solution
Sp(z) = Z?;SQ_l ai 5(2)®(2) to (9.1) modulo 27, we must also assume that a;s(z),
1<i<2®” —1, and aop(z) — 1 — 222, are all divisible by 1 — z3. The reader should
note that the divisibility assumptions do indeed hold for 8 = 1, the term —2z? being

negligible, since for 8 = 1 we are computing modulo 2° = 2.
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The above Ansatz, substituted in (9.1), produces the congruence

20t2_1

27 Y g (2)(2)
i=0
20421 2021
+2ﬂ(37—210)< Z ii g 41(2)®H( Z b; p1(2) ))

i=0
20121

+ (14423 +22* +42° — 227 — 42°) a;5(2)®'(2)

+ (2" — 219 ( Z_ ia; 5(2)@" 1 (2)®'(2)

=0

20421

+2Q:Ztla§,6<z)q)i<z)+( > ai,g(z)q)i(z))Z)

14 24+422 442 — 2 +42° - 225 - 2:5=0 modulo 2°. (9.7)

By our inductive construction, we know that the terms contained in lines 3-7 of (9.7)
are divisible by 2°. Hence, if we were to divide by 2° and compare coefficients of ®¥(2),
for i =0,1,...,2°"2 — 1, we would obtain the modular differential equations

bip1(2) + (27 = 20) (b 541 (2) + (0 + D)biz1,8419(2)) + Poli(z) =0 modulo 2,

i=0,1,...,2°72 1 (9.8)

where Pol;(z), i = 0,1,...,2°"2 — 1, are certain Laurent polynomials with integer
coefficients. If ¢ is odd, then the term (i + 1)b;11 41 in (9.8) vanishes modulo 2. Hence,
in this case, the differential equation (9.8) is of the form appearing in Lemma 22.
The lemma then says that such a differential equation has a solution if, and only if,
the Laurent polynomial Pol;(z) satisfies the condition given there. We must therefore
verify this condition for our Laurent polynomials Pol;(z), arising through division of
lines 3-7 of (9.7) by 2°. We shall actually prove (see the following paragraph) that
Pol;(2) is divisible by (1 — z%)?, for all ¢ with 0 <1 < 22 — 1. For odd 7, Corollary 23
thus implies not only unique existence of solutions b; 11 (2) but also divisibility of these
solutions by 1 — 23. If we now consider Equation (9.8) for even i, that is,

bipr1(2) + (27 = 20 501(2) + 27(1 = 2°)bis1,5419(2) + Poli(2) =0 modulo 2,

i=2,4,...,20"2 9

then we see that divisibility of b;y1 4,1(2) by 1 — 2 guarantees that we may again apply
Corollary 23 to obtain that there is also a unique solution b; 311(2) for even ¢, and that
this solution is divisible by 1 — z3. In summary, we would have proved that, for an
arbitrary positive integer «, the algorithm of Section 4 produces a solution Sys.za(2)
0 (9.1) modulo 232", which is a polynomial in ®(z) with coefficients that are Laurent

polynomials in z. This would establish the claim of the theorem.
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It remains to prove that lines 3-7 of (9.7) are indeed divisible by (1 — 23)2. In order
to see this conveniently, we write
aip(z) = dip(2)(1 — 2*) modulo (1 — 2°)? i=1,2,...,2°72 1,
and
aop(z) = =1 —22° +dos(2)(1 — 2*) modulo (1 — 2*)?,
where the d; 5(2)’s are polynomials of the form po-+p; z+p22?, for some integers po, p1, pa.
(It should be noted that it is at this point where we use our inductive hypothesis on

divisibility of the coefficients a;g(z).) Then, reduction of lines 3-7 of (9.7) modulo
(1 — 23)? leads to the remainder

20421
(3—|—22(1—z3))<—1—2z+1—z Zdlﬁ YD (2 )

20+2_1
+z7(1—23)< 4z — 32° Z dip(2)®'(2) + 1+ 422 +4z>

+ 3462+ 2(1 — 2*) modulo (1 — z*2 (9.9)
Using the fact that
2'(1—2%) =2(1-2% modulo (1— 2*)?
and similar reductions modulo (1 — 2%)?, one sees that the expression in (9.9) is in fact

divisible by (1 — 2%)?, as claimed. This completes the proof of the theorem. [

Recall that, given a Laurent polynomial p(z) over the integers, we write p{®(z) for
the odd part 1(p(z) — p(—=2)) and p©)(z) for the even part i(p(z) + p(—z)) of p(2),
respectively.

Lemma 22. The differential equation
a(z) + (27 — 2'%d’(2) + Pol(z) =0 modulo 2, (9.10)

where Pol(2) is a given Laurent polynomial in z with integer coefficients, has a solution
that is a Laurent polynomial if, and only if, Pol®(2) is diisible by 1 + 25 (modulo 2).
In the latter case, the unique solution is given by

1+ 27

1 3 6
a(z) = Pol(e)(z) + - LU

1—23

P 1)(2) = Pol'®(z) + Pol(z) modulo 2.

Proof. Let ag(z) = 2. Then it is obvious that
ao(2) + (27 — 2'%a}(2) = ap(z) modulo 2
if m is even, and that
ao(2) + (27 — 21%ay(2) = (1 + 2%)ag(2) + 2%ap(2) modulo 2
if m is odd. The assertion of the lemma follows now immediately. OJ

Corollary 23. If, in the differential equation (9.10), the Laurent polynomial Pol(z) is
divisible by (1 — 23)? (modulo 2), then the uniquely determined solution a(z) is divisible
by 1 — 2% (modulo 2).
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We have implemented the algorithm described in the proof of Theorem 21. As an
illustration, we present the result for the modulus 64.

Theorem 24. Let ®(z) =Y, ., 2*". Then we have

> sur1(PSLy(Z)) 2"

n>0
= 3229 4+ 482 4 4824 + 32230 4+ 3223° 4+ 32233 4+ 48232 4 16228 + 40220 + 162
+322% 43222 £ 16222 + 1622 4+ 52220 + 32219 + 40218 + 60217

+ 48210 4 421 4+ 32213 4+ 4212 4 3621 + 16210 4+ 6027 + 22° + 1627 + 426

56 36 51 33 52 1
+602° + 442" +162° + 542 +602 +32+ — + = + — + — + — + —
z 22 23 2t 25 T

+ (32234 + 32226 43222 4+ 3222 416272 + 32221 + 32220 4 32217 4 32,16

+ 4821 41621 + 1622 + 1621 + 32210 + 3228 + 4827 + 82° + 82 + 4823 + 242 + 32
2 12 8 36 4 24
0 % )@(z)

tet St S
z 22 23 4 5 6

+ (32z34 +322% 432228 4 32220 4 3222 432221 48210 4 32218 48217 + 32214

+ 4821 + 32212 + 56210 + 827 + 1628 + 4827 + 2425 + 562° + 442* + 1623
60 50 48 8 50 52 52

2 2
+ 482 +4Oz+44+?+§+;+?+25 +26 —i-?)q) (2)

+ (32228 + 32224 4+ 32221 + 32220 + 32219 + 48216 + 32214 + 32213 + 32212

32 20
+3221 + 16270+ 4827 4+ 82° + 4820 + 562" + 827 +162" + 482+ 56+ — +
z

52 4 36 12 36

3
+;+;+;+;+?)@ (Z)

+ <32244 + 3224 432233 432532 4 39231 4 32230 4 32228 432227 4 16220 + 322%

+ 32223 + 48222 + 16221 + 40270 + 3229 + 32218 + 24217 4+ 16216 + 48210 + 3221
+ 162" + 8212 + 322" + 56210 + 5627 + 4428 + 4027 + 4825 + 162° + 202* + 5622 + 3022

40 34 52 17 26 40 29
+3224284+—+ S+ 5+ 5+ + 7)<I>4(z)
z z z z z z z

+ (32z32 432230 432226 41 32,24 1 32228 1 32222 4 32221 + 48220 448218 32216 4481
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+ 32213 4 48212 + 4821 + 3228 + 1627 4 5625 + 482° + 482% + 4023 + 1622

24 24 20 24 40 20
+32Z+56+—+—2+—3+_4+_5+_6>q)5(z)
z z z 4 V4 A

+ (32232 + 32231 432230 4 39227 4 3222 4 32223 + 48219 + 16218 + 48217

+ 162" + 482" + 322" + 322 + 5628 + 4027 + 562° + 162°
8 52 60 30 20 20 14

4 3 2 6
+8Z +56Z —|—4Z +56Z+32+;+;+;+;+Z5+Z6+?)(I> (Z)

+ <3zz30 + 32220 + 32221 + 32220 4 48218 32216 1 48214 4+ 32213 + 48210 + 1627 + 826

48 8 40 60 8 24 60
+322° 4 162" + 1622 + 822 +48: + 40+ — + S + — + — + — + — + — | D(2)
z 22 2z 5 6 T

modulo 64. (9.11)

10. COUNTING PERMUTATION REPRESENTATIONS OF [',(3) FOR m PRIME

Let m be a prime and, for a finitely generated group I', let hr(n) := |[Hom(T', S,,)|.
We want to determine the function hr,,(3)(n) counting the permutation representations
of degree n of the lift I',,,(3) of the inhomogeneous modular group PSLy(Z) = $(3).
Suppose first that m > 5, and classify the representations I',,(3) — S, by the image
p € S, of the central element 22 = 3. The permutation p must be of the form

p:HUi, 0<r<|n/m,
i=1

with pairwise disjoint m-cycles ;.
For fixed r, the symmetric group S,, contains exactly

! <m g >(m Sy L (10.1)

7l co,m,n —mr rl(n —mr)lmr

such elements p.

Next, given such p, the image of the generator x will contain a certain number s
of 2m-cycles in its disjoint cycle decomposition, 0 < s < |r/2], each of which breaks
into two m-cycles when squared. Thus, in order to construct a square root of p (i.e., a
possible image of x), we need to

(i) fix s in the range 0 < s < |r/2],

(ii) select s 2-element subsets from the r m-cycles of p, which can be done in
1/r 2s B r!
s1\2s/\2,...,2) 235! (r — 2s)!

(iii) lift each of these s pairs of m-cycles to a 2m-cycle (whose square is the product
of the two given m-cycles), which can be done in m ways,

different ways,
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(iv) compute 0¥ for each of the r — 2s remaining m-cycles o, where w is the multi-
plicative inverse of 2 modulo m, and

(v) select a permutation 7 subject only to the condition that 72 = 1 on the n —mr
letters not involved in any of the r m-cycles of p.

Hence, there are precisely
lr/2] me
| — I —
rlhe,(n —mr) Z 35l (r —29)] (10.2)

s=0
distinct square roots for each p involving r m-cycles.
Similarly, the number of cubic roots of such p is given by

[r/3] m2t
t=0

(classify the cubic roots by the number ¢ of 3m-cycles, and use the fact that each
product of three disjoint m-cycles is the cube of precisely 2m? 3m-cycles). Multiplying
(10.1)—(10.3) and summing over r = 0,1, ..., [n/m], we find that

h = n! "z/":” TZ/Q:J LTZ/S:J rthe,(n — mr)he,(n —mr) m=05
T (3 r=0 s=0 t=0 253tmr—s—2t gl ¢| (n - mT)' (T B 28>' (T - 3t>" o
(10.4)

The cases where m = 2,3 have to be treated separately. By arguments similar to the
ones above, one finds that

AR o)
hey(n — 4r)he, (n — 4r)
L o 2 3 10.5
ry(3)(n) = n! E : E: 22r s3srlsl(n—4r) (2r —3s) (105)

r=0 s=0
and that /o] 52
n/9| [3r/2
) hey,(n — 97r)he, (n — 9r)
h =n! 2 2 10.6
La@n) =™ TZO ; 2532’" srlsl(n—9r)! (3r — 2s)! (106)
Furthermore, it is well-known that, for a prime p,
[n/p] ol
hC n) = —'7
() kz_opkk!(n—pk)!

which allows us to make Formulae (10.4)—(10.6) completely explicit.

11. SUBGROUP NUMBERS FOR THE HOMOGENEOUS MODULAR GROUP

In this section we consider the problem of determining the behaviour of the number
of index-n-subgroups in the homogeneous modular group SLy(Z) modulo powers of 2.
By a folklore result that goes back at least to Dey [9], these subgroup numbers are
in a direct relation to numbers of permutation representations of SLy(Z). Our start-
ing point is a recurrence with polynomial coefficients for the latter numbers, which
is then translated into a Riccati-type differential equation for the generating function
Y >0 Sn+1(SLa(Z)) 2™ of the subgroup numbers. (Equation (11.5) displays this equa-
tion when reduced modulo 16.) Our method from Section 4 is then applied to this
differential equation. Direct application already fails for the modulus 8. Interestingly,
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if we instead apply our method with the minimal polynomial for the modulus 16 given in
Proposition 2, then our algorithm produces a result for modulus 8 (see Theorems 26 and
27), but then fails at the level of modulus 16. By the enhancement of the method out-
lined in Appendix D, we are nevertheless able to treat the subgroup numbers s,,(SLy(Z))
modulo 16 as well (see Theorem 28). In view of the already substantial computational
effort involved in the case of modulus 16, we did not try to push our analysis further to
higher powers of 2. In particular, as opposed to the case of the subgroup numbers of
PSLy(Z), it remains unclear whether it is possible to express the generating function
Y ns0 Snt1(SLa(Z)) 2", when the coefficients are reduced modulo 27, as a polynomial in
®(2) with coefficients that are Laurent polynomials in z over the integers for all v > 1.
We feel, however, that this should be the case; see Conjecture 29.

Let us start with the aforementioned result (cf. [9, Theorem 6.10], see [10, Prop. 1]
for a conceptual proof, plus generalisations) relating the numbers of subgroups of a
finitely generated group to the numbers of its permutation representations.

Proposition 25. Let I' be a finitely generated group. Then we have

S | Hom (T, sn)|2—7: — exp (Z sn(r)%) | (11.1)

We take I' = I'y(3) = SLy(Z) and combine (11.1) with (10.5), the latter giving
an explicit formula for the homomorphism numbers h, := |Hom(SLy(Z),S,)|. Us-
ing the Guessing package [16], we found a recurrence of order 30 for the sequence
(hn/n!)n>0, with coefficients that are polynomials in n over Z. The validity of the recur-
rence was verified by computing a certificate using Koutschan’s Mathematica package
HolonomicFunctions [19].5 However, this recurrence is not suitable for our purpose,
for which we require a recurrence with coefficients that are polynomials in n over Z, and
with leading coefficient n. A recurrence of this form, if it exists, must be a left multiple
of the recurrence operator corresponding to the minimal order recurrence. The con-
struction of such left multiples is known as desingularisation, and algorithms are known
for this purpose [1]. This technique can be used to eliminate factors from the leading
coefficient of the recurrence (whenever possible), but it cannot be used to ensure that
the leading coefficient be a monic polynomial. The recurrence of order 32 mentioned in
Footnote 6, with leading coefficient 1, could indeed be used for our purpose, by simply
multiplying it by n. However, since this recurrence has high-degree polynomials as coef-
ficients, we preferred to work with a different recurrence with lower degree polynomials
as coefficients. The price to pay is that the order of such a recurrence will be higher. So,
by an indeterminate Ansatz, we computed a candidate for a recurrence of the desired
form of order 50, with polynomial coefficients of degree at most 5.” To be precise, it is

6The certificate has 4 megabytes, and, to obtain it, required about 30 hours of computation time.
The coefficients of this recurrence are polynomials in n of degree 34. Interestingly, there is a recurrence
of order 32 with leading coefficient 1. Although we did not try to prove it, it is likely that the recurrence
of order 30 is the recurrence of minimal order.

"We used the function LinSolveQ of the Guessing package [16], which uses modular arithmetic, in
order to solve the arising system of linear equations. Mathematica’s built-in linear system solver is not
capable of solving it on current hardware due to the huge numerators and denominators of rational
numbers which arise during the computation.
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the uniquely determined recurrence of the form

3y <Z a(k, z)n) [Hom(SLa(2), Sn-i)l _y ) 5 50,

k=0 N i=0 (n —k)!
where
a(0,0) = a(0,2) = a(0,3) = a(0,4) = a(0,5) = 0,
a(0,1) =1,

a(50,5) = 47323476536606893277939021129424044201294092725261226600745838\
993897087202045010603943040012232525,
a(50,4) = —853333370519051585059335896571817612918194491041969759097679\
3078743106989966250706985019403282594096,
a(49,5) = 2507660784286104701612089471873568042396155618028516886767837\
559764248217845308468763736164634176,
a(49,4) = a(48,5) = a(48,4) = a(47,5) = a(47,4)
= a(46,5) = a(46,4) = a(45,5) = a(45,4) = 0.
Subsequently, we checked that this recurrence is a left-multiple of the certified recurrence
of order 30, thereby establishing validity of this candidate recurrence of order 50. This

last recurrence was then converted into a linear differential equation with polynomial
coefficients for the series

ZTL

00 P o
H(z):=) o = D_ | Hom(SLy(Z), Soll5r
n=0 n=0

Finally, this last mentioned differential equation can be translated into a Riccati-type
differential equation for the generating function

S(2) = sn41(SLa(Z)) 2" (11.2)
n>0

for the subgroup numbers of SLy(Z). This is done by differentiating the relation (11.1),
with I' = SLy(Z), several times and by dividing by H(z). This leads to relations of the

form
H®)(2)

H(z)

where Py(S(z),S5(z),...) is a polynomial in S(z) and its derivatives, which can be
determined explicitly using the Faa di Bruno formula for derivatives of composite func-
tions (cf. [6, Sec. 3.4]; but see also [7, 18]). Substituting these relations in the linear
differential equation for H(z), one obtains the announced Riccati-type differential equa-
tion for S(z). It turns out that this differential equation has integral coefficients, so
that it is amenable to our method from Section 4. The differential equation cannot
be displayed here since this would require about ten pages. Its reduction modulo 16
is written out in (11.5). Our method from Section 4 with a = 0 applied to (11.5)
does in fact not produce a result modulo 8 = 232’ (it stops at the level of modulus 4).
If, however, we use the method from Section 4 with the minimal polynomial for the
modulus 16 in place of the one for the modulus 8, then the method goes through up to

= Pu(S(2),5(2),...), k=12, (11.3)
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modulus 8 (but fails for modulus 16). This yields the following theorem. It refines the
parity result [20, Eq. (6.3) with |H| =1, ¢ =3, m = 2].

Theorem 26. Let ®(2) =Y, .2 . Then we have

Z Sn+1(SL2(Z)) Zn
n>0
=422 442" 442 4212 4210 1427 4628 +42° + 620 + 422+ 42+ 6
7 3 6 6 4 1 3 6
et T E TS

4 6
3 2
+<4Z + 4z +;+;+;+E+?+;+E+ﬁ+ﬁ+ﬁ

6 6 2 4 4 4 6 2
)w@

4 6 2 5 2
+ (428 +4 + 422 + 67 +4+ -+ S+ S+ 5+ =
z 22 28zt 25

6 1 4 6 4 6 6 5\ .,
+;+?+;+§+ﬁ+ﬁ+ﬁ+ﬁ @(Z)

o 4 4 2 4 4 2 4 4 4 2 e
+ 4z +;+;+;+;+E+?+E+;+ﬁ+ﬁ (Z)

modulo 8. (11.4)

Proof. The Riccati-type differential equation for S(z) (as defined in (11.2)) modulo 16

is®

po(2) +p1(2)S(2) + p2(2)S(2)” +p3(2)8(2)” + pa(2)S(2)" + ps(2)S(2)” + ps(2) S (2)
+p7(2)'(2)" + ps(2)S(2)S'(2) + po(2)S(2)7S(2) + pro(2)S(2)*S'(2)
+p1(2)8(2)8'(2)" + p12(2)5"(2) + p13(2)S(2)8"(2) + p1a(2)5(2)*8" (=)
+p15(2)5'(2)8"(2) + pr6(2) 5™ (2) + p17(2)S(2) 5™ (2) + p1s(2)S™(2) = 0

modulo 16, (11.5)

with coefficients p;(z), j =0, 1,...,18 as displayed in Appendix B.

The differential equation (11.5) has a unique solution since comparison of coefficients
of 2V fixes the initial values, and yields a recurrence for the sequence (s, (S Lg(Z)))n>1
which computes s,,41(SLy(Z)) from terms involving only s;(SLy(Z)) with i <n.

Now we apply the method from Section 4 with the polynomial

(B%(2) + ®(2) + 2)(P(2) + 6@%(2) + (22 + 3)P*(2) + (22 + 6)®(2) + 22 + 527) (11.6)

in place of the polynomial on the left-hand side of (4.4) to the differential equation (11.5)
(that is, in view of Proposition 2 we are aiming at determining the subgroup numbers
of $,(SLs(Z)) modulo 16). This yields the above result by means of a straightforward
computer calculation. O

8We display the differential equation modulo 16 in order to prepare for Theorem 28.
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If we want to know explicitly for which n the subgroup number s, (SLs(Z)) is con-
gruent to a particular value modulo 8, then we should first apply the algorithm from
Section 3 (see (3.1) and the proof of Lemma 9) in order to express powers of ®(z) on
the right-hand side of (11.4) in terms of the series Hy, 4. (2). (The corresponding
expansions are in fact listed in (2.6) and (2.7).) The result is

> sun(SLy(Z)) 2" = (i - ; + %) Ha(2) + (; + =+ ﬁ) Hyja(2)

4
n>0

4 6 4

152 4 4 6 4 4 4 6
+ Z+§+§+;+Z5 5 —

+—
z

4 6 6 5
+(4z4+4z3+6z2+4—|—428—|——+—2+—+—
z z z z

12 1 3
t-+ S+ g+=+ <+ =+5+5+-+-5+- modulo8. (11.7)
z z z z z z z VA z

From this expression, it is a routine (albeit tedious) task to extract an explicit de-
scription of the behaviour of the subgroup numbers of SLy(Z) modulo 8. Since the
corresponding result can be stated within moderate amount of space, we present it in
the next theorem.

Theorem 27. The subgroup numbers s,(SL2(Z)) obey the following congruences mod-
ulo 8 :

(1) sn(SL2(Z)) = 1 (mod 8) if, and only if, n = 1,2,4,10, or if n is of the form
27 — 3 for some o > 4;

(i) $,(SLa(Z)) = 2 (mod 8) if, and only if, n = 7,12,17, or if n is of one of the
forms

3-29-3,3-27—-6, 3-2° =12, for some o > 4,

(iii) s,(SL2(Z)) = 4 (mod 8) if, and only if, n = 3,22,23,27,46,47,51, or if n is
of one of the forms

27 46, 20+ 7, 20411, 2°+12, 27 +18, 27+ 21,  for some o > 5, (11.8)
29427 =2, 27427 +1, 29427 4+ 3,

for some o, 7 with o >6 and 4 <717 <0 — 1, (11.9)
97 49T 49V 12, 27 42T £ 6, 27 42T £ 3

for some o, 7,v witho >6, 5<v<oc—1 and3<717<v—1,;
(11.10)

(iv) $,(SLo(Z)) =5 (mod 8) if, and only if, n =5, or if n is of one of the forms
29 —6, 22 —-12, for some o > b;
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(v) s,(SLs(Z)) = 6 (mod 8) if, and only if, n = 6,11,14, 18,19, 21, 33, 34, 35, 37,
or if n is of one of the forms
20 -2, 27—4,  for some o > 5, (11.11)
97 41, 2742, 2743 2744, 27 +5, 27410, 2° + 13,
for some o > 6, (11.12)
97 49T 3 97 49T _ 6, 20 427 — 12,
for some o, 7 witho > 7 and 5 <71 <0 —2; (11.13)

(vi) in the cases not covered by items (1)—(v), s,(SLa(Z)) is divisible by 8; in par-
ticular, s,(SLs(Z)) # 3,7 (mod 8) for all n.

As we already said earlier, the method from Section 4 with the polynomial in (11.6)
in place of the polynomial on the left-hand side of (4.4) applied to the differential
equation (11.5) does not actually produce a result modulo 16 (although this is what
it would be designed to). It only produces the result modulo 8 given in Theorem 26
since, at the mod-16-level, the arising system of equations has no polynomial solutions.
Nevertheless, by applying the enhanced method from Appendix D to this last system
of equations, a solution modulo 16 can still be found, the result being displayed in our
next theorem.

Theorem 28. Let ®(2) =Y, ., 2" . Then we have
S sna(SLa(2) 2"
n>0
= 82™ 4 82 4 8208 4 8207 4 8262 4 8261 4 8257 4 8550 4 8271 4 8270 4 8248 4 8247
+ 821 4 82M 4 821 4 8212 4+ 821 4+ 8210 4 82 4 823% 4 823 8220 4 822 4 82

+122%0 12217 4 8216 4 8215 4 421 + 4212 + 1227 + 1428 + 827 + 1225 + 162°

10 12 3 14 9 4 12 4 3 6
4 3 2
+ 122 4+ 122° + 8% +8+?+§+§+?+;+;+?+;+E+ﬁ

+ (8273+8Z72+8271+8269+8Z68+8Z67+8266+8Z64+8263+8262+8261

+ 8290 48299 4 825% 4 8254 4 8219 + 8217 4+ 82 4 8238 4 8230 4 8235 4 8232 4 823
4827 4+ 8228 4 82%T 4822 + 828 + 822 + 8217+ 821 48213 4+ 8212 4829 4+ 858
16 6 12 8 6 4 4 8 14
7 5 4 3
+ 82" +82° + 122" + 8% +4+?+;+;+;+;+?+E_’_ﬁ—i—;)@(Z)

+ (8272+8269+8268+8266+8265+8Z62+8Z61+8258+8Z57+8256+8Z55

+ 8273 + 8291 4+ 8250 4 8219 4 823 4 8237 4 8230 4 823° 4 8228 4 82 4 822 4 8272

4 8 10
+82"% 4+ 821 + 82" + 82" + 8210 4825 + 821 + 1222 + 82+ 84+ -+ S + =
z z z
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4 10 12 12 8 2
)w@

ottt —+
24 ~6 28 ~10 ~11 ~12

+ (87:72 + 8299 4 8207 4 8206 4 8261 4 8260 4 8250 4 8255 4 8290 4 8247 4 8246

+ 821 48212 4 8210 1 8237 4 8233 + 8232 4 823 + 8230 4+ 8228 1 827 4 8220 8219

8 4 4 10
+8217+8216+8213+8z12+8210+8z9+828+8z3+1222+8z+—+—2—i——3—i——4
zZ zZ VA Z

+ =4+ =
25 6 27 8 29 ~10 ~11 ~12 ~13

12 12 1 12 4 12 1
188 8 0>®3<2)

+ (8272 4+ 82T + 827 48267 4 8265 4 8,64 4 8,03 4 8200 4 8259 4 8258 4 8557

+ 8275 4 8254 4 8253 4 8251 4 8249 4 8% + 821 4 8240 4 8237 4 8230 4 8234 4 8233

+ 8232 48230 48220 1 822 4 82 4+ 8224 + 8221 48218 4 8217 4 8213 4 821 4827

8 1 9.7 1 9,61 8,5 4 3 6.2 4,10 14 1
+122° 4+ 82" +82° +8z° + 122" +122° + 62" + 82z + 12 + — + + +
z 22 23 24

14 10 5 12 14 12 2 2 1 4
Statatstatmtatmts)?re

+ (8267+8265+8Z63+8262+8Z58+8Z57+8Z53+8252+8Z50+8Z48

+ 820 + 821 4827 + 8210 + 827 + 827 827 4827 4 827 + 8%
+82% + 827 4+ 8217 4+ 8210 4+ 82" + 821 + 827 +82° + 827 4 82°

8 14 12 14 4 4 3
L2, 1 )@@

4
4 2
+ 8z% + 4z +82+;+;+?+25+27+;+;+ﬁ

modulo 16. (11.14)

We did not attempt to push this analysis further to moduli 32, 64, etc., since the
computational effort seemed immodest. With the (not very substantial) evidence of
Theorems 26 and 28 (but see Remark 32), we still expect the enhanced method to be
successful for any given 2-power.

Conjecture 29. Let ®(z) = > - 22" and let v be a positive integer. Then the
generating function o Sn1(SLa(Z)) 2", reduced modulo 27, can be expressed as a
polynomial in ®(z) with coefficients that are Laurent polynomials in z over the integers.

12. SUBGROUP NUMBERS FOR THE LIFT ['3(3)

Continuing in the spirit of the previous section, we now consider the number of index-
n-subgroups in the lift I'3(3) (of the Hecke group $(3) = PSLy(Z)) modulo powers of 2.
We shall see that, again, our method from Section 4 already fails for modulus 8. While
this can again be overcome by, instead, designing the computation so that the target is
modulus 16, the method then fails at the level of modulus 16. Moreover, for modulus 16,
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even the enhancement of the method described in Appendix D fails (see Remark 32).
This means that a new phenomenon, not covered by our Ansatz, arises in the behaviour
of the subgroup numbers at the level of modulus 16. It would be of great interest to
find an explicit description of the hidden scheme behind the mod-16 behaviour of the
number of subgroups of index n in I'3(3), and, more generally, of the behaviour modulo
any power of 2.

We take I' = I'3(3) in (11.1) and combine the resulting formula with (10.6), the lat-
ter giving an explicit formula for the homomorphism numbers h,, := | Hom(I'3(3), S,,)].
Using the Guessing package [16], we found a recurrence of order 42 for the sequence
(hn/n!)n>0, with coefficients that are polynomials in n over Z. The validity of the recur-
rence was verified by computing a certificate using Koutschan’s Mathematica package
HolonomicFunctions [19].” However, again, this recurrence is not suitable for our pur-
pose, for which we require a recurrence with coefficients that are polynomials in n over
Z, and with leading coefficient n. By an indeterminate Ansatz, we computed a can-
didate for a recurrence of the desired form of order 60, with polynomial coefficients of
degree at most 10.1° To be precise, it is the uniquely determined recurrence of the form

3 (Z b(k,i)ni> e AL

where
b(0,0) = b(0,2) = b(0,3) = b(0,4) = b(0,5)
=0(0,6) = b(0,7) = b(0,8) = (0,9) = b(0,10) = 0,
b(0,1) =1,

b(60, 8) = 9649124343496238177846526221678676069879148435557456840677\
68567400990643919180258204664996863270960793634431477\
96875828563496094243333614632539311543926582958877938\
09887854513738722474642524334737161421912431106592005\
22984304410147101964876864298627928130880022459406799\
539461032349694733915947489297372243661012,

b(60, 10) = b(60,9) = b(60,4)
(59,10) = b(59,9) = b(59,8) = b(59,7) = b(59,6) = b(59,5)
(59,4) = b(59,3) = b(59,2) = b(59,1) = b(59,0)
(
(58
(

58,10) = b(58,9) = b(58,8) = b(58,7) = b(58, 6)
,5) = b(58, 4)
57 10) = b(57,9) = b(57,8) = b(57,7) = b(57,6) = b(57,5) = b(57, 4)

b
b
b
b
b

9The computation took about one week, producing a certificate of 28 megabytes. The coeflicients
of this recurrence are polynomials in n of degree up to 105. In this case, we were not able to find a
recurrence with leading coefficient 1. (It may still exist.) The best that we found in this direction was
a recurrence with leading coefficient a 1828-digit number. Again, although we did not try to prove it,
it is likely that the recurrence of order 42 is the recurrence of minimal order.

10Again, we used the function LinSolveQ of the Guessing package [16] in order to solve the arising
system of linear equations.
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= b(56,10) = b(56,9) = b(56,8) = b(56,7) = b(56,6) = b(56,5) = b(56,4)
— b(55,10) = b(55,9) = b(55,8) = b(55,7) = b(55,6) = b(55,5) = b(55,4)
= b(54,10) = b(54,9) = b(54,8) = b(54,7) = b(54,6) = b(54,5) = b(54, 4)
= b(53,10) = b(53,9) = b(53,8) = b(53,7) = b(53,6) = b(53,5) = b(53,4)
= b(52,10) = b(52,9) = b(52, 8)
= b(50,7) = b(50, 6)

— b(49, 10) = b(49,9) = b(49,8) = b(49, 7) = b(49,6) = b(49, 5) = b(49, 4)
=b(1,7) = 0.

Subsequently, we checked that this recurrence is a left-multiple of the certified recurrence
of order 42, thereby establishing validity of this candidate recurrence of order 60. This
last recurrence was then converted into a linear differential equation with polynomial
coefficients for the series
- z" - "

= ; o gﬂ | Hom(I'3(3), S») ok
Finally, this last mentioned differential equation can be translated into a Riccati-type
differential equation for the generating function

S(z) = sun1(T5(3)) 2" (12.1)

for the subgroup numbers of I';(3) in the same way as we obtained (11.5) in the previous
section. It turns out that this differential equation has integral coefficients, so that it is
amenable to our method from Section 4. The differential equation cannot be displayed
here since this would require about 100 pages.'! Its reduction modulo 16 is written out
n (12.3). By applying our method from Section 4 with the minimal polynomial for the
modulus 16 (!) in place of the polynomial on the left-hand side of (4.4) to (12.3), we
obtain the following theorem. It refines the parity result [20, Eq. (6.3) with |H| = 1,
q=3,m=3]|.

Theorem 30. Let ®(2) =Y, ., 2> . Then we have

S s (Ta(3) 2

n>0

=422 + 425 4 42M 14275 4+ 6270 4+ 4270 4+ 421 + 4212 + 421 4 4210

T 7 3 6
+42° +42° + 62" +42° + 42+ 42+ 6+ S+ 5+ < +
z z z z

4 6 6 6 2
3 2 - e e e =
+<4z—|—4z+Z—|—z3+z4+26+z7>®(z)
4 6 2 5 6 6 5
+(4z8+4z4+4z3+622+4+—+—2+—3+—4+—5+—6+ )@2()
z z z z z

HThe integers appearing as coefficients have up to 320 digits.
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4 2 4 4

4 2
2 3
+ (4z + = + = + —Z4 + = + e + —27) D7 (2) modulo 8. (12.2)

Proof. The Riccati-type differential equation for S(z) (as defined in (12.1)) modulo 16

i812

q0(2) + 01(2)S(2) + 42(2)S(2)S'(2) + 43(2)S(2)S"(2)” + @ (2)S ()5 (2)”
+45(2)5(2)8' ()" + 46(2)5(2) 5" (2) + 42(2)S(2)8"(2)" + as(2)S(2) 5" (2)
+49(2)S(2)5"(2)" + q10(2)S(2)5™" (2) + 41 (2)5(2) 8" (2) 5" (2)

+ 412(2)5(2)5'(2)5" (2) + q13(2)5(2) 8 ()" 5" (2) + a(2)S(2)° + @15(2) S (2)25'(2)
+416(2)S(2)°5'(2)” + @r(2)S(2)°S'(2)° + @1s(2)S(2)°S'(2)" + @9 (2) S (2)*5" (=)
+420(2)5(2)2"(2) + @21(2)S(2)°5" (2) + 422(2) S (2)*5™"(2) + 423(2) S ()5 (2) 5" (2)
+ @24(2)S(2)25'(2)"S" () + 425(2)S(2)°5'(2) 5" (2) + 426 (2) S (2)*S'(2)°5"'(2)
+421(2)S(2)° + 4as(2)S(2)°5'(2) + q20(2)5(2)*S"(2)” + a0 (2)S(2)*S(2)”
+431(2)5(2)°S"(2) + 432(2)S(2)°S" (2) + g33(2) S (2)*S"(2) 5™ (2) + 3a(2) S (2)"

)S(2)"5'(2) + 436(2)S(2)*S"(2)" + 437(2)S(2)"5"(2)" + gss(2) S (2)*5" (2)
+30(2)8(2)"8"(2) + quo(2)S(2)'5'(2) 5" (2) + 41 (2) 8(2)"9'(2) 8" (2) + qua(2) S (2)°
+ a13(2)S(2)°'(2) + 41a(2)S(2)°S' ()" + @is(2)S(2)° 5" (2) + qus(2) S ()°S" ()
+417(2)8(2)° + qas(2)S(2)°5'(2) + a0 (2) S (2)°'(2)” + 450(2) S (2)°S" (=)
+051(2)8(2)°8"(2) + ¢52(2)S(2)" + 453(2)S(2)"S'(2) + 454 (2) S (2)" + 455(2) S (2)°5'(2)
+056(2)5(2)” + g57(2)S(2)"° + 458(2) 5" (2) + 430(2) " (2) 5" (2) + 60 (2) ' () 5" (2)
+461(2)S'(2)5"(2)” + 42(2) S (2) 5" (2) + 43(2) S () + dea(2)S'(2)°5" ()
+465(2)5'(2)° 5" (2) + 4os(2)S"(2)” + 467(2)5'(2)°S"(2) + ges(2) ' (2)*S"(2)
+ a59(2)S"(2)" + 4r0(2)5'(2)” + 4 (2)5"(2) + ar2(2) " (2)5" (2) + dra(2)S" (2)°

+ 4r4(2)5"(2) + ar5(2)5"(2)" + a16(2) 8" (2) + drr(2)S™"(2) = 0

modulo 16, (12.3)

+ q35(2

(
)

with coefficients ¢;(2), 7 = 0,1,...,77 as displayed in Appendix C.

2We display the differential equation modulo 16 in order to prepare for Remark 32.
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The differential equation (12.3) has a unique solution since comparison of coefficients
of 2V fixes the initial values, and yields a recurrence for the sequence (sn(F3(3)))n>1
which computes s,,+1(I'3(3)) from terms involving only s;(I'3(3)) with i < n. -

Now we apply the method from Section 4 with the polynomial in (11.6) in place of
the polynomial on the left-hand side of (4.4) to the differential equation (12.3). This

yields the above result by means of a straightforward computer calculation.'® O

Also here, if we want to know criteria in terms of n when a subgroup number s,,(I';(3))
is congruent to a particular value modulo 8, then we must first apply the algorithm from
Section 3 to the right-hand side of (12.2). This leads to the identity

S 501 (T(3)) 2" = (% 4 ;) Hy() + (; 4 ;) Hyaa(2)

n>0

4 4 6 4 4 6
2
+(4Z +§+;+?+;+;+?)Hl,l(z>

6 ) 6 2 )

4 6
8 4 3 2
+(4Z +4Z +4Z +6Z +4+;+;+;+;+;+;+?>H1(2)

44252 4+ 4253 4 42M 4 4270 + 6220 4+ 4220 4 421 1 4212 421 4 4210

6 1 4 6 1 3
+224 4228 42 24—+ =+ —+ — + —+— modulo 8, (12.4)
z 22 28 2t 5 6

from which we can extract the following explicit description of the behaviour of the
subgroup numbers of I'3(3) modulo 8.

Theorem 31. The subgroup numbers s,(I'5(3)) obey the following congruences modulo
8:

(i) s,(I'3(3)) =1 (mod 8) if, and only if, n = 1,2,10, or if n is of the form 27 —3
for some o > 4;

(ii) 5,(I'3(3)) = 2 (mod 8) if, and only if, n = 7,9,17,18,27,42, or if n is of one
of the forms

3-27-3,3-2°—6, for someo > b5;

(iii) s,(I'5(3)) = 4 (mod 8) if, and only if, n = 3,12,22, 23,36, 38,39, 43, 46, 49, 50,
51,53,54,63, or if n is of one of the forms

29+ 6, 20+ 7, 27+ 11, 27 + 14, 29 + 17, 2° + 18, 29 + 19, 27 + 21,

for some o > 6, (12.5)
07 49T 2 97 19T 41, 97 42T 42, 97 4+ 27 43, 27 427 +5, 27 427 + 10,
29427+ 13,  for some o, T witho >6 and b5 <717 <0 —1, (12.6)

2942742 -6, 294+ 27T +2" -3,
for some o,7,v witho >7, 6 <v<oc-—1, andb5<7<v-—1; (12.7)

13The calculation being straightforward, it nevertheless required a machine with substantial amount
of memory (we had available 32 gigabytes of memory, of which almost 50% were used).
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(iv) s,(I'3(3)) = 5 (mod 8) if, and only if, n = 5, or if n is of the form 2 — 6 for
some g > b;

(v) s,(I'3(3)) = 6 (mod 8) if, and only if, n = 6,11, or if n is of one of the forms

29 —2, 2743, 27 4+4,  for some o >4, (12.8)
2941, 2942, 22413, for some o > 5, (12.9)
27410,  for some o > 6, (12.10)
279427 —6, 274+ 27 — 3,

for some o, 7 with o > 7 and 5 <1 <0 — 2; (12.11)

(vi) in the cases not covered by items (1)—(v), s,(I'3(3)) is divisible by 8; in partic-
ular, s,(I'3(3)) # 3,7 (mod 8) for all n.

Remark 32. In the application of the method from Section 4 in the proof of Theorem 31,
when we arrive at the mod-8-level, we obtain

Z Sna1(T3(3)) 2" = 4252 + 425% 4 42M + 42%° 4 6270 + 4220
n>0

, 2 4 3 6
+420 4422+ 42 4 4+ S S S
z z z z

6 4 6 4 2 4 2
+(4z4+4+;+;+;)¢(2)+(423+;+;+;+;><D2(z)

4 4 2 4 4 2
2 3
+(4Z +?+;+;+;+E+?>@(2)
4 2 6 1 2 2 1
+ (428442 +42° 4+ 67+ 12+ -+ S+ =+ =+ =+ =+ — | DU(2)
z 22 23 4 25 6 LT

4 6 4 6
+ <4z2 tatatst ?> ®°(2) modulo 8. (12.12)

However, the system of equations for the next level, the mod-16-level, has no polynomial
solutions.!* Even the enhancement of our method described in Appendix D fails. (There
are actually several problems arising. It turns out that, due to the reduction modulo 2,
the variables b;(z) expressed in (D.10) do not solve the system (D.9) unless one puts
further restrictions on a(?(2), a®(2),...,d"® (z),d®(z). But even if we ignore that and
continue to follow the procedure described in Appendix D, then a contradiction arises
at a later point: one of the factors of the polynomial P(z) turns out to be (1+2)'°, and
the congruence (D.11) with IDij(z) = (1 + 2)'° has no solution.) This proves that it is
impossible to find a polynomial in ®(z) with coefficients that are Laurent polynomials in
z over the integers which agrees with the generating function for the subgroup numbers

of I'3(3) modulo 16.

MThe corresponding computation took almost 5 hours, using 94% of the 32 gigabytes of memory
of the machine on which the computation was performed.
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13. A VARIATION I: FREE SUBGROUP NUMBERS FOR LIFTS OF HECKE GROUPS

In this section, we consider the functional equation
22 (2) = f(z)+1=0, (13.1)

which generalises the functional equation (5.1) for the generating function of Catalan
numbers. It is easy to see that this equation has a unique formal power series solution.
The coefficients of this uniquely determined series can be calculated explicitly by means
of the Lagrange inversion formula, the result being

n 1/ 2'n
(") fl2) = <n B 1>, (13.2)
but this will not be relevant here.'> Again, the numbers in (13.2) are special instances
of numbers that are now commonly known as Fuff—Catalan numbers (cf. the paragraph
containing (6.1)).

Our aim is to determine the coefficients of f(z) modulo powers of 2. Our solution
of this problem is that, again, the series f(z) can be expressed as a polynomial in a
“basic” series. Here, this basic series is

Bp(z) = 2/, (13.3)
n>0
It will turn out (see Corollary 34) that an adaptation of the proof of the theorem
below will allow us to treat as well the behaviour, modulo powers of 2, of free subgroup
numbers of lifts of Hecke groups $(¢), with ¢ a Fermat prime.

The theorem below, in a certain sense, extends Theorem 13. It does not, however,
reduce to it for h = 1, due to the choice that, in the proof below, the reductions in our
algorithm are based on the polynomial relation (13.7) for the basic series ®,(z), which,
for h = 1, is “weaker” than the relation (4.4) which is used in the proof of Theorem 13.

Theorem 33. For a positive integer h, let ®,(z) = >, -, 22D and let o be a

further positive integer. Then the unique solution f(z) to (13.1), reduced modulo 227"
can be expressed as a polynomial in ®y,(2) of degree at most 210+Dh — 1 with coefficients
that are Laurent polynomials in zY/@"=V over the integers.

Proof. For ease of notation, we replace z by 221 i (13.1), thereby obtaining the
equation

2N ) = fz)+ 1 =0, (13.4)

with f(z) = f(z2"~1). We now have to prove that, modulo 22" the series f(z) can be
expressed as a polynomial in

Bp(z) =Y 22" (13.5)

of degree at most 2D — 1 with coefficients that are Laurent polynomials in z.

It is readily verified that
2" (2) + ®p(z) + 2 =0 modulo 2, (13.6)

15866 Footnote 3.
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whence o
<<f>,2lh(z) + &p(2) + z> =0 modulo 2*™". (13.7)
We modify our Ansatz (4.2) to
glat+h_]
fz) = Z a;(z)®: (z) modulo 22*", (13.8)
=0

where the a;(2)’s are (at this point) undetermined Laurent polynomials in z.

Next, we gradually find approximations a; () to a;(z) such that (13.4) holds modulo
28 for B =1,2,...,2% . To start the procedure, we consider the differential equation
(13.4) modulo 2, with

2(et+hh_q
flz) = Z a;1(2)®%(2) modulo 2. (13.9)
i=0

We substitute the Ansatz (13.9) in (13.4), reduce high powers of ®,(z) by using Re-
lation (13.7), reduce the resulting expression modulo 2, thereby taking advantage of
the elementary fact that ®,(z) = 1 modulo 2, and we finally see that the left-hand
side of (13.4) becomes a polynomial in ®,(z) of degree at most 2(¢+V" — 1 with coeffi-
cients that are Laurent polynomials in z. Now we compare coefficients of powers @Z(z),
k=0,1,...,2@+h _ 1 This yields a system of 2(®*D* equations (modulo 2) for the
unknown Laurent polynomials a;1(z), i = 0,1,..., 2latbh _ 1. Since we have already
done similar computations several times before, we content ourselves with stating the
result: all Laurent polynomials a;;(z) must be zero, except for ag;(2) and agan;(2),
which are given by

a—1
a071<z) _ Zzwch,l’
k=0
agan 1 (2) = 271 (13.10)

After we have completed the “base step,” we now proceed with the iterative steps
described in Section 4. Our Ansatz here (replacing the corresponding one in (4.6)—(4.8))
is

9(a+1)h _q
fz)= Y aip1(2)®(2) modulo 2, (13.11)
i=0
with
@ipi(2) = aip(2) + 2% g1(2), i=0,1,..., 200" 1 (13.12)
where the coefficients a; 3(z) are supposed to provide a solution
ola+1)h_q
fox)= Y aip(2)®(2)
i=0
to (13.4) modulo 2°. This Ansatz, substituted in (13.4), produces the congruence
9(at+1)h_q

() = Ja(2) 427 Y bipn(2)®h(2) +1=0 modulo 2°F. (13.13)
1=0



MOD-2¥ BEHAVIOUR OF RECURSIVE SEQUENCES 53

By our assumption on fz(z), we may divide by 2°. Comparison of powers of ®(z) then
yields a system of congruences of the form

bigi1(2) +Poli(2) =0 modulo 2,  i=0,1,...,2@" 1 (13.14)

where Pol;(z), i = 0,1,...,2(@*Y" — 1 are certain Laurent polynomials with integer
coefficients. This system being trivially uniquely solvable, we have proved that, for an
arbitrary positive integer «, the modified algorithm that we have presented here will
produce a solution foar(z) to (13.4) modulo 22" which is a polynomial in ®,(z) with
coefficients that are Laurent polynomials in z. O

It has been shown in [27] that the parity pattern of free subgroup numbers in Hecke
groups $(q), g a Fermat prime, coincides with the parity pattern of (special) Fuf—

Catalan numbers. More precisely, let fiq) denote the number of free subgroups of index
2¢g\ in the Hecke group $(¢). (For indices not divisible by 2¢, no free subgroups exist
in $(¢).) Then (see [27, Eq. (37)])

@ _ 1((g=1A
N —/\( N1 modulo 2.

The reader should keep in mind that ¢ — 1 is a 2-power. Theorem 33 says that the
generating function for the Fufi—-Catalan numbers (13.2), when reduced modulo a given
power of 2, can be expressed as a polynomial in ®,(z). We are now going to show that
the same is true for the generating function for free subgroup numbers in the Hecke
group $(q), although the equation it satisfies is different from the functional equation
(13.1) for the generating function of Fufi-Catalan numbers. In the corollary below, we
present actually a more general result: even the generating function for free subgroup
numbers of the lift I',,(¢), when reduced modulo a given power of 2, can be expressed
as a polynomial in ®;(z) in the case where ¢ is a Fermat prime. In a certain sense, this
extends Theorem 19, although it does not reduce to it for h = 1. Again, the reason
lies in the choice that, in the proof below, the reductions in our algorithm are based on
the polynomial relation (13.7) for the basic series ®,(z), which, for h = 1, is “weaker”
than the relation (4.4) which is used in the proof of Theorem 19. On the other hand,
the corollary does largely extend the parity result [27, Cor. A’].

Corollary 34. Let q = 22 41 be a Fermat prime, and let v be some positive in-
teger. Then, for every positive integer m, the generating function F,(q;z) = 1+

> oas1 f)(\q)(m)z)‘ of free subgroup numbers of I';,(q), when reduced modulo 27, can be

expressed as a polynomial in $os(2) of degree at most 22er — 1 with coefficients that are
Laurent polynomials in 292 where the series ®,(2) is defined as in (13.3).

Proof. In view of Proposition 18, the assertion is trivially true for even m, the poly-
nomial in ®,¢(z) being a polynomial of degree zero in this case. We may thus assume
from now on that m is odd.

Equation (7.3) provides a Riccati-type differential equation for F,,(q;z) = 1 +
2Gm(q; z). Moreover, this equation, considered modulo 2, is the same for every odd
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m. Namely, we have

"

(Falgi) - ) =A@+ X3 X (" Yee)) s

p=1v=1 p1,..,u>0
M1+ =[

X ﬁ (%(Fm(q; z) — 1))%1) modulo 2.
j=1

N =

Moreover, it is shown in [27, Prop. 2] that, modulo 2, this differential equation reduces
to

2F9Yq:2) — Fu(g;2) +1 =0 modulo 2. (13.15)

The latter statement means that reduction of coefficients modulo 2 and usage of the
simple fact that

F'(¢;2) =0 modulo 2 (13.16)

leads from the original differential equation (7.3) for F,(¢;2) = 1 + G,u(q; 2) to the
congruence (13.15). With ¢ — 1 being a power of 2 by assumption, we observe that,
disregarding the restriction to modulus 2, Equation (13.15) is the special case of (13.1)
where h = 2/. In particular, if, for the moment, we assume that v = 2°%, for some
positive integer «, then we see that the base step of the Ansatz outlined (and applied)
in the proof of Theorem 33 (with h = 2/) can be successfully performed here: it would
yield exactly the same result as there, namely (13.9) with the Laurent polynomials
a;1(z) being given in the paragraph containing (13.10).

However, also the subsequent iterative steps would just work in the same way as
in the preceding proof! Indeed, transform the Riccati-type differential equation (7.3)
for F,,,(¢q; z) by the substitution 2z — 2972 (in analogy with the substitution leading to
(13.4)). This yields a Riccati-type differential equation for Fj,(q;2972). A fine point
to be observed here is that, in this equation, the coefficients will not necessarily be
integral; due to the substitution rule for differentials, denominators that are powers of
(¢ — 2) may occur. As in the proof of Theorem 33, we now continue with the Ansatz

2(a+1)2f_1
Fo(q;277%) = Z a;pp1(2)®% (2) modulo 27+, (13.17)
i=0
with
aipi1(2) = a;5(2) + Pbiga(2), i=0,1,... 20 ] (13.18)

(which is analogous to (13.11)—(13.12)), where the coefficients a; g(z) are supposed to
provide a solution
2(a+1)2f_1
Fuglg;z)= Y ais(2)®y(2)
i=0
to the differential equation for F},(q; 2¢~2?) modulo 2. The fact that reduction modulo 2

and usage of (13.16) leads from the original differential equation for F,,(g; z) to (13.15)
implies that substitution of the Ansatz (13.17)—(13.18) in the differential equation for
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F,.(q; 297?) yields an equation completely analogous to (13.13), namely

gath_q

S 5 (452) = Fp(a:2) +2° Z bip+1(2)®}, (2)

+1+T(2,Fpnplg;2)) =0 modulo 2°1.

Here, T'(z, Fy, 5(q; 2)) consists only of terms that may depend on F,, (q; z) but do not
depend on the b; 511(2)’s. The rest of the procedure is then as in the preceding proof:
we divide by 2%, compare powers of q:)h(z), and obtain a system of congruences of the
form (13.14), which is trivially solvable. The powers of (¢ — 2) that may appear in the
denominators of the coefficients in the polynomials involved here are disposed of by

interpreting them appropriately as elements of Z/277Z.

Finally, if we are able to express F,(q; z) as a polynomial in ®,s(z) modulo 27 = 92!

for all o, then the same assertion must hold for every ~. O

In order to illustrate the algorithm described in the last proof, let us consider the
case of the Hecke group $(5), that is, the case of Corollary 34 where f . The

Riccati-type differential equation for the series G,,(2) := G (5;2) = > 5y f )(\i)l( )2?
that one obtains from (7.3) in this special case reads

Gom(2) = 189m" + 4600m>2G,,(2) + 1430m>2*G2,(2) + 80mz>G2 ()

+ 21 G (2)* + 14300m> 22 Gl (2) + 2400m*2° G, (2) Gl (2) + 60m2 G2, (2)G!,(2)
+300m224 (G, (2))” 4 8000m? 25 G, (2) 4 400m>24 G, (2) G (2) + 1000m3 4G (2).
Since Gp(2) = G (5;2) = 1(F(5;2) — 1), we obtain the differential equation
1+ (189m* — 300m® + 130m* — 20m + 1)z

+ ((300m* — 260m? + 60m — 4)z — 1)F,,(5; 2) + (130m? — 60m + 6)2F2 (5; 2)

+ (20m — 4)2F2 (5; 2) + 2F% (5; 2) + (4300m® — 1000m? + 60m)2*F, (5; 2)
+ (1000m? — 120m) 2% F,, (5; 2) F!, (5; 2) + 60m22F,,.(5; 2)?F! (5; 2) + 300m*2* F' (5; 2)*

+ (5000m® — 400m?) 2> F" (5; 2) + 400m? 23 F,,,(5; 2) F/ (5; 2) + 1000m*2* F(5; 2) = 0
(13.19)

for F,,(5;z). We have implemented the algorithm described in the proof of Theorem 34
for this differential equation. For the modulus 16, it produces the following result. (It
is independent of m because of the high divisibility of the coefficients in the differential
equation (13.19) by powers of 2. The parameter m will show up for 2-powers higher
than 21 = 16.)

Theorem 35. Let $5(2) = ano 213 as before. Then, for all positive odd integers m,
the generating function Fp,(5;2) = 1+ 3 55, f§5) (m)2> for the free subgroup numbers
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of T',,(5) satisfies
Fn(5;2) = 42 + 14 122230,(2) + 1021202(2) + 1283(2) + (4z2/3 + 72_1/3) d3(z2)
+ 421305 (2) + 405 (2) 4 12271307 (2) + 821305 (2) 4 40)(2)
+ 227 13010(2) + 12022 (2) + 1227 V3®13(2)  modulo 16. (13.20)
Clearly, coefficient extraction from powers of ®5(2) (and, more generally, from powers
of ®(z)) can be accomplished by appropriately adapting the results in Section 3.

14. A VARIATION II: SUBGROUP NUMBERS FOR HECKE GROUPS

In Section 9, we proved that the generating function for the subgroup numbers of
the inhomogeneous modular group PSLy(Z) = $(3), when reduced modulo a power
of 2, can always be expressed as a polynomial in the basic series ®(z) with coefficients
that are Laurent polynomials in z. Here, we discuss possible extensions of this result to
Hecke groups $(q), where ¢ is a Fermat prime. Again, we have to modify the original
method from Section 4 by using the series @5 (z) defined in (13.3) (for suitable h) instead
of ®(z). We conjecture (see Conjecture 38) that this variation of our method will be
successful for arbitrary Fermat primes ¢. If ¢ = 5, we are actually able to demonstrate
this conjecture, thereby largely refining the ¢ = 5 case of [27, Theorem B].

Theorem 36. With notation from the previous section, let ®9(z) = > _ 2*"/3, and
let o be a positive integer. Then the generating function S(z) = Sy (2) (see the
first paragraph of Section 9 for the definition), reduced modulo 2**, can be expressed
as a polynomial in ®y(2) of degree at most 4°T1 — 1 with coefficients that are Laurent
polynomials in 2"/ over the integers.

Proof. Let

() = e (n)hcs (1),

Using the routine to compute recurrences for the Hadamard product of recursive se-
quences, implemented in gfun [31] and GeneratingFunctions [23] (cf. [32, Theo-
rem 6.4.12] for the theoretical background), one obtains the recurrence

n(16 — 72n + 174n* — 1551 4 65n* — 13n° + n°)h(n)
— (184 — 620n + 854n* — 555n> + 177n* — 25n° + n®)h(n — 1)
— (856 — 1636n + 1250n* — 479n° + 101n* — 13n° + n®)h(n — 2)
—4(n—6)(n —3)*(=7+3n)h(n —3) +8(n—T7)(n —4)(3n — T)h(n — 4)
— (1136 — 856n + 1292n* — 29301 + 3115n* — 1718n° + 516n° — 80n" + 5n®)h(n — 5)
— 2(1856 — 5376n + 6828n? — 4868n> + 2174n* — 651n° + 133n° — 17n" + n®)h(n — 6)
—4(n—6)(n—>5)(n—3)*(n—2)(3n—7)h(n—7)+8(n—"7)(n—6)(n—4)(n—3)(3n—7)h(n—8)
—16(n —8)(n—T7)(n —5)(=7+ 3n)h(n —9)
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—(n—9)(n—8)(n—06)(n—23)(16 +12n — 16n* — 5n* + 15n* — 7n° +nS)h(n —10) = 0
(14.1)

for the sequence (h(n)) .. Since the leading coefficient (i.e., the coefficient of h(n)) is
not n, this recurrence is not suitable for being translated into a Riccati-type differential
equation with integral coefficients via (11.1), to which we can apply our method from
Section 4. Using Euclidean division of difference operators, one can see that we also
have

nh(n) —h(n — 1) — h(n — 2) — (5n* — 11n — 44) h(n — 5) — 2(n — 4)(n — 2)h(n — 6)
+12h(n — 7) — 4h(n — 8) — (n* — 20n” 4+ 951 + 260n — 2000) h(n — 10)
+4(9n — 85)h(n — 11) — 8 (n® — 19n + 89) h(n — 12)
+4(n —14)(n — 13)(n — 11)(n — T)h(n — 15)
—4(n — 15)(n — 14)(n — 12)(n — 9)h(n — 16) = 0. (14.2)

If we now apply the procedure of converting such a recurrence for homomorphism num-
bers (divided by n!) into a Riccati-type differential equation for the generating function
of the corresponding subgroup numbers as explained in the paragraph containing (11.2),
then we obtain the differential equation

2242'% — 2562 + 402" — 56210 + 10027 + 427 — 122° +162° + 262" + 2 + 1
+ (7362"° — 8242"° 4 482" — 362'" + 2762'0 + 142° + 442° — 1) S(z)
+ (4482'7 — 48820 4 82" + 1622 + 227 + 52°%) 5%(2)
+ (802" — 842'T + 262") S%(2) + (42" — 42" 4+ 21%) 5%(2)
+ (4482"7 — 4882"° 4+ 82" + 1622" + 227 + 52°) §'(z)
+ (122" — 122" + 32'%) (9')%(2) + (2402"® — 2522'7 + 782"%) S(2)5'(2)
+ (242" — 242" + 62"7) 5%(2) 9 (2) + (802" — 842'7 +262"%) S”(2)
+ (162" — 162" + 42"%) 5(2)5"(2) + (42" — 42" + 21%) §"(2) = 0. (14.3)

For convenience, we replace z by 2% in (14.3). Writing S(z) = S(2%), the above differ-
ential equation translates into

2242% — 2562 + 402% — 5627 + 100277 + 4221 — 122" + 162" + 262" + 2% + 1
+ (7362" — 8242% + 482" — 362% + 2762% + 142" 4 442"° — 1) S(2)
+ (4482°" — 488" + 82% + 1622% + 22*' 4 52'%) S2(z)

+ (802 — 842°" +262%) S3(2) + (42°7 — 427 + 2%) S4(z)

1 3
— ﬁzlﬁ (96270 — 36882% + 39282 — 722! + 242'% — 13122"° — 182° — 45) 5'(z)
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+ 2% (42" — 421 4+ 1) (8)2(2) + (80277 — 842* +262**) 5(2)5'(2)

Wl =

L 4 N
+ (82” — 82" +22°7) S%(2)9'(2) + 5232 (427" + 142" — 192" + 2° + 6) 5" (2)

1 -
+ 2—7233 (42" — 42" + 1) §"(2) = 0. (14.4)
We have to prove that, modulo 24%  the series S (z) can be expressed as a polynomial in
®,(2) (as defined in (13.5)) of degree at most 4**! — 1 with coefficients that are Laurent
polynomials in z.
We make the Ansatz

S(z)= Y a;i(2)®(z) modulo 2*", (14.5)

—0

~

where the a;(z)’s are (at this point) undetermined Laurent polynomials in z.

Next we gradually find approximations a; g(z) to a;(2) such that (14.4) holds modulo
28 for B = 1,2,...,4% To start the procedure, we consider the differential equation
(14.4) modulo 2, with

S(z) = z:_ a;1(2)®%(z) modulo 2. (14.6)

1=0

We substitute the Ansatz (14.6) in (14.4), reduce high powers of ®4(z) by using the
relation (13.7) with h = 2, and reduce the resulting expression modulo 2, thereby taking
advantage of the elementary fact that ®)(z) = 1 modulo 2. The powers of 3 that appear
in the denominators of the coefficients in the polynomials involved here are disposed
of by interpreting them appropriately as elements of Z/2%"Z. We finally see that the
left-hand side of (14.4) becomes a polynomial in &)2(2’) of degree at most 4! — 1 with
coefficients that are Laurent polynomials in z. Now we compare coefficients of powers
®(2) for k=0,1,...,4°T" — 1. This yields a system of 4! equations (modulo 2) for
the unknown Laurent polynomials a;1(2), i = 0,1,...,4**" — 1. Since we have already
done similar computations several times before, we content ourselves with stating the
result: all Laurent polynomials a;(z) must be zero, except for

a—1 a—1
- - koo 4k
a0,1(2)229+213§ 2t —1—285 224
k=1 k=1

Ao 1(2) = 2713

a2.4a71(z) = Z_S. (147)

After we have completed the “base step,” we now proceed with the iterative steps
described in Section 4. Our Ansatz here (replacing the corresponding one in (4.6)—(4.8))

1S
gotl_1

S(z) = Z a;541(2)®5(2) modulo 291 (14.8)

=0
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with
a;p1(2) == a;5(2) + 2/3b,-”g+1(z), i=0,1,..., 49" —1, (14.9)
where the coefficients a; g(z) are supposed to provide a solution
gotl_q
Sp(z) = D aip(2)Bh(2)
i=0

to (14.4) modulo 2°. This Ansatz, substituted in (14.4), produces a congruence of the
form

|

T(Sp(2)) +2° Z (bi41(2) + 210 54 (2) + (0 + Dbigr g (2)) @5(2) +1 =0

modulo 297! (14.10)

where T'(S5(2)) represents terms that only depend on Ss(z). Inductively, we have al-
ready computed S(z), and we know that T'(Ss(2)) must be divisible by 2°. Comparison

of powers of ®4(z) then yields a system of congruences that is equivalent to a system
of the form

bigi1(z) + zwb'-ﬁﬂ(z) + Pol;(2) =0 modulo 2, i=0,1,...,4°" — 1,

where Pol;(z), i = 0,1,...,4*"! — 1, are certain Laurent polynomials with integer
coefficients. By Lemma 12, these equations are solvable for any polynomials Pol;(z).
Thus, we have proved that, for an arbitrary positive integer «, the modified algorithm
that we have presented here will produce a solution Sy (z) to (14.4) modulo 2** which

is a polynomial in ®,(z) of degree at most 4*t! — 1 with coefficients that are Laurent
polynomials in z. O

Again, we have implemented the algorithm described in the above proof. For a =1,
that is, for the modulus 16, we obtain the following result.

Theorem 37. Let ®3(2) = > - "3 as before. Then, for the generating function
So)(2) =D Snt1(9H(5))2" for the subgroup numbers of $(5), we have

7
Sa5)(2) = 8212 4429 4827 +82° + 221 + 822 + 42+ 14+ =
z

8 8 12
20/3 5/3
+ (8Z + 827 + ~1/3 + ~A/3 + 210/3) Po(2)

12 8 10 8 12
+ (8z19/3 + 8243 4 + + ) D2(2) + (82’6 + 82+ -+ —4> 3(2)
z Z

22/3 " 53 T L1173

6 8 12 7 4
~4/3 + S7/3 1 »10/3 + 213/3) (I)2(Z)

+ (8232/3 + 822073 1 g 1/3 4 8,83 1 8,5/3 4

8 8 8 4 g 12 4
(+ + + + )(bg(z)—i—(826+82+;+;+;)¢S(z)

52/3 " 5/3 T L83 T 113

8 8 12 .
+ (24/3 + S7/3 + 213/3> D5(z)
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+ (8222/3 + 8219/3 + 8216/3 + 8210/3 + 1227/3 + 824/3

4 8 5 2 8
+22/3 + 55/3 + ~8/3 + z11/3) P5(z)

8 4 8 12 2 8
+ (826 + 8z + 2 + I + ;) q)g(z) + (W + z13/3) CI)%O(Z) + W(D%l(z)

§ 12 12 12
! (826+8z4+82+8+‘+—2+—3+_4) ’(2)
z z z z

12 4
+( 8 .8 | )@53(Z)+<_+ i >c1>§4(z) modulo 16. (14.11)

A3 T 3 T 183 .8/3 " 113

We conjecture that Theorems 21 and 36 extend to any Hecke group $(¢), where ¢ is
a Fermat prime (note that PSLy(Z) = Cy x C3 = $H(3)).

Conjecture 38. For a positive integer h, let ®n(2) = 3 ¢ 2@ D Let o be a

further positive integer, and let ¢ = 22" 41 be a Fermat prime. Then the generating
function Sg(q)(2) (see the first paragraph of Section 9 for the definition), reduced modulo

azf L. .
22 , can be expressed as a polynomial in Pyr(z) of degree at most 2(a+12! _ 1 yith

coefficients that are Laurent polynomials in 292 over the integers.

Note that Theorems 21 and 36 are the special cases corresponding to f =0 and f =1,
respectively. In particular, we conjecture that the obvious extension of the algorithm
described in the proofs of the two theorems would be successful modulo any 2-power.
In more detail, given a Fermat prime ¢, the first step consists in deriving a recurrence
relation for the Hadamard product of the sequences (hCQ(n))nzo and (h¢,(n)/ n!)nZO'
By the procedure explained in the paragraph containing (11.2) (where we now use (11.1)
with I' = $(q)), this leads to a Riccati-type differential equation for the generating
function > o sn41($(q)) 2" for the subgroup numbers of $(g). The open questions
are whether it will be possible to complete the base step, and whether it will always
be possible to carry out the subsequent iterative steps in (the variation of) our method
or, if necessary, its enhancement outlined in Appendix D. Given the description of the
parity pattern of the subgroup numbers proved in [27, Theorem BJ, it is highly probable
that the first question has a positive answer. What the answer to the second question
is, remains entirely open. (The reader should recall that, in Section 12, we met a case
where our method worked initially, but then stopped to work for modulus 16).

APPENDIX A. EXPANSIONS OF POWERS OF THE 2-POWER SERIES ®(z)

Recall the notation
H (2) = E 5012 +ag2"2 ++a, 20T
ai,a2,...,ar =

ni>ng>-->ne>0

from Section 3. In this appendix we list the expansions of ®¥(z) for K = 5,6,7,8 in
terms of the series Hy, 4, 4, (2) where all a;’s are odd, obtained by using the algorithm
described in Section 3 (see (3.1) and the proof of Lemma 9). Namely, we have
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®°(2) = 16H5(2) — 40H311(2) — 40H, 31(2) — 40H; 1 3(2) + 120H, 1111 (2)
— 80H31(z) — 80H; 5(2) + 240H 11 11(2) + (202 — 90) H3(2)
— (602 —270)Hy1,1(2) — (1202 — 190) H; 1(2)
+ (2522 — 1252 + 75)Hy(2) + 502% — 75z,

(1)6(2) = 96H571<Z) + 96H175(Z) + 80H3’3(Z) — 240H3’171’1(Z> — 240H173,171(Z)

— 600H3,11(2) — 600H, 51(2) — 600H, 13(2) + 1800H, 11.1.1(2)
+ (1202 — 840) Hy 1 (2) + (1202 — 840) H, 3(2) — (3602 — 2520) H; 11,1 (2)
+ (3002 — 764) H3(2) — (9002 — 2340) H, 1 1(2) + (1502 — 12002z + 1470)H; 1 (2)
+ (3752 — 1020z + 525)H,(2) — 612° + 4952% — 5252,

O7(2) = —272H(2) + 672H511(2) + 672H, 51(2) + 672H; 1 5(2)
+560H331(2) + 560Hs 1 3(2) + 560H, 33(2) + 2016 Hs 1 (2) + 2016 H, 5(2) + 1680 H3 5(2)
—1680H31.1,1.1(2)—1680H 31.1.1(2)—1680H, 1311(2)—1680H) 1151(2)—1680H 1113(2)
+5040H, 111,11, (2) —5040Hs 111 (2) —5040H, 311 (2) —5040H, 1 51(2) —5040H, 1 1 5(2)
+15120H 1 1.1.1.1(2)—(3362—3360) Hs(2)+(8402—8400) Hs 1 1 (2)+(8402—8400) H, 31 ()

+ (8402 — 8400) Hy 1 3(2) — (25202 — 25200) Hy 1 1.1.1(2) + (25202 — 9408) H3 1 (2)
+ (25202 — 9408) H, 5(2) — (75602 — 28560) H 11,1 (2) — (3502% — 40602 4 7434) Hs(2)
+ (10502% — 121802 + 23310) H; 11 (2) + (31502% — 130202 + 13230) H, 1 ()

— (4272 — 50402% + 95552 — 4347) H,(z) — 12812% + 52082% — 4347z,

®8(2) = —2176Hy 1 (2) — 2176 H, 7(2) — 1792H; 3(2) — 1792H3 5(z)
+ 5376H5717171(Z) + 5376H1757171(Z) + 5376[’[1717571(2’) + 5376[‘[1717175(2’) + 4480H3737171(2’)
-+ 4480[‘[3717371(2) + 4480H37171’3(Z> + 4480H1,373’1 (Z) + 4480[’[17371’3(2) + 4480[’[1’17373(2)

7777777777

7777777777

+ 18816]’]571’1(2) + 18816]‘117571(2) + 18816]‘117175(2)
+ 15680 H351(2) + 15680Hs 1 3(2) + 15680 H, 5.5(2) — 47040Hs3111.1(2)
— 47040H173717171 (Z) — 47O4OH171737171(Z) — 47040Hl71717371(2) — 47O4OH1,1717173(Z)
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+ 141120 H; 11 1.1.1.4(2) — (26882 — 36288) Hs 1 (z) — (26882 — 36288) H 5(2)

— (22402 — 30240) H3 5(2) + (67202 — 90720) Hs1 1.1(2) + (67202 — 90720) Hy 514 (2)
+(67202—90720) Hy 151 (2)+ (67202 —90720) Hy 1.1 5(2) — (201602 — 272160) Hy.1 1.11.1(2)
— (9408% — 47264) Hs(2) + (235202 — 119504) H3 1 1(2) + (235202 — 119504) Hy 5.1 ()
+ (235202 — 119504) Hy 1 5(2) — (705602 — 361200)Hy1.11.1()

— (280027 — 44240z + 115304) Hs 1 (2) — (280022 — 44240z + 115304) Hy 3(2)

+ (840022 — 132720z + 355320) Hy.1 1.1(2) — (980022 — 558322 + 80892) Hs(2)
+(2940022 — 168840z +260820) Hy 1 1 (z) — (34162° — 550202 4 154980z — 135982) Hy 1 (2)

—(119562° — 684742 +1012062 — 41245) Hy (2) +13852* — 223582 + 5996122 — 412452.

APPENDIX B. THE COEFFICIENTS IN THE DIFFERENTIAL EQUATION (11.5)

Here we provide explicit expressions for the coefficients in the Riccati-type differential
equation (11.5), when reduced modulo 16:

po(z) = 8247 48216 1 122%° 4 4213 £ 122 + 12290 4 4239 112238 + 8257 4 4236 1 4234 4 2238
4+ 11230 46230 + 14229 + 14228 413227 + 6220 + 922° + 112%4 + 4223 + 7222 £ 9221 4 220
+ 7219 + 15218 4+ 14217 412210 4 1121° 4 21 4 1021° + 5212 + 22 48210 4 92° 4+ 1528
4+ 527 +132% 4 42* +142% + 22 4+ 112 + 15,

p1(2) = 82" 412290 112275 4+ 42%3 11227 4 42 4 4270 4 4239 18238 + 4230 113231 1627
+10230 4+ 230 4 4220 111228 4 8227 413225 + 22 £82%3 4 222 4 221 4 4220 1 1421
+ 925 46217 + 14210 + 8210 + 1321 +621% + 2212 4+ 9210 4 112% + 627 + 825 + 62°
+ 524 +322 44241,

po(z) = 12251 2249 4 122" £ 427 4 4296 £ 122% 110278 4 2212 + 4241 820 4 14230
4+ 5257 42236 16235 + 1023 4 8233 4 10232 + 5231 + 7230 412229 7228 4 4277
+122%0 4 922° £ 1222 4+ 2223 4+ 14222 4+ 10221 4+ 12220 4+ 102 4 3218 + 6216 + 9210
+ 1221 + 1521 + 14212 + 1021 + 2210 4 122% + 1428 + 1327 + 720 + 82° + 23 + 222,

p3(z) = 62°2 4+ 82°0 4+ 1228 4 8247 4 14296 4 42%° 4 8% 4 62%% + 8212 4+ 421 4+ 5210 1 623
412238 42237 2236 4 7231 16233 4 7231 4 14230 + 8229 4 528 4 14227 4 8226
41422 +142%* + 2222 4+ 8221 + 12220 + 14219 4+ 6218 + 12217 + 9216 4+ 4215 4 2213
+ 2212 4+ 15219 4 1429,

pa(z) = 4253 4 15257 + 4247 42290 4 215 £ 92% £ 15212 4 428 110270 + 4239 4+ 623 4+ 42%7
+ 2230 627 4+ 10234 4+ 11273 4 8232 + 8231 + 10229 + 12226 +1222° 4 222 4 4222

ps(z) = 132%% + 152" 4+ 6247 4+ 1220 + 3245 4 102 + 42%3 + 1222 4+ 10241 + 2239 4 2238
+ 15250 4 14275,

pe(z) = 12251 + 2249 41221 4 4247 4+ 4290 £ 122% 4 102%3 + 2242 + 4241 + 8240 4 14237
+ 5257 42230 16235 + 1023 4 8233 4+ 10232 + 5231 4 7230 412229 7228 4 4277
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412270 +922° 41222 4 2223 + 14222 + 10221 4 12220 4+ 102" + 3218 46216
+ 921 41221 41521 + 14212 4 102" + 2210 + 1227 + 1428 41327
+ 725 +82° + 23 + 222,
pr(z) = 12253 £ 13271 412207 4620 4 324 4 112% + 1322 4+ 12241 4 14270 £ 12239 42,3
4+ 12237 46230 4 2235 4 14230 + 23 4 8252 4+ 823 + 1427 4 4270 4 4275 4 6273 + 12272,
ps(z) = 2252 4 8259 4 42" 1 8247 4 10270 4 1225 4 82% + 2213 4 8242 4 12241 4 15210 4 2239
14238 4+ 6257 4+ 6230 4 5230 + 2233 45231 4+ 10230 4 8270 + 15228 + 10227 + 827
+102%° +102%* + 6222 + 8221 + 4220 + 102" + 22" + 4217 £ 11210 4 1221°
+ 62" 4+ 6212 + 13210 + 1029,
po(2) = 82°% 41025 + 8217 + 12270 + 627 + 62 + 1022 4 82 + 1220 4 8239 - 4238 4 82%7
+ 12250 4 423% 41223 2233 412229 4 8220 4+ 8225 4+ 12223 4 8222,
pro(z) = 22°% + 6278 £ 12247 48240 4 142%° 4 42 4 82 1 827 - 42 4 4279 1 428
+ 6235 +1223%
p11(2) = 32°% + 2% 410277 + 4290 £ 1327 + 62 +122% 4 427 462 4 14237
4 14238 + 236 4 2235,
pra(2) = 6272 + 8250 4 1228 1 8247 4 1420 4 4215 824 4 6213 + 8212 + 424! 4 5240 6239 122
+ 2257 + 2290 4 723 46238 + 723 4 14250 4 8279 + 5228 + 14277 + 8270 4 1427 + 142
+22%2 4 8221 412220 4 142" 4+ 628 + 12217 49216 4 4215 1 2213 1 2212 4 15210 4 1429,
p13(2) = 12250 4+ 820 4 425 4 424 112242 4 8270 48238 18230 1 8235 1 823 112,
+ 8229 4 8223,
pra(2) = 227 + 6218 4 1227 48296 1 1427 4 428 1 8213 8242 1 421 4 423
+ 4238 46230 41227,
p15(2) = 22°% + 6218 4 12247 48290 1 1427 4 428 8213 18242 1 421 4 423
+ 4238 46230 41227,
pr6(z) = 42°% + 15250 44247 42240 4 2% 1 928 1 15242 1+ 42 4 102%0 + 423 + 62°° + 4237 4 2236
+62%° + 10230 + 11233 + 8232 + 8231 + 1022 + 12220 412225 + 2228 4 4222,
pr7(z) = 2% + 112" + 1427 412290 4 152% 4+ 22 + 4273 4 122%2 + 2% +102% + 10238
+ 11236 46235,
p1s(z) = 1325 4+ 152%8 + 6217 + 122%0 + 32% + 102" + 42" + 12247 + 102*! 4 2239 42238
+ 15236 + 142%.

APPENDIX C. THE COEFFICIENTS IN THE DIFFERENTIAL EQUATION (12.3)

Here we provide explicit expressions for the coefficients in the Riccati-type differential
equation (12.3), when reduced modulo 16:

qo(z) = 82°0 4+ 8219 4+ 4247 4+ 12240 4 821 4+ 10243 + 2242 4 2241 412240 412238 4 7257 4 11236
+102%% + 1123 + 13253 4 132%% + 14251 + 152%0 10279 + 14228 + 8277 4 102%° + 622
+ 22 44222 £ 8220 4 14219 £ 1228 48217 49216 4 4215 1 621 £ 8213 4 212 4 14210
+9210 4229 4+ 1428 41027 4 42° + 1125 + 42" + 423 + 22 + 82 + 15,

q1(2) = 821 +82°0 4+ 8219 + 1228 + 4247 412290 4 42%° 4+ 142" 4+ 10242 + 5290 4 4230 4 4238
+ 9257 4 4250 4 1423° 4 523 114233 £ 13230 45250 4 4279 + 1428 6277 4 5%
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+102% 41227 + 9222 + 12221 + 13220 4+ 6219 4+ 218 + 7217 415210 + 1121 4 7213
45212 42 46219 4 102° + 228 + 427 + 820 + 225 +112% + 423 + 822+ T2+ 1,
q2(2) = 8257 4 82°6 + 82°5 1 8254 1 8253 + 12251 + 10250 4 1229 4- 8278 + 1027 4 15240 4- 421
4 10243 +Z42 + 11241 +Z4O —|—2239 —|—238 +3237 —|—62:36 —‘1-72’35 —‘,—8234 +Z33 —|—6231 +9229
+142% 41127 45225 + 222 4622 + 4222 + 6221 + 13220 + 219 4102 4 217 4 10215
41228 4 213 40212 1 921 4 7210 4429 41228 4+ 327 4220 4925 + 321 + 923,
q3(2) = 14255 2255 4 142°% + 11252 + 6251 +102°0 + 1121 + 228 4 1527 4 626 4 1025 4- 921
4428 £ 522 41128 + 5240 110237 + 4238 412237 42236 £ 5230 4 234 4 6233 45232
+ 13231 £ 12250 4+ 3229 410228 + 13227 + 14270 4 4275 4+ 1222 + 822 + 9222 4 622
+ 14220 4 7219 45218 1 4217 4 4210 £ 821 4 15213 41321 + 929 4+ 728 4 26 4 425,
qa(z) = 8250 415258 4 14257 + 12256 + 9254 47253 4 9252 1 102° + 12259 + 219 4 1028 4 14240
+62% 4+ 62 4+ 6213 + 14292 + 112 + 1320 41023 + 238 + 13257 4 7236 4 2.
+12233 44232 13230 413250 4 422 4 11278 + 7227 + 8220 4 222 6224 4 13223
+ 1122 2220 19219 16218 42217 415216 £ 521° £ 321 4 14213 1 2212 11021
+ 9210 4 62% + 1228,
q5(2) = 5259 4 13258 4 122°6 4 255 £ 8254 4 5253 112252 4 15251 4 8259 + 14249 4 2218 4 4277
+42%0 4+ 102% 4+ 1224 + 824 + 4241 + 2240 4 8238 112237 42236 112230 8234,
g6(2) = 1227 +42%8 112270 11227 4+ 122 + 427 11227 4 1224 112259 + 4238 1+ 4237
44230 44232 4 4230 112277 41222 12222 112221 + 12220 412217 + 12218 + 4210
+ 4218 412212 £ 1221 412210 4 42° 4 428 4 427 4 1225 4 425,
qr(2) = 102°® + 627 + 1025 + 6272 + 627 + 22*" + 1420 + 62°° + 1427 4 10250 + 142
+ 14239 42228 410277 + 14223 4+ 2221 4+ 6219 + 10210 + 1421 4+ 221 4+ 6210,
gs(2) = 10275 + 6255 4+ 10274 + 9252 4 2251 + 14259 4 9249 1 6248 4 5217 4 2240 4 142%5 4 324
41225 4 7242 4924 £ 7240 414239 £ 12238 + 4237 £ 6236 4+ 7230 4 11234 4+ 2233
+ 7252 415230 44230 4 229 £ 1422 415227 £ 10270 4 122%° + 422 + 3222 4 222
+102%0 4132 + 7218 £ 12217 412216 £ 52 4 1521 4+ 32 4+ 1328 + 1125 + 1225,
qo(2) = 7259 4 152°8 4+ 11275 + 7258 4 5251 +102% + 62 + 142% + 620 4 623,
qio(z) = 258 4 7254 £ 9253 4 7252 1 1529 4 524 3240 115238 4 3237 49236 1 3,31 43230
+ 522 4+ 9227 4 3223 45221 4 7219 4 216 1 11215 4 1321 4 7210,
qu1(2) = 12255 4 4251 412250 4 4247 412296 4 4275 £ 122" 4 4212 4 42 4 4238 4123
+ 4233 4 42°% 412279 4+ 42720 £ 12225 412222 412216 412215 4 421 4 12213
+ 1229 + 428 + 425,
q12(2) = 15258 4 14257 4 12270 + 925 + 7253 4 9252 4 102% + 122°0 + 2% 4 102*® + 14240 + 62
4+ 62 621 + 1422 + 1120 £ 13290 4+ 10239 4 238 413257 4 7236 1 2230 112233 4 423
+ 13230 413250 44229 4 11228 4+ 7227 4 2275 4+ 622 + 1327 4+ 1122 + 2220 4 9219 1 6218
+ 2217 415210 4 521% 4 3214 4 1421 + 2212 41021 4+ 9219 + 627 + 1228,
q13(2) = 102°° 4+ 102°® + 225° 4 1025 + 14271 + 12249 + 428 4 42%° 4 4240 4 4236
qua(z) = 82°7 + 82°0 4+ 82°° 412253 4 82°1 + 82°0 4 8249 + 82%8 4+ 10247 + 14246 4 102%° 4 82
4924 412242 4 2241 46240 411237 + 3238 412237 48230 4 7235 2234 4 233 4 232
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4 7231 4 12230 4 12229 4 228 _|_226 4 15225 +9224 4 14223 4 222 4 3221 4 3220 +4219
472 T 7210 6210 4 321 4 218 43212 4 221 1429 + 228 4627 + 220 + 142°
+ 623 + 1422,
qus(2) = 122%° 412254 + 8250 4 229 1 14278 + 8277 + 1020 4 102*° + 102 + 142% + 102" + 102!
+22%9 4 14238 6237 + 142%0 + 1223 4 14232 + 14230 4 4250 4+ 827 4+ 10227 + 1222
+102% 41227 + 2222 4 2221 42220 £ 2219 110218 4+ 8217 + 4216 + 6215 4 8211 4 14213
+ 2212 4 221 42210 4 629 4 1428 + 1427 + 220 + 1425 + 1224,
qu6(2) = 42%° +102°7 4 62°° + 9275 + 8253 + 6252 + 11271 4+ 13250 + 229 412278 4 3247 13,70
+32% 4 102% + 13273 + 3212 + 321 £ 2290 £ 4239 4 7238 1 4237 46250 46275 4 523
+ 15233 4 3232 41023 + 14239 + 229 4 2228 4 14227 4 11226 4+ 92 4 2221 4 9272 4 822!
+2229 £ 8219 4102 412217 4+ 9216 4 5215 4 1121 4+ 5218 + 8212 410210 + 29 4 728
+ 627 4725,
qi7(2) = 82°8 +1225° 4 8274 + 8253 48252 + 4251 112250 4 8249 - 8218 1 4247 112215 4 82
48242 + 1224 + 8240 4+ 12239 + 8238 4 4236 1 4235 1 8234 4 4233 4+ 12232 4 8231 4 422
+ 8228 4+ 8226 4 8222 4+ 12221 4 8218 1 12217 4 8216,
qie(z) = 62%90 +112°9 4+ 42°7 + 10250 4 11255 + 225 + 4253
= 4250 412275 4425 1 2252 4 4251 412250 4 2249 11228 410247 4 4246 4 122% 4624
+ 14212 4224 414290 412239 412236 4 1423° 4 6231 + 4233 + 14232 4+ 14230 4 222
+122% 414277 + 4225 4+ 6272 4+ 4221 + 4220 1+ 10219 + 14218 4+ 10213 + 1421 + 620
+102% + 62°,
qo0(2) = 1225% 4+ 14257 4 2256 4 325% 42252 1 9250 1 15250 4 6249 4 428 4 247 4 15240 4 2%
+142M 41520 4 212 4 21 16270 412239 413238 412237 42236 £ 2235 4 7234 45233
+ 232 14231 410250 + 1122 + 6228 + 10277 4 9270 + 322 + 6224 + 3222 + 6220
+ 14218 44217 43216 4 7215 19214 4 7218 4 14210 1129 + 1328 4+ 227 + 1325,
g21(2) = 22%° + 9279 4+ 14276 4+ 9255 4 6254,
goa(2) = 32°8 + 5250 4 112%3 + 5252 4 1329 4+ 152 + 920 4 13238 4 9237 4 11236 4- 9231
+9239 415228 4 11227 + 922 + 15221 + 5219 4 3216 4 215 4 721 4 5210
qa3(2) = 14258 412257 4 225 4+ 142%3 4 2252 4+ 4251 4+ 2249 £ 4298 112296 1 1224 41224 12
+ 12272 £ 621 + 10210 + 4239 + 2238 £ 10257 4 14236 + 423 + 10231 + 10230 4622
+ 14227 +42%° +122%4 41022 + 622 + 4220 4 2219 4 12218 4 4217 4 14216 £ 10270
+ 621 412213 4 4212 4 421 4 2210 11229,

q19(2)

q2a(2) = 42°% + 4278 4 42°° 4253 1+ 12251,

Qo5 (2) = 122°° 4+ 4250 4+ 12250 4 4247 1 122%° 4+ 12241 4 12239 4 4236 1 4235 14233 112232 4 4229
+122% +122%7,

qo6(2) = 12250 4 62°9 + 4270 + 6275 + 4274,

qor(2) = 8257 4+ 8256 4 8255 4 8254 4 8253 4 42°1 4 14250 4+ 4240 4 8218 4 14247 4 5246 4 12245
+ 142" + 112" + 928" + 11270 + 6277 + 112%% + 257 + 2270 + 13295 + 823 + 11272 4+ 227!
+ 3220 + 10278 4+ 9227 + 7256 + 622 + 227 + 12272 4+ 2221 + 15220 + 11219 4 14218
+ 11217 4 142" 4 42 4 11218 4 3212 4321 413210 £ 122° 4428 + 27 4626



66 M. KAUERS, C. KRATTENTHALER, AND T.W. MULLER

+32° + 2% 4+ 323,

@os(2) = 425 +122°5 4+ 4254 4+ 2252 + 4251 £ 12250 4 2219 412248 110277 + 427 + 122 462
+ 8243 4 14242 4+ 224 4 14240 4+ 12239 4 8238 8237 4+ 12236 4 14235 4 6234 4 4233
414232 + 14231 + 8230 4+ 2229 + 12228 4+ 14227 + 4220 + 8225 4 8224 1 6222 4 427!
+ 4229 41021 + 14218 + 8217 4+ 8216 4+ 10212 + 14211 +62° 4+ 1028 + 626 + 825,

qa0(2) = 8290 + 15278 4 14257 412270 + 9250 + 7253 + 9252 1 102°1 + 1220 4+ 219 + 102" 4 14276
+62% 4 621 4 6213 + 14292 + 1121 + 1320 4 10239 + 238 + 13257 4 7236 4 223
+122% 44232 413230 £ 13230 + 4279 4+ 11278 4 7227 4+ 8220 1+ 227 4 622 + 13223
+ 1122 42229 49219 46218 + 2217 4+ 15216 4+ 5210 4 3214 4 14213 + 2212 41021
+ 9210 4622 + 1228,

q30(2) = 122°% 4 12258 +122%5 4 12258 4 4251 4 8219 4 821 4 8215 4 8210 4 8236

g31(2) = 42°° £ 12271 4 42°0 4 12207 4 4290 1 122% £ 4273 11227 4 12241 412238 + 4231 112
+12232 4422 £ 12270 4+ 4275 1+ 42%2 £ 4210 £ 4215 122 4 4213 1 420 41228 4+ 1225,

q32(2) = 52°% +102°7 4 42°0 4+ 3251 113258 4 3272 4 1425 + 4250 4+ 112% + 1428 410270 4 22%°
+ 224 4227 410242 + 9241 + 15240 + 14239 4 11238 + 15257 4+ 13250 4 6234 4 423
+122%2 + 15230 + 15230 41222 49228 + 13227 + 6225 4+ 2221 + 15223 + 9221 46220 + 3219
+ 2218 46217 4+ 5210 4+ 7215 4 21 £ 10213 4 6212 4 1428 4 3210 4 229 4 428,

g33(2) = 122°% 412258 4+ 122°5 4 12258 4 4251,

q34(2) = 2275 + 1025 + 4270 4+ 329 4 1328 4+ 4247 4 7270 1 7% 4 152M 4 5243 4 15242 4 1524
+ 8290 411239 413238 + 237 4 5230 4 8235 4 2234 4 5232 4 5231 4 14550 48229 4 4,28
+ 15227 +102% + 15224 + 10223 + 11222 + 11221 + 11220 4 3219 + 15218 4 4217 4 14216
4215 41221 1328 11212 + 1121 + 11210 4 2% 4+ 528 41327 + 1120 + 52° + 224,

q3s(2) = 12255 4 14257 4 2256 4 3255 4 8253 42252 4 9251 4+ 15250 4 6249 4 428 4 247 4 15216
4 2% 142 £ 152% 4+ 242 4 24 46290 412239 413238 4 12237 42236 4 2235 4 7234
+ 523 4+ 232 114230 410230 4 1127 + 6228 + 10227 4 9220 + 3275 4 622* 4 3222 + 822!
46220 48219 4+ 1428 4 4217 43210 £ 7215 4921 4 72183 18212 4 14210 41127 + 1328
+ 227 +132°,

g36(2) = 82%7 4+ 122°8 4 1425% 4 4254 4+ 4253 4 4257 4+ 2251 46250 + 12240 4122 +102%7 + 62%°
+ 82 +122% + 12242 4 62 + 1227 + 6239 + 4238 12250 110235 12234 4 2%
+ 6252 412231 +102% 4 12228 + 12226 + 8225 + 12222 4 14221 + 8219 4 4218 4 14217
+ 4216 48215,

gz7(2) = 4259 2259 48257 412250 42255 1 12251 4 823,

q3s(2) = 5258 +102°7 4 42°0 4+ 3251 + 13253 4+ 3252 4 14250 + 4250 4 11279 + 1428 4 10276 + 227°
4224 4221 411022 + 92 415240 + 14250 + 11238 + 15237 + 13230 + 6234 4 4233
+ 12232 415230 +152%0 + 12229 + 927 113277 + 6225 4 2224 + 1522 4 9221 + 622
+ 3219 42218 46217 4+ 5216 1 7215 4 21 410213 4 6212 + 14210 + 3210 + 22° 4 428,

g30(2) = 42°% +102°° + 1225 4+ 12257 + 12272 + 625" + 22°0 + 427 + 4278 4 14247 4 2275 4 4%
44242 4228 4 4290 42239 412238 46236 4 14235 + 4234 4+ 6273 + 2232 4+ 4231 4 1427
+ 422 44220 4 42%2 411022 + 122" + 10217 4 12219,
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qao(2) = 122°% +122°% 4 122°° 4 122° 4 4251,

qu(2) = 4299 2259 £ 12256 1+ 2255 4+ 12,74,

qua(2) = 22°5 +1425° + 2274 £ 5252 110251 4 6250 + 5219 + 142%8 + 217 £ 10296 4 62%°5 + 724
+122% 41122 4+ 52 + 11290 + 6239 + 12238 + 4237 +142%6 + 11230 + 15234 + 1023
+ 11232 43230 4+ 4250 113229 6228 4 3227 4 2270 112275 + 422 48223 + 7272 1+ 102%
+22%0 49219 111218 412217 412216 4 821 4 213 4 321 4 729 4928 41520 41225,

qu3(2) = 829 3258 16257 4 12256 4 5250 1 11253 + 5272 + 2251 412250 413219 + 2248 46216
+ 142" 4 142M + 142" + 6212 + 1524 + 9210 42239 113238 4+ 9237 11236 4 10234
+12233 44232 49230 4+ 9250 4 4270 415228 £ 11277 4 8220 + 1022 4 14224 + 9223
+ 1522 410270 + 5219 4 142" 410217 + 3210 4+ 215 4 721 4 621 + 10212 + 221!
+ 5219 41429 4+ 1228,

qua(z) = 22°9 + 2258 £ 8250 1 10275 + 2253 + 8252 + 625 + 12279 4 42%° 1+ 8217 £ 8290 4 4277
+ 828 4 82 4 4210 18237 4 4236 4 8237

qas(z) = 8271,
Que(2) = 6279 + 6278 + 142°5 + 6253 4 2251 + 4249 + 12218 £ 12275 1220 4 12236,
qur(2) = 4255 2257 4 142°0 + 13255 + 8253 4 14252 4+ 7250 4+ 250 410249 4 1228 4+ 15247 + 216

+ 1524 4224 4 213 115292 1 15240 410270 + 4239 43238 1 4237 14236 4 14235 923
+ 1123 415232 4 2231 +62%0 4 5220 + 10228 + 6227 + 7220 + 132% + 102 + 13222 + 8221
+102%9 + 821 2218 112217 £ 13216 49215 4 721 4 9213 1 8212 4 2210 4 529 4 328
+ 1427 + 325,

qus(2) = 82°% + 427 + 825 + 8253 1 8252 4 122°1 + 42°° + 8219 + 828 1 12247 + 42%5 4 8243 4 822
+ 428 4 8210 4 4239 4 8238 412230 4 12230 4 8231 412233 4 4232 4+ 8231 412270 4 8278
+ 8270 8272 4+ 4221 4 8218 4217 48216

quo(2) = 42%° +102°9 4 82°7 4 12250 4 102°° + 12254 4-82°3,

gs0(2) = 42°9 + 4258 4 4275 + 4258 412251,

gs1(2) = 12250 414259 4256 4 14255 1 4254,

gs2(2) = 8290 + 7278 4 14257 412255 + 25 + 15253 + 252 410251 4 122°0 4 9249 4 10248 4 14240

+62% 4+ 628 4+ 6213 + 14242 + 3241 + 5240 41023 + 9238 4 5257 4 15236 2234 412233
+ 4232 45230 45250 14229 + 3228 £ 15277 4 8270 4 2275 4 6221 + 5223 + 322 220
+ 21 46218 4 2217 4 7210 113215 4 1121 4+ 1421 4+ 2212 11021 + 210 4620 4+ 1228,
259 4 4258 1 4255 4 4253 112250 + 8219 + 8248 1 82%% + 8240 1 8236,
207 4 142%8 £ 8257 +152%° + 102°* + 10253 4 22°2 + 251 4+ 112°0 + 14249 4+ 6228 + 5247
+ 8240 43215 4 122M 4627 + 6212 4 321 46270 4+ 3239 42238 £ 9230 4 5235 4 623
+92% 43232 4 6231 + 8230 + 1322 + 6228 + 6220 + 4270 + 8224 + 14222 + 15221 + 4210
+ 2218 415217 410216 + 4215,
@55(2) = 6259 + 3259 + 4257 4 102°5 + 3255 + 2254 4 4253,
=525 4 132%8 4+ 122°0 + 255 + 8254 4 5253 4+ 12252 4 15251 4 8259 + 14249 4 22%8 4 4277
+42%0 4+ 102% 4+ 1224 + 824 + 4241 + 2240 4 8238 112237 42236 1 12230 4 823,
gs7(2) = 14250 4+ 15259 4 4257 4 2256 4 1525° 4 1027 + 4273,

g53(2) =
%4(2) =

¢56(2)
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gss(2) = 8257 + 8250 4+ 825% 412253 4 8251 4+ 8250 8249 4 8248 1 10247 + 14270 4 102%° + 824
+ 9243 412247 4 221 46290 £ 11239 43238 + 12237 4+ 8230 4 7235 4 2234 4 233 4 132
+ 7230 412230 412229 4 228 4 226 115270 4922 4 14223 4 222 4 3221 4 3220 4 4219
472 7210 6210 4 321 4 218 43212 4 221 1429 + 228 + 627 + 220 + 142°
+62% + 1422,

gso(2) = 42°° +122°5 4 4251 4+ 2252 + 4251 £ 12250 42219 4+ 122%8 + 10277 + 427 +12:% 462
+ 14272 224 414210 412239 4+ 12236 4 14235 46231 4 423 4 14232 + 14231 4 222
+122% 14277 + 4225 + 6222 4+ 4221 + 4220 11021 + 14218 4+ 10213 + 1421 4+ 62°
+102% 4 62°,

ge0(2) = 1225% 414257 4 2256 1 325% 1 2252 1 9251 115259 4 6249 4 428 4 217 4 15240 4 27
+ 142M 4 152" 4 212 4 28 1620 412239 413238 112237 4 2236 42235 4 7234 1 5233
+ 252 414231 4 102%0 4+ 1127 4+ 6228 + 10227 + 9226 4+ 327 + 6221 + 3272 46220 + 14218
+ 4217 43210 4 7215 £ 921 4 721 114270 4+ 112% + 1328 4+ 227 + 1325,

ge1(2) = 2299 + 9259 4 1425 1+ 9255 4 6254

go2(2) = 32° + 5254 4 112°3 + 5252 4 1320 4+ 152 + 920 4 13238 19237 4 11236 - 9231 1 9230
+ 15228 + 11227 + 922 + 15221 + 5219 4 3216 4 215 4 7214 4 5210,

ge3(2) = 62°° + 14251 412250 4 9249 4 728 112217 4+ 5296 4 5295 1 1324 + 15213 4 1322
+ 1321 48240 4 239 1 7238 43237 £ 15230 4+ 82% 4 6231 + 15232 4+ 15231 +102%°
+ 8229 12228 4 13227 4 1425 4+ 13274 + 14273 + 222 4+ 221 220 1 9219 113218
+ 12217 410210 43210 p 4™ 4 7213 4 212 4 21 4 2104329 41528 4 727 4 26
+ 1525 4 624,

goa(2) = 152°% 4 142°7 +122°0 + 925 + 7273 49252 £ 10250 + 1220 + 29 4 102" 4 14270 4 627°
+62M 462" 4 14292 + 1128 + 13290 41023 + 238 4+ 13237 4 7250 4 2234 12233 4 4232
+ 13231 413250 4 4220 + 11228 + 7227 + 225 46224 + 1322 + 11221 + 2220 4+ 9219 4 6218
+ 2217 415216 4 5215 4 3214 4 14213 4 2212 4 1021 4+ 9210 4 629 4 1228,

Gos(2) = 12258 4 1425° 4425 4+ 4253 4 4252 4 2251 4 62°0 4+ 122%° 4+ 122% + 10247 4 62%° 4 12243
+ 12242 4+ 624 + 12290 4 6239 + 4238 4+ 2236 110235 4 12234 4+ 2233 4 6252 + 1223 + 1022
+ 12228 412226 £ 12222 4 14221 4+ 4218 4+ 14217 4+ 4216,

go6(2) = 12255 4 14257 + 2256 4 3255 1 8253 42252 4 9251 115250 4 6219 4 428 4 217 4 15216 4 %5
4 142M 4 152" 4 212 4 21 46210 412239 413238 112257 4 2236 42235 4 7231 4 5233
+ 232 14231 410250 + 1122 + 6228 + 10277 4 9270 4 3275 + 6221 + 3222 + 822! + 622
4821 414218 4 421 £ 3216 4 7210 4 921 4 7213 4 8212 414210 41120 + 1328
+ 227 +132°,

ge7(2) = 122°° +122°% 4 122°° 4+ 122°3 4 425,

os(2) = 420 + 2279 4+ 12250 4 2255 4 12254,

goo(2) = 4257 +142°% 4+ 8257 4+ 72%5 + 10254 + 10253 + 2252 + 9250 + 3250 4 14249 4 6248 + 13247
+82%0 4 112%° +122M 4+ 627 + 6272 + 1124 4620 4+ 11239 4 2238 4 236 1 13235 4623
4233 411272 4+ 6230 + 8230 4+ 5229 46228 + 6220 4+ 4225 + 822 4+ 14222 4+ 722 + 4219
+ 2218 4 7217 410216 4 4215,
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qro(z) = 14250 + 15259 44257 4 2256 4 15255 4+ 10254 4 4253,

qr1(2) = 4250 +142°0 4 4279 4+ 14277 4 520 11227 £ 142" 4 112%2 + 924 + 11270 46239 + 11238
+ 257 42250 £ 1323% 411233 4 2231 + 322 4+ 1022 + 9227 + 7220 4 622 + 2223 4 12222
+2221 415220 £ 11219 4 14218 £ 11217 4 14215 4 42 4 11213 4 3212 4 321 413210
+122% + 428 + 27 +62° + 325 4+ 2% 4 323,

qra(2) = 52°% +102°7 4 42°0 4+ 325 + 13258 4 3257 4 1425 + 112" 4 1428 + 10276 2275 224
+22% 410242 + 92 + 15240 1423 + 11238 + 15257 4+ 13230 4 623 + 15231 4 1523
49228 413227 + 622 + 2224 4+ 15223 + 9221 46220 + 3219 42218 £ 6217 45216 4 7210
+ 21 41021 4 6212 + 1421 4 3219 + 229 4 428,

qr3(2) = 2277 +62°1 +102°° + 6247 4+ 1020 + 62%° + 102*° + 62*2 + 621 + 142%° +102% + 14233
+ 6232 + 227 46220 + 2225 4 2272 42216 £ 1021° + 621 4 1021 4 229 + 142° 4 1426,

qra(z) = 22°° +102°% 4+ 42°0 + 3249 1132 4 4277 4 7240 1 727 £ 152M 452" 4 15242 4 152
+ 11239 413238 4 237 4 5230 42234 45252 45231 4+ 14250 4+ 42 4 15227 + 1027
+ 1522 1025 + 11222 + 1122 + 11220 + 3219 + 15218 + 4217 4 14216 4 215 1 12214
+ 1321 1122 4 1121 11210 + 2% £ 528 41327 + 1120 + 525 + 224,

grs(2) = 10258 4 132%5 + 14250 + 14253 + 62°2 + 3250 4 250 410240 4 2248 4 15247 49215 4 2,43
+ 2242 49241 12290 1 9239 1 6238 4 11230 4 15235 4+ 2234 4 11233 49232 1 2231 4 7229
+ 2228 42226 110222 + 1322 + 628 + 13217 4 14216,

qr6(2) = 5272 + 5249 4+ 247 4 72 1 11272 4 52 1 11240 4 11235 415234 411232 + 3231 4132
43227 47222 49219 111218 4 213 4321 4 729 4928 + 1525,

qrr(z) = 132°% 4+ 7251 4 250 4 15247 4 246 4 15240 4 2% 115242 4 1524 + 328 19234 41123
+ 15232 45229 4 7220 413275 4 13272 4 13216 4 921° 4+ 721 19213 4529 4+ 328 + 326,

APPENDIX D. THE METHOD “RELOADED”

As the reader will recall from Section 4 (cf. Remark 11), our method described there
is based on the “hope” that, if a polynomial in ®(z) is zero modulo a 2-power 2° (as a
formal Laurent series), then already all coefficients of powers of ®(z) in this polynomial
vanish modulo 2°. (This is manifest in each comparison of coefficients of powers of
®(z) in Section 4.) In general, however, this implication does not hold (see Lemma 39
below for the case of modulus 2 = 16). It may consequently happen that the method
from Section 4 fails to find a solution modulo 27 to a given differential equation in the
form of a polynomial in ®(z) with coefficients that are Laurent polynomials in z over
the integers, while such a solution may in fact exist. As it turns out, this situation
occurs when treating the subgroup numbers of SLy(Z) and of I'3(3) modulo 16, see the
paragraph above Theorem 28 and Remark 32. (In the former case, there is indeed a
solution, while in the latter there is not.)

Our aim here is to explain how the method from Section 4 can be enhanced so that
one can decide whether or not such a solution modulo a given 2-power 27 exists; and, if
it exists, how to find it. In principle, it should be possible to describe such an improved
method for an arbitrary 2-power 2°. Since, in the present paper, we need it only for
the modulus 16, and since we are not able to rigorously establish the validity of the
enhancement we have in mind in general (it would depend on Conjecture 4, which at
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present we are not able to prove), we content ourselves with describing the enhanced
method for the modulus 16. From this description, the reader should have no difficulty
to “extrapolate” to arbitrary 2-powers, assuming the truth of Conjecture 4.

We begin by characterising when a polynomial in ®(z) with coefficients that are
Laurent polynomials in z over the integers vanishes modulo 16 as a Laurent series in z.

Lemma 39. As before, let ®(2) = 37 (2%, Furthermore, let P(z,®(2)) be a poly-
nomial in ®(z) with coefficients that are Laurent polynomials in z over the integers.
Then, as a Laurent series in z,

P(z,®(z)) =0 modulo 16

if, and only if, the coefficients of powers of ® in P(z,®(z)) agree modulo 16 with the
corresponding ones in

a1(2) Mig(z, @(2)) + 2(c2(2)P(2) + c3(2)) Ms(z, ®(2))
+ 8(ca(2)®@(2) + c5(2)) Ma(2, ®(2)). (D.1)
Here, My(z,t), Mg(z,t), Mig(z,t) are the minimal polynomials for the moduli 2,8, 16,

respectively, given in Proposition 2, and c1(2), ca(2), c3(2), ca(2), c5(2) are suitable Lau-
rent polynomaials in z over the integers.

Proof. We assume that P(z, ®(z)) = 0 modulo 16.

Recall that, by definition, Ms(z, ®(z)) is a monic polynomial in ®(z). We use this
fact to perform division of P(z, ®(2)) by Mis(2, ®(2)) (as polynomials in ®(z)), thus
obtaining

P(z,®(2)) = e1(2) Mig(2) + Pi(z, B(2)), (D.2)
where P;(z, ®(z)) is a polynomial in ®(z) of degree at most 5, with coefficients that are
Laurent polynomials in z over the integers, say

Pi(z,®(2)) = ds(2)®°(2) + dy(2)@*(2) + d3(2)P*(2)
+ do(2)P*(2) + dy(2)®(2) + do(2). (D.3)
As Laurent series in z, both P(z, ®(z)) and Mjs(z, (z)) vanish modulo 16. Using this

observation in (D.2), we see that P;(z, ®(z)) vanishes modulo 16 as well. Now recall
from (2.5) and the proof of Lemma 1 that

Pi(z,®(2)) = ds5(2) 5! E5(2) + Q1(2)

(with a suitable series Q1(z)), where D(Q1(2),16;n) has strictly smaller asymptotic
growth (in n) than D(Es5(z), 16;n). Since, as we already observed, P (z, ®(z)) vanishes
modulo 16, it follows that 5!d5(z) must vanish modulo 16, that is, there exists a Laurent

polynomial ¢y(z) over the integers such that ds(z) = 2¢o(z). We use this observation in
(D.3) to see that

P(z,®(2)) = c1(2)M1(2) 4+ 2¢2(2)P(2) Mg(z, P(2)) + Po(z, P(2)), (D.4)

where Py(z, ®(z)) is a polynomial in ®(z) of degree at most 4, with coefficients that are
Laurent polynomials in z over the integers, say

Py(2,®(2)) = e4(2)P(2) + e3(2)P3(2) + e2(2)P?(2) + e1(2)P(2) + eo(2).
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Applying the same kind of argument again, we further deduce that
P(z,®(z)) = c1(2)Mig(2) + 2(c2(2)®(2) + c3(2)) Ms(z, ©(2)) + P3(z, (2)), (D.5)

where ¢3(2) is a Laurent polynomial in z over the integers and Ps(z, ®(2)) is a polynomial
in ®(z) of degree at most 3, with coefficients that are Laurent polynomials in z over
the integers, say

Py(z,®(2)) = f3(2)@%(2) + fo(2)@*(2) + f1(2)®(2) + fo(2)-

As Laurent series in z, all of P(z, ®(z)), Mis(z, ®(z)), and 2Mg(z, ®(z)) vanish mod-
ulo 16. Using this observation in (D.5), we see that Ps(z, ®(z)) vanishes modulo 16 as
well. Equation (2.5) and the proof of Lemma 1 give that

P3(z,®(2)) = d3(2) 3! E3(2) + Q3(2)

(with a suitable series Q3(z)), where D(Q3(2),16;n) has strictly smaller asymptotic
growth (in n) than D(E5(z), 16;n). Since, as we already observed, P3(z, ®(z)) vanishes
modulo 16, it follows that 3!d3(z) must vanish modulo 16, that is, there exists a Laurent
polynomial ¢4(z) over the integers such that d3(z) = 8c4(z). By another application of
the same kind of argument, this leads to

P(z,®(2)) = c1(2) Mi6(2) + 2(02(2’)@(2’) + 03(2))M8(z, d(2))
+8(ca(2)®(2) + c5(2)) Ma(z, ®(2)) + Pu(z, ®(2)), (D.6)

where ¢;(2) is a Laurent polynomial in z over the integers and P;(z, ®(2)) is a polynomial
in ®(z) of degree at most 1, with coefficients that are Laurent polynomials in z over
the integers, say

Py(z,®(2)) = 91(2)®(2) + go(2)-

Since P(z, ®(2)), Mis(z, D(2)), 2Ms(z, P(2))), 8Ma(z, P(z)) all vanish modulo 16, also
Py(z,®(z)) must have this property; but this means that g;(z) and go(z) both vanish
modulo 16.

If we combine (D.2), (D.4), (D.5), (D.6), then we obtain our claim. O

Now we put ourselves in the situation that we want to describe the coefficients of
the formal power series F'(z) modulo 16, where F'(z) solves a Riccati-type differential
equation of the form (4.1), and that we try to solve this problem by expressing F'(z) in
the form

5
F(z) = Zai(z)q)i(z) modulo 16,
i=0

where the a;(z)’s are Laurent polynomials in z over the integers to be determined. Let
us assume that, while following the approach outlined in Section 4 (with Mg(z, ®(2)) in
place of the polynomial in (4.4)), we have already reached the level of modulus 8, that
is, that we have found Laurent polynomials ag3(2), a13(2), a23(2), as3(2), as3(2), as3(2)
such that

Z a;5(2)P(2)
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solves the differential equation (4.1) modulo 8. According to the Ansatz (4.6)—(4.8)
with g = 3, we now substitute

5

> (ais(z) + 8bia(2))2'(2) (D.7)

=0

(where the b; 4(2)’s are at this point undetermined Laurent polynomials in z) instead of
F(z) in (4.1). For the sake of better readability, in the sequel we write by(z) for by 4(2),
etc. After simplification of the left-hand side of (4.1) modulo 16 as described below
(4.8), and after reduction of the resulting expression modulo Mg(z, ®(2)) (which is a
polynomial in ®(z) of degree 6), we obtain a polynomial of the form

5

> (pi(z) +Gy(2b(2), b'(z)))cpi(z), (D.8)

=0

where the pl(z)’ are certain Laurent polynomials in z over the integers, and the
G ( (2 ) s are certain linear forms in

bO(Z)v bl(z)’ bQ(Z)’ b3(z)’ b4(2>, b5(Z) and 66(2)7 bll(z)v bIQ(Z)’ bg(z)’ bil(z>7 bg(z)7

with coefficients that are (known) Laurent polynomials in z over the integers.

Our goal is to find Laurent polynomials by(z), by(z), ba(2), b3(2), bs(2), b5(2) such that
the expression (D.8) is zero modulo 16 as Laurent series in z. Lemma 39, combined
with the explicit forms of My(z,t) and Mg(z,t) given in Proposition 2, then says that

8<p0(z) + Gy (z b(z), b'(z))> = (42 +102%)c3(2) + 8zc5(2) modulo 16,

8 (42 +102%)co(2) + (12 + 42)cs3(2) + 8zcy(2) + 8es(2)

modulo 16,

+G1

= (12 +42)ca(z) + (6 + 42)c3(2) + 8ca(z) + 8es(2)
modulo 16,

8( pa(z +ngb

(64 42)ca(2) + 12¢3(2) 4 8¢4(2)  modulo 16,

8( pa(z) + G4 z b(z),b'(z 12¢9(2) 4 2¢3(z) modulo 16,

(me: ) =
( ) =
8<p32+G32bz z)
( )) =

8(}95(2) + G5(z,b(z), b'(z))) = 2¢5(z) modulo 16,

for suitable Laurent polynomials c3(2), c3(2), c4(2), ¢5(2). From the last congruence one
sees that cy(z) is actually zero modulo 4, and then the next-to-last congruence implies
that the same holds for c3(z). Writing 4a(z) = ca(2), 4b(z) = c3(2), c(z) = (=),
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d(z) = c5(z), we see that the above system of congruences simplifies to

Go(z,b(2),b'(2)) = po(2) + 2°b(2) + zd(z) modulo 2,

G1(z,b(2),b/(2)) = p1(2) + 2%a(2) + 2¢(z) + d(z) modulo 2,

G (2,b(2),b/(2)) = p2(2) + b(2) + ¢(z) + d(z) modulo 2,
G3(2,b(2),b'(2)) = p3(2) + a(z) + ¢(z) modulo 2,

Ga(z,b(2),b'(2)) = pa(z) +b(z) modulo 2,

Gs5(z,b(2),b/(2)) = ps(2) + a(z) modulo 2. (D.9)

This puts us in the situation of Lemma 12, except that on the right-hand sides of
the congruences (denoted by r;(z), ¢ = 1,2,..., N, in Lemma 12) there appear the
unknown Laurent polynomials a(z),b(z),c(z),d(z). Still, the idea of the proof of
Lemma 12 may be applied: the system of congruences (D.9) can be solved with re-
spect to the “variables” by(z),b1(2), ba(2), b3(z), ba(z), bs(z) by separating odd and even
parts, and thereby converting the original system (4.9) of congruences into the system
(4.10) of linear congruences for the odd and even parts of the variables. We solve
this last system over the field of rational functions over Z /27, where odd and even
parts of the “auxiliary variables” a(z),b(z),c(z),d(z) “sit” inside the odd and even
parts of the “constants” 7;(z). In the end, if odd and even parts of the variables
bo(2),b1(2),b2(2),b3(2),bs(2), bs(2) are put together, then we are able to express these
variables in the form

. . (0) (e) (0) (e)
bi(z) = G(2) + Hifz,a(2), a9), .., dV(z), dO(2) modulo 2, ¢=0,1,...,5,
P(z)
(D.10)
where the ¢;(z)’s are (known) Laurent polynomials in z over the integers, P(z) is a
(known) polynomial in z over the integers, and the

H;(z, al”(2),a'9(2),...,d(z),d(z))’s

are linear forms in a®(2),al?(2),...,d"”(2),d (z) with coefficients that are (known)
Laurent polynomials in z over the integers.

The task now is to choose a(”(z),al®(z),...,d"”(2),d®(z) in such a way that in
each of the fractions on the right-hand sides of (D.10) the denominator P(z) cancels
out.

In order to carry out this task, we decompose P(z) into its prime factors (over Z/27Z),
say

P(z) = H P (z) modulo 2.
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Using a standard inductive procedure,'s we find a(z),a®(2),...,d(z),d® (z) (if
there are) such that

6i(2) + Hy(2,a(2),a9(2), ..., d (2),d(z)) = 0 (mod P™(2)),
i=0,1,...,5 j=1,2,....0, (D.11)

(again, over the field Z/27), and then put the particular results for each j together by
means of the Chinese remainder theorem. We only discuss the generic case here, the
discussion for other cases being completely analogous. Namely, generically, having to
solve 6 equations in 8 variables, one will be able to express six of the variables in terms
of two “free” variables. Let us say, b9 (z),b®)(z), (), (z),d®(z),d®(z) can be
expressed in terms of a(?(z),a® (),

b (2) = 51(2) + u1(2)a'?(2) + v1(2)a'®(z)  modulo 2,
b (2) = 59(2) 4 uz(2)a'” (2) + va(2)a'(2), modulo 2,
9 (2) = s3(2) 4+ us(2)a'”(2) + v3(2)a'”(z), modulo 2,
A9(2) = s54(2) + ug(2)a'?(2) + v4(2)a'®(z), modulo 2,
d(2) = s5(2) + us(2)al? (2) + v5(2)a'®(z), modulo 2,
d©(2) = s6(2) + ug(2)a'”(2) + vg(2)a'®(z)  modulo 2, (D.12)

where the s;(z)’s, the u;(z)’s, and the v;(2)’s are certain (known) Laurent polynomials
in z over the integers, and where we are free to choose a'®(z) and a'®(z). If this is
substituted in (D.10), then on the right-hand sides the denominator P(z) cancels out,
and by(2),b1(2),ba(2),b3(2), bs(2), b5(z) will all be equal to Laurent polynomials in z
over the integers.

We are still not finished, though. In the “solution” (D.12) the Laurent polynomials
a®(2),b)(2), ) (2),d(z) must be chosen as odd, while the Laurent polynomials
a'®(2),b(2), 9 (z),d®(z) must be chosen as even. In order to achieve this, we must
(again) separate odd and even parts: doing so in (D.12) yields the system

0—31() u?(2)a (2) + v{”(2)al?(z)  modulo 2,
0=s(2) + g (2)a(z) + o5 (2)a® (),  modulo 2,
0= Sz(a (2) + i(), (2)a'(z) + vg( )(2)a'? (), modulo 2
0= 5510 (2) + 51 (2)a'(2) + ( )a'9(z),  modulo 2,
0= Sg (2) + fr, (2)a”(2) + U5 ( )a'9(z),  modulo 2,
0=57(2) + ul?(2)a” (2) + v (2)a®(z)  modulo 2. (D.13)

This is a system of six linear congruences with two variables, a(”)(z) and a(®(z), where
the first of these should be an odd Laurent polynomial and the second an even one.

60mne first solves (D.11) modulo P;(2) (instead of Pm]( )); this means solving a system of linear
equations over a field. If one has solved (D.11) already modulo PJ'(z), for each variable var(z) one
makes the Ansatz var(z) = varg(z) + vary (z)Pjh(z), where varg(z) is the value of var(z) in the solution
modulo Pjh (z). If this is substituted in (D.11), after cancellation, solving (D.11) modulo Pf“(z) boils
again down to solving a system of linear equations modulo P;(z), that is, over a field.
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It is of the type of the system of congruences (4.10). How to solve such a system is
explained in the paragraph below the proof of Lemma 12. (One first solves over the
field of rational functions in z over Z/27, and then cancels denominators, if possible.)
Moreover, the argument in the proof of Lemma 12 showing that, if (4.10) has some

solution in Laurent polynomials, then it also has a solution in which all f](l)(z)’s are

even Laurent polynomials and all f]@)(z)’s are odd Laurent polynomials, also applies to
the system (D.13) to guarantee that, if one is able to find some solution a(®(z), a'®(z),
then one can also find one in which a(?)(z) is an odd Laurent polynomial and a(®(z) is
an even Laurent polynomial.

If one is able to carry through this procedure, then one has found the unknowns
bia(z),1=0,1,...,5, so that (D.7) produces the desired description modulo 16 of the
solution F'(z) to the Riccati-type differential equation (4.1). Conversely, if one of the
systems of linear congruences which one has to solve along the way (these are (D.9),
(D.11), and (D.13)) has no solution, then one has proved that it is impossible to describe
the series F'(z) modulo 16 in terms of a polynomial in ®(z) with coefficients that are
Laurent polynomials in z over the integers.

REFERENCES

[1] S. A. Abramov and M. van Hoeij, Desingularization of linear difference operators with polynomial
coeflicients, Proc. ISSAC’99, pp. 269-275, 1999.

[2] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem.
Amer. Math. Soc., vol. 202, no. 949, Amer. Math. Soc., Providence, R.I., 2009.

[3] P.J. Cameron and T.W. Miiller, A descent principle in modular subgroup arithmetic, J. Pure
Appl. Algebra 203 (2005), 189-203.

[4] F. Chyzak, Fonctions holonomes en calcul formel, Ph.D. thesis, Ecole polytechnique, Paris, 1998.

[5] F. Chyzak and B. Salvy, Non-commutative elimination in Ore algebras proves multivariate holo-
nomic identities, J. Symbolic Comput. 26 (1998), 187-227.

[6] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, Holland, 1974.

[7] A.D.D. Craik, Prehistory of Faa di Bruno’s formula, Amer. Math. Monthly 112 (2005), 119-130.

[8] K. S. Davis and W. A. Webb, Lucas’ theorem for prime powers, Europ. J. Combin. 11 (1990),
229-233.

[9] 1. M. S. Dey, Schreier systems in free products, Proc. Glasgow Math. Soc. 7 (1965), 61-79.

[10] A. Dress and T. W. Miiller, Decomposable functors and the exponential principle, Adv. in Math.
129 (1997), 188-221.

[11] S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, Furop. J.
Combin. 29 (2008), 1449-1466.

[12] G. Frobenius, Verallgemeinerung des Sylow’schen Satzes, Sitz.ber. Konigl. Preuss. Akad. Wiss.
Berlin (1895), 981-993.

[13] G. Frobenius, Uber einen Fundamentalsatz der Gruppentheorie, Sitz.ber. Kénigl. Preuss. Akad.
Wiss. Berlin 44 (1903), 987-991.

[14] C. Godsil, W. Imrich, and R. Razen, On the number of subgroups of given index in the modular
group, Monatsh. Math. 87 (1979), 273-280.

[15] A. Granville, Arithmetic properties of binomial coefficients, I: Binomial coefficients modulo prime
powers, in: Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc., vol. 20, Amer. Math.
Soc., Providence, RI, 1997, pp. 253-276.

[16] M. Kauers, Guess, Mathematica package available at
http://www.risc. jku.at/research/combinat/software/Guess.

[17] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1935), 468-501.

[18] W. P. Johnson, The curious history of Faa di Bruno’s formula, Amer. Math. Monthly 109 (2002),
217-234.



76

[19]

[38]

[39]

M. KAUERS, C. KRATTENTHALER, AND T.W. MULLER

C. Koutschan, Advanced applications of the holonomic systems approach, RISC, J. Ke-
pler University, Linz, Ph.D. thesis, 2009; Mathematica implementation available at
http://www.risc. jku.at/research/combinat/software/HolonomicFunctions.

C. Krattenthaler and T. W. Miiller, Parity patterns associated with lifts of Hecke groups, Abh.
Math. Sem. Univ. Hamburg 78 (2008), 99-147.

A. M. Legendre, Essai sur la théorie des nombres, 2ed., Courcier, Paris, 1808.

S.-C. Liu and J. C.-C. Yeh, Catalan numbers modulo 2%, J. Integer Sequences 13 (2010),
Art. 10.5.4, 26 pages.

C. Mallinger, Algorithmic manipulations and transformations of univariate holonomic functions
and sequences, diploma thesis, RISC, J. Kepler University, Linz, 1996; Mathematica implementa-
tion available at

http://www.risc. jku.at/research/combinat/software/GeneratingFunctions.

T. W. Miiller, Combinatorial aspects of finitely generated virtually free groups, J. London Math.
Soc. (2) 44 (1991), 75-94.

T.W. Miiller, Modular subgroup arithmetic and a theorem of Philip Hall, Bull. London Maith.
Soc. 34 (2002), 587-598.

T. W. Miiller, Modular subgroup arithmetic in free products, Forum Math. 15 (2003), 759-810.
T.W. Miiller, Parity patterns in Hecke groups and Fermat primes. In: Groups: Topologi-
cal, Combinatorial, and Arithmetic Aspects, Proceedings of a conference held 1999 in Bielefeld
(T.W. Miiller, ed.), LMS Lecture Note Series vol. 311, Cambridge University Press, Cambridge,
2004, 327-374.

T.W. Miiller and J.-C. Schlage-Puchta, Modular arithmetic of free subgroups, Forum Math. 17
(2005), 375-405.

T.W. Miiller and J.-C. Schlage-Puchta, Divisibility properties of subgroup numbers for the mod-
ular group, New York J. Math. 11 (2005), 205—224.

A. Postnikov and B. E. Sagan, What power of two divides a weighted Catalan number?, J. Combin.
Theory Ser. A 114 (2007), 970-977.

B. Salvy and P. Zimmermann, Gfun: a Maple package for the manipulation of generating and
holonomic functions in one variable, ACM Trans. Math. Software 20 (1994); available as part of
the standard distribution of Maple.

R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.
R.P. Stanley, Catalan Addendum, continuation of Exercise 6.19 from [32]; available at
http://math.mit.edu/~rstan/ec/catadd.pdf.

W. Stothers, The number of subgroups of given index in the modular group, Proc. Royal Soc.
Edinburgh, Sec. A 78 (1977), 105-112.

L. Sylow, Théoremes sur les groupes de substitutions, Math. Ann. 5 (1872), 584-594.

H.S. Wilf, generatingfunctionology, 2nd edition, Academic Press, San Diego, 1994.

H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”)
multisum/integral identities, Invent. Math. 108 (1992), 575-633.

G. Xin and J.-F. Xu, A short approach to Catalan numbers modulo 2", Electron. J. Combin.
18(1) (2011), Article #P177, 12 pp.

D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl.
Math. 32 (1990), 321-368.

TRESEARCH INSTITUTE FOR SYMBOLIC COMPUTATION, JOHANNES KEPLER UNIVERSITAT, AL-
TENBERGERSTRASZE 69, A-4040 LiNz, AUSTRIA. WWW: http://www.kauers.de

P FAKULTAT FUR MATHEMATIK, UNIVERSITAT WIEN, NORDBERGSTRASZE 15, A-1090 VIENNA,
AUSTRIA. WWW: http://www.mat.univie.ac.at/~kratt.

*SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY & WESTFIELD COLLEGE, UNIVERSITY
OF LoNDON, MILE END RoAD, LONDON E1 4NS, UNITED KINGDOM.



