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In this talk:
» Lattice Walk Counting € Enumerative Combinatorics
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» And what one has to do with the other

In this session:

» Hopefully many other stories on how symbolic computation
and enumerative combinatorics fertilize each other.



1. The Combinatorics Part.

Enumeration of Restricted Lattice Walks
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Let ay, i ; be the number of walks
» starting at (0,0)
» ending at (4, 7)
» consisting of n steps

> never stepping out of the quarter plane.

Example: a5 32 = 200.
Let

a(t,z,y) Z Z An i jT byn

n=01,j=0

be the generating function of ay,; ;.

Question: What is a(t, z,y)?
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Starting point: The combinatorial definition.

It immediately implies the recurrence equation

Un+1,4,5 = Ani—1,j+1 T Onjij+1 + Onit1541 T Oni—1,5
+ Onit1,5 + Oni—1,-1 1+ Qnij—1 + Qni+1,5-1

which, together with the boundary conditions

n,i—1 =0 an,—1,5 =10

and the initial value
ap,0,0 = 1

determines all the numbers a,, ; ;.
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M. Bousquet-Melou and M. Mishna.)
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It follows from here that a(t, z,y) is D-finite.
A differential equation can be computed with creative telescoping.

Write

R— 1 (u—u=1)(v—v71)
(1—zu)(1—yv) 1—t((u+1+u= Do I+(utu=1)+(ut+1+u—1)v)

so that a(t, z,y) = resy R.
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Observe: res,, Dyc(u) = 0 for every series c(u).

Therefore: if we can find a differential operator
P = pO(tvxa y) +p1($, yat)Dt +P2(t7$ay)Dt2 +oe +p7“(t7wa y)D;
and two rational functions Q1, Q2 € Q(t, u, v, x,y) with

PR+ D,Q1+D,Q2=0

then
Pa(t,z,y) =0

Note: Knowing P, we can compute a closed form for a(t,x,y).

But: Computing P, @1, Q2 is quite costly.
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Integration software (e.g., by C. Koutschan) finds the equation

(t 4 1)(2t — 1)(4t + 1)(8t — 1)t*D}a(t, 1,1)
+ (576t* 4 200t3 — 252t% — 33t + 5)D?a(t, 1,1)
+ (288t1 + 22t — 117t — 12t + 1) Dya(t, 1,1)
+12(32t3 — 6% — 12t — 1)a(t,1,1) = 0.

From here follows the final result

alt,1,1) = 1 [16sict, py (511 94 | s

t ) (1+4x)5 2 (t+1/4)%
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» Different step sets lead to
different generating
functions.

» Different generating
functions have different
algebraic properties.

» Mishna-Rechnitzer walks:
The generating function is
not D-finite.




Variation: What happens if we forbid steps into certain directions?

» Bousquet-Melou-Mishna classification: We know for every
step set whether the corresponding generating function is
algebraic, D-finite transcendental, or not D-finite



Variation: What happens if we forbid steps into certain directions?

» Bousquet-Melou-Mishna classification: We know for every
step set whether the corresponding generating function is
algebraic, D-finite transcendental, or not D-finite

» Qur contribution: For the cases where the generating function
is D-finite transcendental, we find an explicit 9 F}
representation.



2. The Computer Algebra Part.

Fine Tuning Creative Telescoping
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Creative telescoping. (Differential case, one free variable)

Given: a rational function R(x,y)
Find: a differential operator P, free of y and D,, and a rational
function Q in x and y such that

PR+D,Q =0.

This is called a creative telescoping relation for R.

v

v

The operator P is called its telescoper.

v

The rational function @ is called its certificate.
There are algorithms for computing (P, Q) for given R.

v
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Question: How to make these algorithms faster?
Where are the degrees of freedom?
The solution (P, Q) is not unique.
Are some solutions cheaper than others?
If so, what is the cheapest?
Every telescoper P has a certain order r and degree d.
Example: For
P = (52" — 62° + 5z + 8) D} + (9" — 102° + 42° 4 8) D,
+ (82" + 1023 — 8z + 9)

we have » = 2 and d = 4.
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Question: Which point (r,d) is optimal?
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Using this hyperbola, we can choose what we want to compute.
Question: Which point (r,d) is optimal?

Answer: Depends on what you want to optimize. ..

As for computational complexity:

» For small input, the minimal order operator is the cheapest.

» For “industrial size input”, operators of [slightly] nonminimal
order are cheaper.

» For astronomic input, it is most efficient to compute the

operator of order %(1 + vV 17)"min, Where 7y, is the size of
the minimal operator.



3. Conclusion.

Symbolic Computation
+ Enumerative Combinatorics
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Combinatorics pushes computer algebra:

» Complicated expressions arising in combinatorics generate a
demand for algorithms for dealing with them.

> If you really want to compute something, these algorithms
should better terminate before your NFS grant.

Computer algebra pushes combinatorics:

» The existence of powerful computational machinery suggests
to rephrase a combinatorial problem as input for them.

» Unexpected output may lead to combinatorial insight or raise
new questions.



