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I can be explained with colourful pictures
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For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



The main ingredients of this story

For the Mass Media:

I The last surviving entry of a famous list of open problems

I can be explained with colourful pictures

I seems totally pointless to non-specialists

I was finally proved by a computer

I The proof exceeds 1Mio printed pages in size

For the Math Expert:

I nice (for number theorists) because of the result itself

I nice (for computer algebraists) because of the methods used



Partitions

Ways of writing positive integers as sums of positive integers.



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1


“5 has 7 partitions”

= 3 + 2

= 4 + 1

= 5



Partitions

Ways of writing positive integers as sums of positive integers.

p(1) = 1,

p(2) = 2,

p(3) = 3,

p(4) = 5,

p(5) = 7

,

p(6) = 11,

p(7) = 15,

p(8) = 22,

p(9) = 30,

p(10) = 42

...



Partitions

Ways of writing positive integers as sums of positive integers.

p(1) = 1,

p(2) = 2,

p(3) = 3,

p(4) = 5,

p(5) = 7,

p(6) = 11,

p(7) = 15,

p(8) = 22,

p(9) = 30,

p(10) = 42

...



Partitions

Ways of writing positive integers as sums of positive integers.

p(n) = ?
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i+ j + k − 2

TSPPs of size n.
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Totally Symmetric Plane Partitions

Example: n = 3. There are 16 TSPPs altogether.

Let’s group them according to their number m of orbits:

0 1 2 3 4 5 6 7 8 9 10

Encode this statistics in the coefficients of a polynomial:

1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + 2q7 + q8 + q9 + q10

Cross check: Setting q = 1 gives back the total number 16.
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The Last Conjecture from Stanley’s List

Let Rn,m denote the number of totally symmetric plane partitions
of size n with exactly m orbits.

Then, for all n ≥ 1,

∞∑
m=0

Rn,mq
m ?

=
∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2 .
(1− qi+j+k−1)/(1− q)
(1− qi+j+k−2)/(1− q)

.
1 + q + q2 + · · ·+ qi+j+k−2

1 + q + q2 + · · ·+ qi+j+k−3 .

Example: For n = 3 the product evaluates to

(1− q2)(1− q3)(1− q4)2(1− q5)2(1− q6)2(1− q7)(1− q8)
(1− q)(1− q2)(1− q3)2(1− q4)2(1− q5)2(1− q6)(1− q7)

(1− q6)(1− q8)
(1− q)(1− q3)

(1 + q)2(1− q + q2)(1 + q2 + q4 + q6)1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + 2q7 + q8 + q9 + q10

Next: How to prove the conjecture using symbolic analysis.
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Okada’s Lemma

It is sufficient to show

det((ai,j))
n
i,j=1 =

∏
1≤i≤j≤k≤n

(1− qi+j+k−1

1− qi+j+k−2

)2
(n ≥ 1)

where

ai,j =
qi+j + qi − q − 1

q1−i−j(qi − 1)

i−1∏
k=1

1− qk+j−2

1− qk
+ (1 + qi)δi,j − δi,j+1.
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How to certify a determinant identity

The normalized cofactors cn,j satisfy the linear system
a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

an−1,1 · · · an−1,n−1 an−1,n
0 · · · 0 1




cn,1
...

cn,n−1
cn,n

 =


0
...
0
1

 .

This system has a unique solution.

The reasoning can therefore be put upside down:



How to certify a determinant identity

The normalized cofactors cn,j satisfy the linear system
a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

an−1,1 · · · an−1,n−1 an−1,n
0 · · · 0 1




cn,1
...

cn,n−1
cn,n

 =


0
...
0
1

 .

This system has a unique solution.

The reasoning can therefore be put upside down:



How to certify a determinant identity

The normalized cofactors cn,j satisfy the linear system
a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

an−1,1 · · · an−1,n−1 an−1,n
0 · · · 0 1




cn,1
...

cn,n−1
cn,n

 =


0
...
0
1

 .

This system has a unique solution.

The reasoning can therefore be put upside down:



How to certify a determinant identity

If cn,j is such that

(1) cn,n = 1 and (2)
n∑

j=1

ai,jcn,j = 0 (i < n),
then

cn,j = (−1)n+j (j = 1, . . . , n).

If in addition

(3)
n∑

j=1

an,jcn,j =
bn
bn−1

,

then det((ai,j))
n
i,j=1 = bn.
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How to certify a determinant identity

A function cn,j satisfying (1), (2), (3) is a certificate for the
determinant identity det((ai,j))

n
i,j=1 = bn.

Idea:

I Compute cn,j for 0 ≤ j ≤ n ≤ 500, say.

I Then guess a recursive description for the cn,j .

I Then offer these equations as a definition of cn,j .

I Then prove that cn,j defined in this way satisfies (1), (2), (3).

A priori, there is no reason for cn,j to have a recursive description.

But it turns out to have one.
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The Equations Describing the Certificate

Let Sn and Sj be the shift operators which map cn,j to

Sn · cn,j = cn+1,j and Sj · cn,j = cn,j+1

respectively.

Then a multivariate recurrence for cn,j corresponds to an
annihilating operator(

poly(q, qn, qj) + poly(q, qn, qj)Sn + poly(q, qn, qj)Sj

+ · · ·+ poly(q, qn, qj)S5
nS

7
j

)
· cn,j = 0

All annihilating operators of cn,j form a left ideal in the operator
algebra Q(n, j)〈Sn, Sj〉.
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The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.

They involve the following shift monomials Su
nS

v
j :

1 Sj S2
j

S3
j

S2
n

S2
nSj S2

nS2
j−737q36+12j+16nS4

j

689q43+10j+15nS3
j

Most of the pain is caused by the coefficients.

Total size of the basis, including coefficients: ≈ 300Mb.

Key property: Together with a some finitely many initial values,
the Gröbner basis fixes the sequence cn,j uniquely.
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The Gröbner basis of this ideal contains 5 elements.

They involve the following shift monomials Su
nS

v
j :

1 Sj S2
j

S3
j

S2
n

S2
nSj S2

nS2
j−737q36+12j+16nS4

j

689q43+10j+15nS3
j

Most of the pain is caused by the coefficients.

Total size of the basis, including coefficients: ≈ 300Mb.

Key property: Together with a some finitely many initial values,
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The Gröbner basis of this ideal contains 5 elements.

They involve the following shift monomials Su
nS

v
j :

1 Sj S2
j

S3
j

S2
n

S2
nSj S2

nS2
j

−737q36+12j+16nS4
j

689q43+10j+15nS3
j

Most of the pain is caused by the coefficients.

Total size of the basis, including coefficients: ≈ 300Mb.

Key property: Together with a some finitely many initial values,
the Gröbner basis fixes the sequence cn,j uniquely.



The Equations Describing the Certificate
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Prove that the Certificate is a Certificate

To show: (1) cn,n = 1 for all n ≥ 0.

Idea: Deduce from the Gröbner basis an annihilating operator of
the form

pol(q, qn, qj) + pol(q, qn, qj)S1
nS

1
j + pol(q, qn, qj)Sr

nS
r
j

− (qn − qj)pol(q, qn, qj , Sn, Sj)

Then set n = j to obtain a recurrence for cn,n of order r.

Then check that 1 is a solution of this recurrence and that
cn,n = 1 for n ≤ r.
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Prove that the Certificate is a Certificate

To show: (3)
n∑

j=1

an,jcn,j =
bn
bn−1

.

Idea: Construct an annihilating operator for an,jcn,j of the form

pol(q, qn) + pol(q, qn)Sn + · · ·+ pol(q, qn)Sr
n

− (Sj − 1)pol(q, qn, qj , Sn, Sj)

Then summing over j yields a recurrence of order r for the sum.

Then check that bn/bn−1 is a solution of this recurrence and that
the identity is true for n ≤ r.
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Prove that the Certificate is a Certificate

To show: (2)
n∑

j=1

ai,jcn,j = 0 for all i < n.
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Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness
recurrences which imply the truth of the identities.

I Their mere existence follows from a general theory.

I But for a rigorous proof, we need to know them explicitly.

I Several algorithms are known for computing such recurrences.

I But they were not conceived for 300Mb input. . .

I Note: the output is usually much bigger than the input.

I Several new algorithmic improvements had to be invented.

I And a careful implementation had to be produced.

I And some powerful computers had to be employed.
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Eventually, after several weeks of computation, we found:

I An explicit witness recurrence for (1) of size 13Mb.

I An explicit witness recurrence for (2) of size 1480Mb.

I An explicit witness recurrence for (3) of size 7227Mb.

This completed the proof of the qTSPP conjecture.

For data and further details, see
http://www.risc.jku.at/people/ckoutsch/qtspp/
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