
Algorithms for

Holonomic Functions

Manuel Kauers

Research Institute for Symbolic Computation
Johannes Kepler University

Austria

Context

Goal: Algorithms for dealing with functions:

Goal: Algorithms for dealing with functions:

◮ proving formulas

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

◮ approximating function values

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

◮ approximating function values

◮ plotting the graph

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

◮ approximating function values

◮ plotting the graph

◮ estimating the growth

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

◮ approximating function values

◮ plotting the graph

◮ estimating the growth

Want: Algorithms which take as input a function and produce
answers to these questions as output.

Goal: Algorithms for dealing with functions:

◮ proving formulas

◮ evaluating sums and integrals

◮ computing series expansions

◮ determining singularities

◮ approximating function values

◮ plotting the graph

◮ estimating the growth

Want: Algorithms which take as input a function and produce
answers to these questions as output.

Question: What does it mean to “take as input a function”?

Question: What does it mean to “take as input a function”?

Question: What does it mean to “take as input a function”?

Answer:

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

◮ For each value f(x) we must specify infinitely many decimal
digits

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

◮ For each value f(x) we must specify infinitely many decimal
digits

This is an infinite amount of information.

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

◮ For each value f(x) we must specify infinitely many decimal
digits

This is an infinite amount of information.

It is impossible to store this in a finite data structure.

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

◮ For each value f(x) we must specify infinitely many decimal
digits

This is an infinite amount of information.

It is impossible to store this in a finite data structure.

But algorithms can only operate on finite data structures.

Question: What does it mean to “take as input a function”?

Answer: NOTHING!

A real or complex function is an infinite object:

◮ For each of the infinitely many x, we must specify f(x)

◮ For each value f(x) we must specify infinitely many decimal
digits

This is an infinite amount of information.

It is impossible to store this in a finite data structure.

But algorithms can only operate on finite data structures.

Solution: Consider algorithms for suitably defined classes of
functions.

Solution: Consider algorithms for suitably defined classes of
functions.

A suitably defined class of functions should be

Solution: Consider algorithms for suitably defined classes of
functions.

A suitably defined class of functions should be

◮ not too big, because we want to be able to write down each
function in the class with a finite amount of data only, and we
want to compute with these.

Solution: Consider algorithms for suitably defined classes of
functions.

A suitably defined class of functions should be

◮ not too big, because we want to be able to write down each
function in the class with a finite amount of data only, and we
want to compute with these.

◮ not too small, because we want the class to contain as many
functions as possible of those which appear in applications
(e. g. in particle physics).

Solution: Consider algorithms for suitably defined classes of
functions.

A suitably defined class of functions should be

◮ not too big, because we want to be able to write down each
function in the class with a finite amount of data only, and we
want to compute with these.

◮ not too small, because we want the class to contain as many
functions as possible of those which appear in applications
(e. g. in particle physics).

Deciding on the right function class is the first step in algorithmic
problem solving.

Some common classes of functions:

Some common classes of functions:

Some common classes of functions:

Some common classes of functions:

Some common classes of functions:

Some common classes of functions:

Some common classes of functions:

Commercial: A good reference for these classes of functions (and
the corresponding algorithms) is

Commercial: A good reference for these classes of functions (and
the corresponding algorithms) is

Holonomy: The Case of One Variable

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x):

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x):

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

◮
1

1+
√
1−x2

:

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

◮
1

1+
√
1−x2

: (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

◮
1

1+
√
1−x2

: (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0

◮ Bessel functions, Hankel functions, Struve functions, Airy
functions, Polylogarithms, Elliptic integrals, the Error
function, Kelvin functions, Mathieu functions, . . .

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

◮
1

1+
√
1−x2

: (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0

◮ Bessel functions, Hankel functions, Struve functions, Airy
functions, Polylogarithms, Elliptic integrals, the Error
function, Kelvin functions, Mathieu functions, . . .

◮ Many functions which have no name and no closed form.

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

◮ exp(exp(x)− 1).

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

◮ exp(exp(x)− 1).

◮ The Riemann Zeta function.

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

◮ exp(exp(x)− 1).

◮ The Riemann Zeta function.

◮ Many functions which have no name and no closed form.

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

◮ exp(exp(x)− 1).

◮ The Riemann Zeta function.

◮ Many functions which have no name and no closed form.

This means that these functions can (provably) not be viewed as so-
lutions of a linear differential equation with polynomial coefficients.

Definition (continuous case). A function f is called holonomic if
there exists polynomials p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Approximately 60% of the
functions in Abramowitz
and Stegun’s handbook
fall into this category.

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

◮ A finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

◮ A finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)
(Usually, k = r suffices.)

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

◮ A finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)
(Usually, k = r suffices.)

Consequence: A holonomic function can be represented exactly by
a finite amount of data.

Theorem. The solution set of a linear differential equation of
order r is a vector space of dimension r.

Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

◮ A finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)
(Usually, k = r suffices.)

Consequence: A holonomic function can be represented exactly by
a finite amount of data.
(assuming that the constants appearing in equation and initial
values belong to a suitable subfield of C, e.g., to Q.)

Examples.

Examples.

◮ f(x) = exp(x)

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

◮ f(x) = the fifth modified Bessel function of the first kind

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

◮ f(x) = the fifth modified Bessel function of the first kind
⇐⇒ x2f ′′(x) + xf ′(x)− (x2 + 25)f(x) = 0,

f(0) = f ′(0) = · · · = f (4)(0) = 0, f (5)(0) = 1
32

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

◮ f(x) = the fifth modified Bessel function of the first kind
⇐⇒ x2f ′′(x) + xf ′(x)− (x2 + 25)f(x) = 0,

f(0) = f ′(0) = · · · = f (4)(0) = 0, f (5)(0) = 1
32

◮ . . .

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n:

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!:

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! :

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! : (n+ 2)an+2 − (n+ 1)an+1 − an = 0

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! : (n+ 2)an+2 − (n+ 1)an+1 − an = 0

◮ Fibonacci numbers, Harmonic numbers, Perrin numbers,
diagonal Delannoy numbers, Motzkin numbers, Catalan
numbers, Apery numbers, Schröder numbers, . . .

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! : (n+ 2)an+2 − (n+ 1)an+1 − an = 0

◮ Fibonacci numbers, Harmonic numbers, Perrin numbers,
diagonal Delannoy numbers, Motzkin numbers, Catalan
numbers, Apery numbers, Schröder numbers, . . .

◮ Many functions which have no name and no closed form.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

◮ 22
n
.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

◮ 22
n
.

◮ The sequence of prime numbers.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

◮ 22
n
.

◮ The sequence of prime numbers.

◮ Many sequences which have no name and no closed form.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

◮ 22
n
.

◮ The sequence of prime numbers.

◮ Many sequences which have no name and no closed form.

This means that these sequences can (provably) not be viewed as
solutions of a linear recurrence equation with polynomial coefficients.

Definition (discrete case). A sequence (an)
∞
n=0 is called holonomic

if there exists polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Approximately 25% of
the sequences in
Sloane’s Online
Encyclopedia of Integer
Sequences fall into this
category.

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)

Consequence: A holonomic sequence can be represented exactly by
a finite amount of data.

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)

Consequence: A holonomic sequence can be represented exactly by
a finite amount of data.
(assuming that the constants appearing in equation and initial
values belong to a suitable subfield of C, e.g., to Q.)

Examples.

Examples.

◮ an = 2n

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

◮ an = the number of involutions of n letters

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

◮ an = the number of involutions of n letters
⇐⇒ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0,

a0 = 1, a1 = 1, a2 = 2

Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

◮ an = the number of involutions of n letters
⇐⇒ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0,

a0 = 1, a1 = 1, a2 = 2

◮ . . .

Have:

Have:

◮ Finite data structure for representing holonomic objects

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

◮ Structural properties of the class of holonomic objects

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

◮ Structural properties of the class of holonomic objects

◮ Algorithms for doing explicit computations with them

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

The theorem is algorithmic:

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

The theorem is algorithmic:

◮ Given a differential equation for a(x), we can compute a
recurrence for (an)

∞
n=0.

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

The theorem is algorithmic:

◮ Given a differential equation for a(x), we can compute a
recurrence for (an)

∞
n=0.

◮ Given a recurrence for (an)
∞
n=0, we can compute a differential

equation for a(x).

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

INPUT: a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

INPUT: a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))

OUTPUT: (n+ 1)an+1 − an = 0, a0 = 1 (i.e., an = 1
n!)

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

INPUT: 2an+3 + nan+2 − 3(n+ 2)an+1 − (n+ 1)(n+ 2)an = 0

Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

INPUT: 2an+3 + nan+2 − 3(n+ 2)an+1 − (n+ 1)(n+ 2)an = 0

OUTPUT: x5a(5)(x) + (19x2 + 3x− 1)x2a(4)(x)
+ 2(55x3 + 15x2 − 2x− 1)a(3)(x) + 6(37x+ 12)xa′′(x)
+ 12(11x+ 3)a′(x) + 12a(x) = 0

Theorem (Asymptotics).

Theorem (Asymptotics).

◮ If a(x) is holonomic and has a singularity at ζ, then

a(x) ∼ c eP ((ζ−x)−1/r)(ζ − x)α log(ζ − x)β (x → ζ)

where c is a constant, P is a polynomial, r ∈ N, α is a
constant, and β ∈ N.

Theorem (Asymptotics).

◮ If a(x) is holonomic and has a singularity at ζ, then

a(x) ∼ c eP ((ζ−x)−1/r)(ζ − x)α log(ζ − x)β (x → ζ)

where c is a constant, P is a polynomial, r ∈ N, α is a
constant, and β ∈ N.

◮ If (an)
∞
n=0 is holonomic, then

an ∼ c eP (n1/r)nγnφnnα log(n)β (n → ∞)

where c is a constant, P is a polynomial, r ∈ N, φ, α, γ are
constants, and β ∈ N.

Algorithms.

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
2an+3+nan+2−3(n+2)an+1− (n+1)(n+2)an = 0, a0 = a1 = 1

Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
2an+3+nan+2−3(n+2)an+1− (n+1)(n+2)an = 0, a0 = a1 = 1

OUTPUT:
c e

√
n−n

2 nn/2
(
1− 119

1152n
−1 + 7

24n
−1/2 + 1967381

39813120n
−2 +O(n−3/2)

)

with c ≈ 0.55069531490318374761598106274964784671382 . . .

Commercial: A good reference for modern techniques for
computing asymptotic expansions is:

Commercial: A good reference for modern techniques for
computing asymptotic expansions is:

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

◮

∫ x
0 a(t)dt is holonomic.

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

◮

∫ x
0 a(t)dt is holonomic.

◮ if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

◮

∫ x
0 a(t)dt is holonomic.

◮ if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

The theorem is algorithmic:

Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

◮

∫ x
0 a(t)dt is holonomic.

◮ if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

The theorem is algorithmic:

◮ Differential equations for all these functions can be computed
from given defining equations of a(x) and b(x).

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

◮ if u, v ∈ Q are positive, then (a⌊un+v⌋)
∞
n=0 is holonomic.

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

◮ if u, v ∈ Q are positive, then (a⌊un+v⌋)
∞
n=0 is holonomic.

The theorem is algorithmic:

Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

◮ if u, v ∈ Q are positive, then (a⌊un+v⌋)
∞
n=0 is holonomic.

The theorem is algorithmic:

◮ Recurrence equations for all these sequences can be computed
from given defining equations of (an)

∞
n=0 and (bn)

∞
n=0.

Examples.

Examples.

INPUT:

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))
(1− x)b′′(x)− b′(x) = 0, b(0) = 0, b′(0) = −1

(i.e., b(x) = log(1− x))

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))
(1− x)b′′(x)− b′(x) = 0, b(0) = 0, b′(0) = −1

(i.e., b(x) = log(1− x))

(c(x) = a(x)b(x))

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))
(1− x)b′′(x)− b′(x) = 0, b(0) = 0, b′(0) = −1

(i.e., b(x) = log(1− x))

(c(x) = a(x)b(x))

OUTPUT:
(x− 1)c′′(x) + (3− 2x)c′(x) + (x− 2)c(x), c(0) = 0, c′(0) = −1.

Examples.

INPUT:
(n+ 1)an+1 − nan, a1 = 1 (i.e., an = 1

n)

Examples.

INPUT:
(n+ 1)an+1 − nan, a1 = 1 (i.e., an = 1

n)

(cn =
∑n

k=0 ak)

Examples.

INPUT:
(n+ 1)an+1 − nan, a1 = 1 (i.e., an = 1

n)

(cn =
∑n

k=0 ak)

OUTPUT:
(n+ 2)cn+2 − (2n+ 3)cn+1 + (n+ 1)cn = 0, c1 = 1, c2 =

3
2

Examples.

INPUT:
(n+ 2)an+2 − (2n+ 3)an+1 + (n+ 1)an = 0, a1 = 1, a2 =

3
2

(i.e., an =
∑n

k=1
1
k)

Examples.

INPUT:
(n+ 2)an+2 − (2n+ 3)an+1 + (n+ 1)an = 0, a1 = 1, a2 =

3
2

(i.e., an =
∑n

k=1
1
k)

(cn =
∑n

k=0 ak)

Examples.

INPUT:
(n+ 2)an+2 − (2n+ 3)an+1 + (n+ 1)an = 0, a1 = 1, a2 =

3
2

(i.e., an =
∑n

k=1
1
k)

(cn =
∑n

k=0 ak)

OUTPUT:
(n2 + 4n+ 4)cn+2 − (2n2 + 9n+ 9)cn+1 + (n2 + 5n+ 6)cn = 0,
c0 = 2, c1 =

9
2

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))
(1− 4x)b(x)2 − x2 = 0 (i.e. b(x) = x√

1−4x
)

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))
(1− 4x)b(x)2 − x2 = 0 (i.e. b(x) = x√

1−4x
)

(c(x) = a(b(x)))

Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))
(1− 4x)b(x)2 − x2 = 0 (i.e. b(x) = x√

1−4x
)

(c(x) = a(b(x)))

OUTPUT:
(4x−1)3(2x−1)c′′(x)+4(x−1)(4x−1)2c′(x)+(2x−1)3c(x) = 0,
c(0) = 1, c′(0) = 1

Implementations.

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]

Out[2]= −2(−1 + x+ 2x2)a[x] + (4x2 − 3)a′[x] + (2x+ 1)a′′[x] == 0

Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]

Out[2]= −2(−1 + x+ 2x2)a[x] + (4x2 − 3)a′[x] + (2x+ 1)a′′[x] == 0

These packages are particularly useful for proving identities.

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)

◮ P5(x) =
1
8(15x− 70x3 + 63x5)

◮ · · ·

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)

P0(x) = 1

P1(x) = x

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)

◮ P
(1,−1)
5 (x) = 3

8(1 + x− 14x2 − 14x3 + 21x4 + 21x5)

◮ · · ·

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)

P
(1,−1)
0 (x) = 1

P
(1,−1)
1 (x) = 1 + x

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

How to prove this identity?

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

How to prove this identity? −→ By induction!

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

How to prove this identity? −→ By induction!

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

How to prove this identity? −→ By induction!

Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.

n∑

k=0
︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

n∑

k=0
︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−
︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−
︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) −

︸ ︷︷ ︸

recurrence of order 3

1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0

︸ ︷︷ ︸

recurrence of order 7

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) −

︸ ︷︷ ︸

recurrence of order 3

1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

lhsn+7 = (· · ·messy · · ·) lhsn+6

+ (· · ·messy · · ·) lhsn+5

+ (· · ·messy · · ·) lhsn+4

+ (· · ·messy · · ·) lhsn+3

+ (· · ·messy · · ·) lhsn+2

+ (· · ·messy · · ·) lhsn+1

+ (· · ·messy · · ·) lhsn

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

lhsn+7 = (· · ·messy · · ·) lhsn+6

+ (· · ·messy · · ·) lhsn+5

+ (· · ·messy · · ·) lhsn+4

+ (· · ·messy · · ·) lhsn+3

+ (· · ·messy · · ·) lhsn+2

+ (· · ·messy · · ·) lhsn+1

+ (· · ·messy · · ·) lhsn

Therefore the identity holds for all n ∈ N

if and only if it holds for n = 0, 1, 2, . . . , 6.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x

◮ H4(x) = 16x4 − 48x2 + 12

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x

◮ H4(x) = 16x4 − 48x2 + 12

◮ H5(x) = 32x5 − 160x3 + 120x

◮ · · ·

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

Hn+2(x) = 2xHn+1(x)− 2(n+ 1)Hn(x)

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

Hn+2(x) = 2xHn+1(x)− 2(n+ 1)Hn(x)

H0(x) = 1

H1(x) = 2x

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

Then prove by induction that they are all zero.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

Then prove by induction that they are all zero.

Then the function is identically zero.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0
︸ ︷︷ ︸

rec. of
ord. 2

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0
︸ ︷︷ ︸

rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

︸︷︷︸
diff.eq.
of ord. 1

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

︸ ︷︷ ︸

differential equation of order 1

︸︷︷︸
diff.eq.
of ord. 1

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸

differential equation of order 1

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

︸ ︷︷ ︸

differential equation of order 1

︸︷︷︸
diff.eq.
of ord. 1

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸

differential equation of order 1

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

︸ ︷︷ ︸

differential equation of order 1

︸︷︷︸
diff.eq.
of ord. 1

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

︸ ︷︷ ︸

differential equation of order 5

 recurrence equation of order 4

︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn −

︸ ︷︷ ︸

differential equation of order 1

︸ ︷︷ ︸
diff.eq.
of ord. 1

1√
1− 4t2

︸ ︷︷ ︸

differential equation of order 1

︸︷︷︸
diff.eq.
of ord. 1

exp

︸ ︷︷ ︸

diff.eq. of order 1

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

If we write lhs(t) =
∑∞

n=0 lhsn t
n, then

lhsn+4 =
4xy
n+4 lhsn+3+

4(2n−2x2−2y2+5)
n+4 lhsn+2

+ 16xy
n+4 lhsn+1−16(n+1)

n+4 lhsn .

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

If we write lhs(t) =
∑∞

n=0 lhsn t
n, then

lhsn+4 =
4xy
n+4 lhsn+3+

4(2n−2x2−2y2+5)
n+4 lhsn+2

+ 16xy
n+4 lhsn+1−16(n+1)

n+4 lhsn .

Because of lhs0 = lhs1 = lhs2 = lhs3 = 0, we have lhsn = 0 for
all n.

∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

If we write lhs(t) =
∑∞

n=0 lhsn t
n, then

lhsn+4 =
4xy
n+4 lhsn+3+

4(2n−2x2−2y2+5)
n+4 lhsn+2

+ 16xy
n+4 lhsn+1−16(n+1)

n+4 lhsn .

Because of lhs0 = lhs1 = lhs2 = lhs3 = 0, we have lhsn = 0 for
all n.

This completes the proof.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

Problem:

(
n

k

)

depends on two variables.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

n∑

k=0

(−4)−k

(
2k

k

)
n!

k!(n− k)!
= 4−n

(
2n

n

)

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

n!
n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!
= 4−n

(
2n

n

)

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!
= 4−n

(
2n

n

)
1

n!

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!
= 4−n

(
2n

n

)
1

n!

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

n∑

k=0

akbn−k

n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!
= 4−n

(
2n

n

)
1

n!

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

∞∑

n=0

(n∑

k=0

akbn−k

)

xn

n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!
= 4−n

(
2n

n

)
1

n!

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

∞∑

n=0

(n∑

k=0

akbn−k

)

xn =

(∞∑

n=0

anx
n

)(∞∑

n=0

bnx
n

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn =
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn

Problem:

(
n

k

)

depends on two variables.

The summation closure closure property is not directly applicable.

Trick: Switch to the function level!

∞∑

n=0

(n∑

k=0

akbn−k

)

xn =

(∞∑

n=0

anx
n

)(∞∑

n=0

bnx
n

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn =
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

(∞∑

n=0

(−4)−n

n!

(
2n

n

)

xn
)(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −
∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −

︸ ︷︷ ︸

diff.eq. of order 3

∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

differential equation of order 5

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −

︸ ︷︷ ︸

diff.eq. of order 3

∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

differential equation of order 5

 recurrence equation of order 7

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −

︸ ︷︷ ︸

diff.eq. of order 3

∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

4−n

(
2n

n

)
1

n!
xn = 0

︸ ︷︷ ︸

differential equation of order 5

 recurrence equation of order 7

︸ ︷︷ ︸

=

︸ ︷︷ ︸

differential equation of order 3

︸ ︷︷ ︸

differential equation of order 3

(∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

(−4)−n

n!

(
2n

n

)

xn
)

︸ ︷︷ ︸

diff.eq. of ord. 1

(∞∑

n=0

1

n!
xn

)

∞∑

n=0

(n∑

k=0

(−4)−k

(
2k

k

)
1

k!

1

(n− k)!

)

xn −

︸ ︷︷ ︸

diff.eq. of order 3

∞∑

n=0
︸ ︷︷ ︸

rec. of order 1

4−n

(
2n

n

)
1

n!
xn = 0

The identity is proved as soon as it is checked for the first 7 terms.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

◮ Of course, this particular example can be done easily with
Zeilberger’s algorithm.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

◮ Of course, this particular example can be done easily with
Zeilberger’s algorithm.

◮ Of course, the the holonomic machinary is more general than
the hypergeometric one.

n∑

k=0

(−4)−k

(
2k

k

)(
n

k

)

= 4−n

(
2n

n

)

◮ Of course, this particular example can be done easily with
Zeilberger’s algorithm.

◮ Of course, the the holonomic machinary is more general than
the hypergeometric one.

◮ Of course, a good implementation will do the whole
computation in one stroke.

Algorithms for executing closure properties are rigorous.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Idea: In order to find a recurrence for (an)
∞
n=0,

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Idea: In order to find a recurrence for (an)
∞
n=0,

◮ Compute a finite (but large) number N of sequence terms.

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Idea: In order to find a recurrence for (an)
∞
n=0,

◮ Compute a finite (but large) number N of sequence terms.

◮ Compute recurrences which match a0, a1, . . . , aN .

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Idea: In order to find a recurrence for (an)
∞
n=0,

◮ Compute a finite (but large) number N of sequence terms.

◮ Compute recurrences which match a0, a1, . . . , aN .

◮ Guess that these recurrences continue to hold for n ≥ N .

Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.

The prize is that the computations sometimes take long.

It can be faster to compute only experimental results.

Or to combine experimental computations with rigorous ones.

In practice, experimental results are as reliable as rigorous ones.

Idea: In order to find a recurrence for (an)
∞
n=0,

◮ Compute a finite (but large) number N of sequence terms.

◮ Compute recurrences which match a0, a1, . . . , aN .

◮ Guess that these recurrences continue to hold for n ≥ N .

◮ If desired, prove this by an independent argument.

Example: What’s next?

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

A program can find this.

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

A program can find this.

If the recurrence is also true for n > 7, then the next terms should
be 4862, 16796, . . .

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

A program can find this.

If the recurrence is also true for n > 7, then the next terms should
be 4862, 16796, . . .

Whether the recurrence is also true for n > 7, this cannot be
judged by looking at any finite amount of data.

Example: What’s next?

1, 1, 2, 5, 14, 42, 132, 429, 1430, ???

We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

A program can find this.

If the recurrence is also true for n > 7, then the next terms should
be 4862, 16796, . . .

Whether the recurrence is also true for n > 7, this cannot be
judged by looking at any finite amount of data.

But the more data we check, the more “likely” it becomes.

Example: What’s the recurrence for

n∑

k=0

((
3k

k

) k∑

i=0

(
k

i

)10 k∑

i=0

i10
(
k

i

))

?

Example: What’s the recurrence for

n∑

k=0

((
3k

k

) k∑

i=0

(
k

i

)10 k∑

i=0

i10
(
k

i

))

?

◮ It is clear by closure properties that a recurrence exist.

Example: What’s the recurrence for

n∑

k=0

((
3k

k

) k∑

i=0

(
k

i

)10 k∑

i=0

i10
(
k

i

))

?

◮ It is clear by closure properties that a recurrence exist.

◮ It might still be hard to actually compute it.

Example: What’s the recurrence for

n∑

k=0

((
3k

k

) k∑

i=0

(
k

i

)10 k∑

i=0

i10
(
k

i

))

?

◮ It is clear by closure properties that a recurrence exist.

◮ It might still be hard to actually compute it.

◮ Efficient shortcut: Evaluate the sum for n = 0, . . . , 500, say,
and compute a recurrence from this data.

Example: What’s the recurrence for

n∑

k=0

((
3k

k

) k∑

i=0

(
k

i

)10 k∑

i=0

i10
(
k

i

))

?

◮ It is clear by closure properties that a recurrence exist.

◮ It might still be hard to actually compute it.

◮ Efficient shortcut: Evaluate the sum for n = 0, . . . , 500, say,
and compute a recurrence from this data.

◮ Result (with high probability): A recurrence of order 6 with
polynomial coefficients of degree 94.

Summary

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Many questions about holonomic functions can be answered
computationally (rigorously or not).

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Many questions about holonomic functions can be answered
computationally (rigorously or not).

◮ Software packages for Maple and Mathematical are available
for these tasks.

Algorithms for

Holonomic Functions

Manuel Kauers

Research Institute for Symbolic Computation
Johannes Kepler University

Austria

Recall: The Case of One Variable

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Many questions about holonomic functions can be answered
computationally (rigorously or not).

◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Many questions about holonomic functions can be answered
computationally (rigorously or not).

◮ Software packages for Maple and Mathematical are available
for these tasks.

Holonomy: The Case of Several Variables

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

Examples.

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

Examples.

◮ exp(x− y): 2 continuous and 0 discrete variables.

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

Examples.

◮ exp(x− y): 2 continuous and 0 discrete variables.

◮

(
n
k

)
: 0 continuous and 2 discrete variables.

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

Examples.

◮ exp(x− y): 2 continuous and 0 discrete variables.

◮

(
n
k

)
: 0 continuous and 2 discrete variables.

◮ Pn(x) 1 continuous and 1 discrete variable.

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

We want to differentiate the xi and to shift the nj :

∂5

∂x5
∂3

∂y3
f(x, y, n+ 4, k + 23)

We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

We want to differentiate the xi and to shift the nj :

∂5

∂x5
∂3

∂y3
f(x, y, n+ 4, k + 23)

Compact notation:
D5

xD
3
yS

4
nS

23
k f

Definition. A function f(x1, . . . , xp, n1, . . . , nq) is called
holonomic, if

Definition. A function f(x1, . . . , xp, n1, . . . , nq) is called
holonomic, if

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Dxk
f + p2D

2
xk
f + · · ·+ prD

r
xk
f = 0.

Definition. A function f(x1, . . . , xp, n1, . . . , nq) is called
holonomic, if

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Dxk
f + p2D

2
xk
f + · · ·+ prD

r
xk
f = 0.

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Snk
f + p2S

2
nk
f + · · ·+ prS

r
nk
f = 0.

Definition. A function f(x1, . . . , xp, n1, . . . , nq) is called
holonomic, if

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Dxk
f + p2D

2
xk
f + · · ·+ prD

r
xk
f = 0.

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Snk
f + p2S

2
nk
f + · · ·+ prS

r
nk
f = 0.

Warning! This is just a somewhat oversimplified
approximation to the official definition

Examples.

Examples.

◮ f(x, y) = exp(x− y) is holonomic because

Dxf − f = 0 and Dyf + f = 0.

Examples.

◮ f(x, y) = exp(x− y) is holonomic because

Dxf − f = 0 and Dyf + f = 0.

◮ f(n, k) =
(
n
k

)
is holonomic because

(1−k+n)Snf−(n+1)f = 0 and (k+1)Skf+(k−n)f = 0.

Examples.

◮ f(x, y) = exp(x− y) is holonomic because

Dxf − f = 0 and Dyf + f = 0.

◮ f(n, k) =
(
n
k

)
is holonomic because

(1−k+n)Snf−(n+1)f = 0 and (k+1)Skf+(k−n)f = 0.

◮ f(x, n) = Pn(x) is holonomic because

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0

Counterexamples.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not holonomic.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not holonomic.

It satisfies a recurrence in n, but no differential equation in x.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not holonomic.

It satisfies a recurrence in n, but no differential equation in x.

◮ f(n, k) = S1(n, k) [Stirling numbers] is not holonomic.

Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not holonomic.

It satisfies a recurrence in n, but no differential equation in x.

◮ f(n, k) = S1(n, k) [Stirling numbers] is not holonomic.

It satisfies the recurrence

SnSkf + nSnf − f = 0,

but no “pure” recurrence in Sk or Sn.

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

The solution is uniquely determined by

f(0, 0), f(1, 0), f(2, 0), f(1, 0), f(1, 1), f(2, 1).

Theorem. A holonomic function is uniquely determined by a
holonomic system of equations and a finite number of initial values.

Example.

◮ Consider the equations

(. . .)S2
nf + (. . .)Snf + (. . .)f = 0

(. . .)S3
kf + (. . .)S2

kf + (. . .)Skf + (. . .)f = 0

The solution is uniquely determined by

f(0, 0), f(1, 0), f(2, 0), f(1, 0), f(1, 1), f(2, 1).

Simiarly for differential equations and for systems containing mixed
equations.

Holonomy requires for every variable a pure equation.

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0 and

(x2 − 1)Dxf − (n+ 1)Snf + (n+ 1)xf = 0.

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0 and

(x2 − 1)Dxf − (n+ 1)Snf + (n+ 1)xf = 0.

In this case, any two equations imply the other.

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0 and

(x2 − 1)Dxf − (n+ 1)Snf + (n+ 1)xf = 0.

In this case, any two equations imply the other.

In general, mixed equations may contain additional information.

Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0 and

(x2 − 1)Dxf − (n+ 1)Snf + (n+ 1)xf = 0.

In this case, any two equations imply the other.

In general, mixed equations may contain additional information.

A system of equations is called holonomic if it implies for every
variable a pure equation.

Have:

Have:

◮ Finite data structure for representing holonomic objects

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

◮ Structural properties of the class of holonomic objects

Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

◮ Structural properties of the class of holonomic objects

◮ Algorithms for doing explicit computations with them

Theorem (closure properties). Let f and g be holonomic functions.
Then:

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

◮ Snf is holonomic for every discrete variable n

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

◮ Snf is holonomic for every discrete variable n

◮

∑n
k=0 f(. . . , k, . . .) is holonomic for every discrete variable n

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

◮ Snf is holonomic for every discrete variable n

◮

∑n
k=0 f(. . . , k, . . .) is holonomic for every discrete variable n

◮ If h1, . . . , hp are algebraic functions in x1, . . . , xp, free of
n1, . . . , nq, then f(h1, . . . , hp, n1, . . . , nq) is holonomic.

Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

◮ Snf is holonomic for every discrete variable n

◮

∑n
k=0 f(. . . , k, . . .) is holonomic for every discrete variable n

◮ If h1, . . . , hp are algebraic functions in x1, . . . , xp, free of
n1, . . . , nq, then f(h1, . . . , hp, n1, . . . , nq) is holonomic.

◮ If h1, . . . , hq are integer-linear functions in n1, . . . , nq, free of
x1, . . . , xp, then f(x1, . . . , xp, h1, . . . , hq) is holonomic.

The theorem is algorithmic:

The theorem is algorithmic:

◮ Holonomic systems for all these functions can be computed
from given holonomic systems of f and g.

The theorem is algorithmic:

◮ Holonomic systems for all these functions can be computed
from given holonomic systems of f and g.

There is software available for this.

The theorem is algorithmic:

◮ Holonomic systems for all these functions can be computed
from given holonomic systems of f and g.

There is software available for this.

◮ For Maple: mgfun by Chyzak, distributed together with
Maple.

The theorem is algorithmic:

◮ Holonomic systems for all these functions can be computed
from given holonomic systems of f and g.

There is software available for this.

◮ For Maple: mgfun by Chyzak, distributed together with
Maple.

◮ For Mathematica: HolonomicFunctions.m by Koutschan,
available from the RISC combinatorics software website.

Example.

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= Annihilator[n!xnExp[x]LegendreP[2n + 3, Sqrt[1 − x2]],
{Der[x], S[n]}]

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= Annihilator[n!xnExp[x]LegendreP[2n + 3, Sqrt[1 − x2]],
{Der[x], S[n]}]

Out[2]=

{

(−9x2 − . . .)Dx + (4n2 + . . .)Sn + (13nx4 + . . .),

(16n3 + · · ·)S2
n + (64n4x3 + . . .)Sn + (16n5x2 + · · ·)

}

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
Sum[1/k!, {k, 0, n}], {S[n], S[k]}]

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
Sum[1/k!, {k, 0, n}], {S[n], S[k]}]

Out[3]=

{

(2k2 + . . .)S2
k + (n2 + · · ·)Sk + (3kn+ · · ·),

(n2 + · · ·)SnSk + (3kn+ · · ·)Sn + (2kn+ · · ·)Sk + (n2 + · · ·),
(4kn3 + · · ·)S2

n + (n4 + · · ·)Sn + (k2n2 + · · ·)Sk − (n3 + · · ·)
}

Example.

◮ f(x, n) =
∫ x
0 Pn(t)dt

Example.

◮ f(x, n) =
∫ x
0 Pn(t)dt

In[4]:= Annihilator[Integrate[LegendreP[n, t], {t, 0, x}],
{Der[x], S[n]}]

Example.

◮ f(x, n) =
∫ x
0 Pn(t)dt

In[4]:= Annihilator[Integrate[LegendreP[n, t], {t, 0, x}],
{Der[x], S[n]}]

Out[4]=

{

(2n5x2 + · · ·)S3
n + · · · · · · , (2n3x2 + · · ·)DxSn + · · · · · · ,

(2n2x5 + · · ·)D2
xSn + · · · · · · , (nx7 + · · ·)D3

x + · · · · · ·
}

Low-level commands for executing closure properties “by hand”:

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

◮ DFiniteOreAction

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

◮ DFiniteOreAction

◮ DFiniteDE2RE

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

◮ DFiniteOreAction

◮ DFiniteDE2RE

◮ DFiniteRE2DE

Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

◮ DFiniteOreAction

◮ DFiniteDE2RE

◮ DFiniteRE2DE

Use this commands for functions whose definition is not known to
Annihilator or for expressions where the Annihilator
command takes a long time.

Example.

◮ Pn(x) + xn exp(x)

Example.

◮ Pn(x) + xn exp(x)

In[5]:= annP = OreGroebnerBasis[{(x2 − 1)Der[x]− (n+1)S[n]
+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

Example.

◮ Pn(x) + xn exp(x)

In[5]:= annP = OreGroebnerBasis[{(x2 − 1)Der[x]− (n+1)S[n]
+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

In[6]:= annE = OreGroebnerBasis[{xDer[x] − (n + x),
S[n] − x},OreAlgebra[Der[x], S[n]]];

Example.

◮ Pn(x) + xn exp(x)

In[5]:= annP = OreGroebnerBasis[{(x2 − 1)Der[x]− (n+1)S[n]
+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

In[6]:= annE = OreGroebnerBasis[{xDer[x] − (n + x),
S[n] − x},OreAlgebra[Der[x], S[n]]];

In[7]:= DFinitePlus[annP , annE]

Example.

◮ Pn(x) + xn exp(x)

In[5]:= annP = OreGroebnerBasis[{(x2 − 1)Der[x]− (n+1)S[n]
+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

In[6]:= annE = OreGroebnerBasis[{xDer[x] − (n + x),
S[n] − x},OreAlgebra[Der[x], S[n]]];

In[7]:= DFinitePlus[annP , annE]

Out[7]= {Dx(nx
3−nx+x3−x)+Sn(−3n2x−2nx2−5nx−3x2−x)+S2

n
(n2+nx+2n+2x)+

n2x2+n2+2nx2+nx+n+x2+x,DxSn(nx
2−n+x3−x)+(x2−x4)Dx+Sn(n

2(−x)−

nx)+n2−nx3+nx+n−x3+x,Dx(n
2x2−n2−2nx5+2nx4+4nx3−3nx2−2nx+n−

x6+2x4−x2)+D2

x
(nx5−2nx3+nx+x6−2x4+x2)−n3x3+2n3x−3n2x4−n2x3+

3n2x2+n2x+Sn(−n3+2n2x3−2n2x+nx4+4nx3−nx2−2nx+n+x4+2x3−x2)−

nx5−5nx4+nx3+3nx2−nx−x5−2x4+x3}

Theorem (Summation/Integration).

Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.

Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.

◮ If f is holonomic, then so is

∞∑

k=−∞
f(x1, . . . , xp, k, n2, . . . , nq),

provided that this sum exists.

Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.

◮ If f is holonomic, then so is

∞∑

k=−∞
f(x1, . . . , xp, k, n2, . . . , nq),

provided that this sum exists.

Warning! Strictly speaking, this item only holds
for the official definition of holonomic.

Note the difference between indefinite and definite summation and
integration:

Note the difference between indefinite and definite summation and
integration:

Indefinite: Definite:

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Definite:

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Definite:

g(m) =

∞∑

k=−∞
f(k,m).

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

Definite:

g(m) =

∞∑

k=−∞
f(k,m).

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

Definite:

g(m) =

∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(m) =

∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(n,m) =

n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(m) =

∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.

w
�

hard

Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(x, y) =

∫ x

0
f(t, y) dt.

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(y) =

∫ ∞

−∞
f(t, y) dt.

The sum has one variable less
than the summand.

w
�

hard

The situation for integration is fully analogous.

Examples.

Examples.

◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(n+ 2)S2
nf − (10n+ 15)Snf + (9n+ 9)f = 0.

Examples.

◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(n+ 2)S2
nf − (10n+ 15)Snf + (9n+ 9)f = 0.

◮ f(x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)dt satisfies

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f = 0.

Examples.

◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(n+ 2)S2
nf − (10n+ 15)Snf + (9n+ 9)f = 0.

◮ f(x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)dt satisfies

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f = 0.

◮ f(x, t) =
∑∞

n=0 Pn(t)x
n satisfies

(x2−2tx+1)Dtf−xf=0 and (x2−2tx+1)Dxf+(x−t)f=0.

Examples.

◮ f(n) =
∫ 1
0

∫ 1
0

w−1−ǫ/2(1−z)ǫ/2z−ǫ/2

(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(8ǫn7 + · · ·)S3
nf − (24ǫn7 + · · ·)S2

nf

− (24ǫn7 + · · ·)Snf + (8ǫn7 + · · ·)f = 0.

Examples.

◮ f(n) =
∫ 1
0

∫ 1
0

w−1−ǫ/2(1−z)ǫ/2z−ǫ/2

(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(8ǫn7 + · · ·)S3
nf − (24ǫn7 + · · ·)S2

nf

− (24ǫn7 + · · ·)Snf + (8ǫn7 + · · ·)f = 0.

◮ f(x) =

∫ 1

0
t2(1− t)22F1

(
a b

c

∣
∣
∣xt

)

dt satisfies

x2(x− 1)D3
xf + (. . .)D2

xf + (. . .)Dxf + 3abf = 0.

How does this work?

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

Then integrating both sides gives

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

Then integrating both sides gives

a(x)F (x) + b(x)DxF (x) + c(x)D2
xF (x) = 0

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒ 16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(
−2(4t5x− 4t3x− 9t3 − t2 + 8t)f

)

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(
−2(4t5x− 4t3x− 9t3 − t2 + 8t)f

)

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2). F (x) =

∫∞
0 f(x, t)dt

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2). F (x) =

∫∞
0 f(x, t)dt

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

=⇒

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2). F (x) =

∫∞
0 f(x, t)dt

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

=⇒ 16x2D3
xF + (16x2 + 96x)D2

xF + (72x+ 99)DxF + 48F = 0

How to construct a creative telescoping relation?

How to construct a creative telescoping relation?

There are algorithms for this task.

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

◮ Chyzak’s algorithm (generalizing Zeilberger’s algorithm)

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

◮ Chyzak’s algorithm (generalizing Zeilberger’s algorithm)

◮ Takayama’s algorithm

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

◮ Chyzak’s algorithm (generalizing Zeilberger’s algorithm)

◮ Takayama’s algorithm

Depending on the problem at hand, any of these algorithms may
be much more efficient than the others.

Koutschan’s package provides the command
FindCreativeTelescoping.

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= FindCreativeTelescoping[t2Sqrt[t + 1]Exp[−xt2],
{Der[t]}, {Der[x]}]

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= FindCreativeTelescoping[t2Sqrt[t + 1]Exp[−xt2],
{Der[t]}, {Der[x]}]

Out[2]=

{{
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dxf + 48

}
,

{
{−2(4t5x− 4t3x− 9t3 − t2 + 8t)}

}}

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x, t) =
∑∞

n=0 Pn(x)t
n

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x, t) =
∑∞

n=0 Pn(x)t
n

In[3]:= FindCreativeTelescoping[LegendreP[n, x]tn, {S[n] − 1},
{Der[x],Der[t]}]

Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x, t) =
∑∞

n=0 Pn(x)t
n

In[3]:= FindCreativeTelescoping[LegendreP[n, x]tn, {S[n] − 1},
{Der[x],Der[t]}]

Out[3]=

{{
(1 + t2 − 2tx)Dt + (t− x), (−1− t2 + 2tx)Dx + t

}
,

{
{(−1 + x2)Dx − n(tx−1)

t
}, {(−1 + tx)Dx − nt}

}}

Summary

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ In particular, summation and integration preserves holonomy.

◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ In particular, summation and integration preserves holonomy.

◮ Software packages for Maple and Mathematical are available
for computing with holonomic functions.

