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11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let
a, b, and c be the side-lengths of a triangle, and let f(x, y, z) =
xy(y + z − 2x)(y + z − x)2. Prove that

f(a, b, c) + f(b, c, a) + f(c, a, b) ≥ 0.
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11297. Proposed by Marian Tetiva, Bı̂rlad, Romania. For posi-
tive a, b, and c, let

E(a, b, c) =
a2b2c2 − 64

(a + 1)(b + 1)(c + 1)− 27
.

Find the minimum value of E(a, b, c) on the set D consisting of
all positive triples (a, b, c), other than (2, 2, 2), at which abc =
a + b + c + 2.
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11397. Proposed by Grahame Bennet, Indiana University,

Bloomington, IN. Let a, b, c, x, y, z be positive numbers such
that a + b + c = x + y + z and abc = xyz. Show that if
max{x, y, z} ≥ max{a, b, c} then min{x, y, z} ≥ min{a, b, c}.
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two commands into a computer algebra system.

◮ The computation time is no more than a few seconds per
problem (not counting the time for typing the commands).

◮ The algorithm is not easy to program, but easy to apply.

◮ Its applicability extends far beyond Monthly problems.

◮ It is not as widely known as it deserves.
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◮ invented by George E. Collins in 1975.

◮ improved by H. Hong, C. Brown, S. McCallum, and others.

◮ implemented by A. Strzebonski in Mathematica (e.g.).

◮ applied by many different people in many different areas.

◮ promoted by MK for your consideration.
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f(x1, x2, . . . , xn)♦ g(x1, x2, . . . , xn)

where

◮ ♦ is one of =, 6=, <, >,≤,≥
◮ f and g are polynomials in x1, x2, . . . , xn with coefficients

in Q.

◮ More generally f and g may be algebraic functions in
x1, . . . , xn defined by annihilating polynomials in
x1, . . . , xn, Y with coefficients in Q.

Examples: x > 0, x2 + y2 < 1,
√

1− x2 < 3
√

y
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Examples:
(−1 ≤ x ∧ y ≤ 1)⇒ (x + y)2 > 1

2 ∨ x 6= y,
(x ≥ 0 ∧ y ≥ x ∧ z ≥ x)⇒ x2 + y2 + z2 ≥ 0.

Examples involving shorthand notation:
|x| ≤ 1 ←→ x ≥ −1 ∧ x ≤ 1
1 ≤ max{x, y} ≤ x2 + y2 ←→ x ≥ y ∧ (1 ≤ x∧x ≤ x2 + y2)

∨ x < y ∧ (1 ≤ y ∧ y ≤ x2 + y2)
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Examples:
The formula x2 + 1 = 0 is always false.
The formula x2 − 2 = 0 may be true or false.
The formula x2 ≥ 0 is always true.
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Two systems Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are equivalent if

∀ x1, x2, . . . , xn ∈ R : Φ(x1, . . . , xn) ⇐⇒ Ψ(x1, . . . , xn)

is true.

Examples:
x2 < 1 and −1 < x ∧ x < 1 are equivalent.
x2 + y2 + z2 < 0 and false are equivalent.
x2 + y2 + z2 ≥ 0 and true are equivalent.
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inequalities becomes either true or false.
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Sets defined by systems of
polynomial inequalities are
called semialgebraic sets.

“Given a semialgebraic set” means
“given a defining system of polynomial inequalities”.
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For geometric reasons, we have

a + b ≥ c ≥ 0

a + c ≥ b ≥ 0

b + c ≥ a ≥ 0.
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Answer: e ≥ 23+
√
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8 .

(Lagrange multipliers + Gröbner bases would have worked as well.)
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What a mess!

The CAD output in the previous example is somewhat messy.

But it has a striking structure:

e = 23+
√

17
8 ∧

∨ 23+
√

17
8 < e < 32

9 ∧

∨ e = 32
9 ∧

∨ 32
9 < e < 4 ∧

∨ e ≥ 4 ∧

The boxes represent some formulas involving a, b, c, e which are
guaranteed to be satisfiable.
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◮ 1 variable: A system of polynomial inequalities is called a
CAD in x if it is of the form

Φ1 ∨ Φ2 ∨ · · · ∨ Φm

where each Φk is of the form x < α or α < x < β or x > β or
x = γ for some real algebraic numbers α, β, γ (α < β) and
any two Φk are mutually inconsistent.
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◮ 1 variable: A system of polynomial inequalities is called a
CAD in x if it is of the form

Φ1 ∨ Φ2 ∨ · · · ∨ Φm

where each Φk is of the form x < α or α < x < β or x > β or
x = γ for some real algebraic numbers α, β, γ (α < β) and
any two Φk are mutually inconsistent.

◮ n variables: A system of polynomial inequalities is called a
CAD in x1, . . . , xn if it is of the form

(Φ1 ∧Ψ1) ∨ (Φ2 ∧Ψ2) ∨ · · · ∨ (Φm ∧Ψm)

where the Φk are such that Φ1 ∨ · · · ∨ Φk is a CAD in x1 and
the Ψk are CADs in x2, . . . , xn whenever x1 is replaced by a
real algebraic number satisfying Φk.



Example

Here is a CAD for the unit sphere:

x = −1 ∧ y = 0 ∧ z = 0

∨ −1 < x < 1 ∧
(

y = −
√

1− x2 ∧ z = 0

∨ −
√

1− x2 < y <
√

1− x2∧
(

z = −
√

1− x2 − y2

∨ −
√

1− x2 − y2 < z <
√

1− x2 − y2

∨ z =
√

1− x2 − y2
)

∨ y = −
√

1− x2 ∧ z = 0
)

∨ x = 1 ∧ y = 0 ∧ z = 0
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Often, CAD computations in such applications are feasible only
after some appropriate preprocessing.



A nontrivial Example



A nontrivial Example

A triangular norm is a map

T : [0, 1]2 → [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.



A nontrivial Example

A triangular norm is a map

T : [0, 1]2 → [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.

Examples:



A nontrivial Example

A triangular norm is a map

T : [0, 1]2 → [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.

Examples:

◮ The minimum norm (u, v) 7→ min(u, v)



A nontrivial Example

A triangular norm is a map

T : [0, 1]2 → [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.

Examples:

◮ The minimum norm (u, v) 7→ min(u, v)

◮ The product norm (u, v) 7→ uv



A nontrivial Example

A triangular norm is a map

T : [0, 1]2 → [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.

Examples:

◮ The minimum norm (u, v) 7→ min(u, v)

◮ The product norm (u, v) 7→ uv

◮ The  Lukasiewicz norm (u, v) 7→ max(u + v − 1, 0)
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A norm T is said to dominate a norm T ′ if

T (T ′(u, v), T ′(x, y)) ≤ T ′(T (u, x), T (v, y))

for all x, y, u, v ∈ [0, 1].

Question: What are the λ, µ ≥ 0 such that the Sugeno-Weber
norm Tλ dominates the Sugeno-Weber norm Tµ?

Theorem (Kauers, Pillwein, Saminger-Platz, 2010)
Tλ dominates Tµ if and only if (a) λ = µ or (b)
0 ≤ λ ≤ µ ≤ 17 + 12

√
2 or (c) µ < 17 + 12

√
2 and

0 ≤ λ ≤ (
1−3

√
µ

3−√
µ )2.



A nontrivial Example

Just use CAD to eliminate the quantifiers from the formula

∀ x, y, u, v ∈ [0, 1] :

max
(
0, (1− λ)max(0, (1− µ)uv + µ(u + v − 1))

×max(0, (1− µ)xy + µ(x + y − 1)
)

+ λ
(
max(0, (1− µ)uv + µ(u + v − 1))

+ max(0, (1− µ)xy + µ(x + y − 1))− 1)
)

≥ max
(
0, (1− µ)max(0, (1− λ)ux + λ(u + x− 1))

×max(0, (1− λ)vy + λ(v + y − 1)
)

+ µ
(
max(0, (1− λ)ux + λ(u + x− 1))

+ max(0, (1− λ)vy + λ(v + y − 1))− 1)
)
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∀ x, y, u, v ∈ [0, 1] :

max
(
0, (1− λ)max(0, (1− µ)uv + µ(u + v − 1))

×max(0, (1− µ)xy + µ(x + y − 1)
)

+ λ
(
max(0, (1− µ)uv + µ(u + v − 1))

+ max(0, (1− µ)xy + µ(x + y − 1))− 1)
)

≥ max
(
0, (1− µ)max(0, (1− λ)ux + λ(u + x− 1))

×max(0, (1− λ)vy + λ(v + y − 1)
)

+ µ
(
max(0, (1− λ)ux + λ(u + x− 1))

+ max(0, (1− λ)vy + λ(v + y − 1))− 1)
)
.

This is possible in principle, but not in practice.
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Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand

2. Eliminate the outer maxima

3. Eliminate the inner maxima

4. Sort out redundant clauses (using CAD)

5. Apply some logical simplifications (using CAD)

6. Apply some algebraic simplifications

7. Apply CAD to finish up
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1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases

0 < λ < µ and x, y, u, v ∈ (0, 1)

instead of

λ, µ ≥ 0 and x, y, u, v ∈ [0, 1].

(Homework.)
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2. Eliminate the outer maxima.

Apply the general equivalence

max(0, A) ≥ max(0, B) ⇐⇒ B ≤ 0 ∨A ≥ B > 0 (A, B ∈ R)

to obtain

∀ x, y, u, v ∈ R : 0 < λ < µ ∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1

⇒
`

(1 − µ) max(0, (1 − λ)ux + λ(u + x − 1)) max(0, (1 − λ)vy + λ(v + y − 1))

+ µ(max(0, (1 − λ)ux + λ(u + x − 1)) + max(0, (1 − λ)vy + λ(v + y − 1)) − 1) ≤ 0

∨ (1 − λ) max(0, (1 − µ)uv + µ(u + v − 1)) max(0, (1 − µ)xy + µ(x + y − 1))

+ λ(max(0, (1 − µ)uv + µ(u + v − 1)) + max(0, (1 − µ)xy + µ(x + y − 1)) − 1))

≥ (1 − µ) max(0, (1 − λ)ux + λ(u + x − 1)) max(0, (1 − λ)vy + λ(v + y − 1))

+ µ(max(0, (1 − λ)ux + λ(u + x − 1)) + max(0, (1 − λ)vy + λ(v + y − 1)) − 1) > 0
´
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3. Eliminate the inner maxima.

If Φ(X) is any formula depending on a real variable X, then

Φ(max(0, X)) ⇐⇒ (X ≤ 0 ∧ Φ(0)) ∨ (X > 0 ∧ Φ(X)).

For a formula in several variables, we have

Φ(max(0, X1), max(0, X2))⇐⇒
(
X1 ≤ 0 ∧X2 ≤ 0 ∧ Φ(0, 0)

∨X1 > 0 ∧X2 ≤ 0 ∧ Φ(X1, 0)

∨X1 ≤ 0 ∧X2 > 0 ∧ Φ(0, X2)

∨X1 > 0 ∧X2 > 0 ∧ Φ(X1, X2)
)
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3. Eliminate the inner maxima.

Writing

X1 := (1− λ)ux + λ(u + x− 1),

X2 := (1− λ)vy + λ(v + y − 1),

X3 := (1− µ)uv + µ(u + v − 1),

X4 := (1− µ)xy + µ(x + y − 1),

this turns the formula into. . .
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3. Eliminate the inner maxima.

∀ x, y, u, v ∈ R : 0 < λ < µ ∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1

⇒
``

X1 ≤ 0 ∧ X2 ≤ 0 ∧ (1 − µ)0 0 + µ(0 + 0 − 1) ≤ 0

∨ X1 > 0 ∧ X2 ≤ 0 ∧ (1 − µ)X1 0 + µ(X1 + 0 − 1) ≤ 0

∨ X1 ≤ 0 ∧ X2 > 0 ∧ (1 − µ)0 X2 + µ(0 + X2 − 1) ≤ 0

∨ X1 > 0 ∧ X2 > 0 ∧ (1 − µ)X1X2 + µ(X1 + X2 − 1) ≤ 0
´

∨
`

X1 ≤ 0 ∧ X2 ≤ 0 ∧ X3 ≤ 0 ∧ X4 ≤ 0

∧ (1 − λ)0 0 + λ(0 + 0 − 1) ≥ (1 − µ)0 0 + µ(0 + 0 − 1) > 0

∨ X1 > 0 ∧ X2 ≤ 0 ∧ X3 ≤ 0 ∧ X4 ≤ 0

∧ (1 − λ)0 0 + λ(0 + 0 − 1) ≥ (1 − µ)X1 0 + µ(X1 + 0 − 1) > 0

∨ · · ·

∨ X1 > 0 ∧ X2 > 0 ∧ X3 > 0 ∧ X4 ≤ 0

∧ (1 − λ)X3 0 + λ(X3 + 0 − 1) ≥ (1 − µ)X1X2 + µ(X1 + X2 − 1) > 0

∨ X1 > 0 ∧ X2 > 0 ∧ X3 > 0 ∧ X4 > 0

∧ (1 − λ)X3X4 + λ(X3 + X4 − 1) ≥ (1 − µ)X1X2 + µ(X1 + X2 − 1) > 0
´´
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4. Discard redundant clauses.

∀ x, y, u, v ∈ R : 0 < λ < µ

∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1

⇒
(
X1 ≤ 0 ∨X2 ≤ 0

∨ (1− µ)X1X2 + µ(X1 + X2 − 1) ≤ 0

∨X1 > 0 ∧X2 > 0 ∧X3 > 0 ∧X4 > 0

∧ (1− λ)X3X4 + λ(X3 + X4 − 1)

≥ (1− µ)X1X2 + µ(X1 + X2 − 1) > 0
)
.
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5. Apply some logical simplifications

This formula is of the form

∀ x, y, u, v ∈ R : H ⇒
(
A ∨B ∨ C ∨ ¬A ∧ ¬B ∧ ¬C ∧D).

We clearly can discard ¬A ∧ ¬B ∧ ¬C.

Furthermore, we can prove with CAD the formulas

∀ x, y, u, v ∈ R : H ∧D ⇒ A

∀ x, y, u, v ∈ R : H ∧D ⇒ B

are true. Dropping also A and B leads us to. . .
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5. Apply some logical simplifications

∀ x, y, u, v ∈ R : 0 < λ < µ

∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1

⇒
(
(1− µ)X1X2 + µ(X1 + X2 − 1) ≤ 0

∨ (1− λ)X3X4 + λ(X3 + X4 − 1)

≥ (1− µ)X1X2 + µ(X1 + X2 − 1)
)
.



A nontrivial Example

6. Apply some algebraic simplifications



A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.



A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

x 7→ 1− x, y 7→ 1− y, u 7→ 1− u, v 7→ 1− v



A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

x 7→ 1− x, y 7→ 1− y, u 7→ 1− u, v 7→ 1− v

and afterwards v 7→ (v − y)/(1 + (λ− 1)y).



A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

x 7→ 1− x, y 7→ 1− y, u 7→ 1− u, v 7→ 1− v

and afterwards v 7→ (v − y)/(1 + (λ− 1)y).

This brings the formula into the form. . .



A nontrivial Example

6. Apply some algebraic simplifications

∀ x, y, u, v ∈ R : 0 < λ < µ

∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ y < v < 1 + λy

⇒
(
u((λ− 1)x + 1)((µ− 1)v + 1)

+ (µ− 1)vx + v + x− 1 ≥ 0

∨ vx(1− (λ− 1)(µ− 1)uy)

+ y((λ− 1)uy((µ− 1)x + 1) + u− x) ≥ 0
)
.
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CAD applied to this formula gives the final result.

0 < λ < µ ≤ 17+12
√

2 ∨ µ < 17+12
√

2∧ 0 < λ ≤
(1− 3

√
µ

3−√µ

)2
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7. Apply CAD to finish up

CAD applied to this formula gives the final result.

0 < λ < µ ≤ 17+12
√

2 ∨ µ < 17+12
√

2∧ 0 < λ ≤
(1− 3

√
µ

3−√µ

)2

20 40 60 80 100

20

40

60

80

100



Summary



Summary

◮ CAD is able to answer questions on polynomial inequalities.



Summary

◮ CAD is able to answer questions on polynomial inequalities.

◮ In particular, it is capable of performing quantifier elimination.



Summary

◮ CAD is able to answer questions on polynomial inequalities.

◮ In particular, it is capable of performing quantifier elimination.

◮ A variety of problems can be rephrased as such problems.



Summary

◮ CAD is able to answer questions on polynomial inequalities.

◮ In particular, it is capable of performing quantifier elimination.

◮ A variety of problems can be rephrased as such problems.

◮ Efficiency is an issue.



Summary

◮ CAD is able to answer questions on polynomial inequalities.

◮ In particular, it is capable of performing quantifier elimination.

◮ A variety of problems can be rephrased as such problems.

◮ Efficiency is an issue.

◮ Where CAD is infeasible out of the box, reformulations of the
problem might reduce the computation time significantly.



Summary

◮ CAD is able to answer questions on polynomial inequalities.

◮ In particular, it is capable of performing quantifier elimination.

◮ A variety of problems can be rephrased as such problems.

◮ Efficiency is an issue.

◮ Where CAD is infeasible out of the box, reformulations of the
problem might reduce the computation time significantly.

Tomorrow: How does the CAD algorithm work.



A Simple Exercise

What is the image of the triangle (−1,−1), (−1, 1), (1, 1) under
the map

f : R2 → R2, (x, y) 7→ (x2 + y2, xy − 1) ?
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Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals,
which

◮ is provably equivalent to the system given as input, and

◮ has a nice structural property which allows for answering a
variety of otherwise nontrivial questions merely by inspection.
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Answer: Eliminate x, y from the formula

∃ x, y : (−1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 ∧ x ≤ y∧
X = x2 + y2 ∧ Y = xy − 1)
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Result:

f(∆) = {(x, y) ∈ R2 :
(
0 ≤ x ≤ 1 ∧ |y + 1| ≤ 1

2x
)

∨
(
1 < x ≤ 2 ∧

√
x− 1 ≤ |y + 1| ≤ 1

2x
)
}}
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◮ 1 variable: A system of polynomial inequalities is called a
CAD in x if it is of the form

Φ1 ∨ Φ2 ∨ · · · ∨ Φm

where each Φk is of the form x < α or α < x < β or x > β or
x = γ for some real algebraic numbers α, β, γ (α < β) and
any two Φk are mutually inconsistent.

◮ n variables: A system of polynomial inequalities is called a
CAD in x1, . . . , xn if it is of the form

Φ1 ∧Ψ1 ∨ Φ2 ∧Ψ2 ∨ · · · ∨ Φm ∧Ψm

where the Φk are such that Φ1 ∨ · · · ∨ Φk is a CAD in x1 and
the Ψk are CADs in x2, . . . , xn whenever x1 is replaced by a
real algebraic number satisfying Φk.
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Example: The polynomials p1 = x2 + y2 − 4 and
p2 = (x− 1)(y − 1)− 1 induce a decomposition of R2 into
13 cells:
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4 Precise Definition:
A cell in the algebraic decomposition of

{p1, . . . , pm} ⊆ R[x1, . . . , xn]

is a maximal connected subset of Rn on
which all the pi are sign invariant.
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Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection
from the algebraic decomposition of the involved polynomials.

Example: ∀x∃ y : x2 + y2 > 4 ⇐⇒ (x− 1)(y − 1) > 1

Consider the cell(s) for which the quan-
tifier free part

x2 + y2 > 4 ⇐⇒ (x− 1)(y − 1) > 1

is true.
Obviously, each vertical line x = α inter-
sects one of those cells nontrivially. The
∀x∃y claim follows.
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Observation: It does not hurt if we change from a decomposition
for {p1, . . . , pm} to a decomposition for {p1, . . . , pm, q1, . . . , qk}
for some polynomials q1, . . . , qk ∈ Q[x1, . . . , xn].

The reasoning of the previous example is not affected.

Goal: Given p1, . . . , pm, find polynomials q1, . . . , qk such that the
decomposition of {p1, . . . , pm, q1, . . . , qk} is easier to deal with.

In particular, it should be possible to carry out the reasoning on
the previous slide automatically.

This motivates the following definition.
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CAD: Geometric Definition

For n ∈ N, let

πn : Rn → Rn−1, (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1)

denote the canonical projection.

Definition: Let p1, . . . , pm ∈ Q[x1, . . . , xn]. The algebraic
decomposition of {p1, . . . , pm} is called cylindrical, if

◮ For any two cells C, D of the decomposition, the images
πn(C), πn(D) are either identical or disjoint.

◮ The algebraic decomposition of
{p1, . . . , pm} ∩Q[x1, . . . , xn−1] is cylindrical.

Base case: Any algebraic decomposition of R1 is cylindrical.



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

This is not a CAD. Why not?



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

This is not a CAD. Why not?

Consider the two shaded cells.



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]

-4 -2 2 4

-4

-2

2

4

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.

Fix: Insert two vertical lines.



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.

Fix: Insert two vertical lines.



Example

Consider again {x2 + y2 − 4, (x− 1)(y − 1)− 1} ⊆ Q[x, y]
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This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other
cell pairs. The result is a CAD.
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From this, we can extract a solution formula.
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The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p1, . . . , pm are the polynomials in the input, find
q1, . . . , qk such that the algebraic decomposition of
{p1, . . . , pm, q1, . . . , qk} is cylindrical.

2. Lifting. Construct sample points for each cell in this
decomposition considering one dimension after the other in a
bottom-up fashion.

3. Solution. Select the regions of interest [check if some
simplification is possible by joining neighboring cells] and
construct a solution formula accordingly.
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1. Projection.

A finite set A ⊆ R[x1, . . . , xn] is called a CAD if its induced algebraic
decomposition of Rn is cylindrical.

Task: Given A ⊆ R[x1, . . . , xn], find B ⊆ R[x1, . . . , xn] such that
A ∪B is a CAD.

Beginning with xn, we handle one variable after the other.



The CAD algorithm

1. Projection.

A projection operator is a function

A 7−→ Pn(A)
∩ ∩

R[x1, . . . , xn] R[x1, . . . , xn−1]

such that:



The CAD algorithm

1. Projection.

A projection operator is a function

A 7−→ Pn(A)
∩ ∩

R[x1, . . . , xn] R[x1, . . . , xn−1]

such that:

If B is a CAD of Pn(A) in R[x1, . . . , xn−1]
then B ∪A is a CAD of A in R[x1, . . . , xn−1].
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The CAD algorithm

1. Projection.

The projection algorithm:

INPUT: A ⊆ Q[x1, . . . , xn]
OUTPUT: C ⊆ Q[x1, . . . , xn] such that A ⊆ C and C is a CAD.

1. C := A

2. for k = n down to 2 do

3. C := C ∪ Pk(C ∩Q[x1, . . . , xk])

4. return C
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2. Lifting.

The case of one variable: p1(x), p2(x), . . . , pm(x) ∈ (Q̄ ∩ R)[x].

◮ Determine the real roots ξ1, . . . , ξk ∈ (Q̄ ∩ R) of the pi(x).

◮ Choose ρ0, . . . , ρk ∈ Q such that

ρ0 < ξ1, ξi < ρi < ξi+1, ρk > ξk.

◮ The sample points are ρ0, ξ1, ρ1, ξ2, . . . , ρk−1, ξk, ρk.
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2. Lifting.

The case of two variables: p1(x, y), . . . , pm(x, y) ∈ (Q̄ ∩ R)[x, y].

◮ Determine sample points
σ0, . . . , σ2k+1 for those pi(x, y)
which are free of y.

◮ For each σi, determine sample
points σi,1, . . . , σi,ℓ for the
polynomials pi(σi, y) ∈ (Q̄ ∩ R)[y].

◮ The sample points are then
(σi, σi,j) ∈ (Q̄ ∩ R)2.



The CAD algorithm

2. Lifting.

The lifting algorithm:

INPUT: a CAD C ⊆ Q[x1, . . . , xn]
OUTPUT: a set of sample points σ ∈ (Q̄ ∩ R)n for C

1. S1 := sample points for C ∩Q[x1]

2. for k = 2 to n do

3. Ck := C ∩Q[x1, . . . , xk]

4. Sk =
⋃

σ∈Sk−1

{σ} × sample points for Ck

∣
∣
(x1,...,xk)=σ

5. return Sn
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2. Lifting.

Technical requirements:

◮ Exact arithmetic (+,−,×, /,
?
= 0) in Q̄ ∩ R.

◮ Exact real root isolation in (Q̄ ∩ R)[x]. �

Given p ∈ (Q̄ ∩ R)[x]; ε > 0
Find ξ−1 < ξ+

1 < · · · < ξ−k < ξ+
k ∈ Q

such that

⊲ ξ+

i
− ξ−

i
< ε (i = 1, . . . , k)

⊲ every real root of p is contained in
exactly one interval (ξ−

i
, ξ+

i
)
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2. Lifting.

Technical requirements:

◮ Exact arithmetic (+,−,×, /,
?
= 0) in Q̄ ∩ R.

◮ Exact real root isolation in (Q̄ ∩ R)[x].

Such algorithms are known.

They are not trivial.

We don’t explain them here.
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3. Solution.

◮ Assigning truth values to cells amounts to determining the
sign of polynomials at the sample point

◮ Quantifier elimination:

∀ x ∈ R becomes “for all sample points”

∃ x ∈ R becomes “for at least one sample point”

◮ Formula construction is easy. (At least in principle.)

◮ Simplification is a software engineering challenge, but not
problematic in theory.



The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p1, . . . , pm are the polynomials in the input, find
q1, . . . , qk such that the algebraic decomposition of
{p1, . . . , pm, q1, . . . , qk} is cylindrical.

2. Lifting. Construct sample points for each cell in this
decomposition considering one dimension after the other in a
bottom-up fashion.

3. Solution. Select the regions of interest [check if some
simplification is possible by joining neighboring cells] and
construct a solution formula accordingly.
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The CAD algorithm consists of the following three phases:

1. Projection. If p1, . . . , pm are the polynomials in the input, find
q1, . . . , qk such that the algebraic decomposition of
{p1, . . . , pm, q1, . . . , qk} is cylindrical.

2. Lifting. Construct sample points for each cell in this
decomposition considering one dimension after the other in a
bottom-up fashion.

3. Solution. Select the regions of interest [check if some
simplification is possible by joining neighboring cells] and
construct a solution formula accordingly.
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Implementations

Implementations of CAD:

◮ Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone
program; http://www.cs.usna.edu/˜qepcad/B/QEPCAD.html

◮ Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.;
Package for the CA-system Reduce;
http://www.fmi.uni-passau.de/˜redlog/

◮ Mathematica: part of the standard distribution from Version 5
on. Command names:

◮ CylindricalDecomposition (raw CAD) and
◮ Resolve (quantifier elimination)
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Warning!

CADable in theory 6=⇒ CADable in practice

Calculating a CAD is a damned expensive computational effort.

◮ because a CAD typically consists of a huge number of cells,

◮ because a nontrivial computation is done for each of them.

Worst case bit complexity: (2d)2
2n+8

m2n+6
b3, where

◮ n . . . number of variables (hyper critical!)

◮ d . . . maximum degree of input polynomials

◮ m. . . number of input polynomials

◮ b . . . maximum bitsize of the rational numbers in the input
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Warning!

To some extent, the computational complexity is unavoidable.

Theorem (Davenport/Heinz, 1988). There is a formula in n + 2
variables with n quantifiers so that any equivalent quantifier free
formula (in two variables) has length Ω(22n/2

).

What to do?

◮ internal improvements (for the programmer of CAD)

◮ external improvements (for the user of CAD)
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◮ Compute only a partial CAD when this is sufficient.

Example:
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External Improvements

◮ Try different variable orders.

◮ Decompose the problem into several smaller ones.

◮ Where possible, only consider full dimensional cells.

Example: The CAD of the unit sphere
has 25 cells.

Only 7 of them are full dimensional.

Only arithmetic in Q is needed to find
them.
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Summary

◮ CADs can be computed.

◮ CAD is based on a nice geometric intuition.

◮ The algorithm consists of projection/lifting/solution.

◮ Efficiency is an issue.

◮ Optimized implementations from specialists are freely
available.

Tomorrow: Applications of CAD to special function inequalities.
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Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals,
which

◮ is provably equivalent to the system given as input, and

◮ has a nice structural property which allows for answering a
variety of otherwise nontrivial questions merely by inspection.
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A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

p(x, y) = 2x4 − 3x2y + y4 − 2y3 + y2

◮ with respect to x, y?

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.5

0.5

1.0

1.5

2.0

2.5

◮ with respect to y, x?

Discriminant of p(x, y) wrt. x:

64y6(y − 1)2(8y2 − 16y − 1)2

The quadratic factor introduces
an unnecessary case distinction.
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11033. Proposed by M.N. Deshpande and R.M. Welukar, Insti-

tute of Science, Nagpur, India. Let

P (m, n, r) =
r∑

k=0

(−1)k

(
m + n− 2(k + 1)

n

)(
r

k

)

.

Let m, n, and r be integers such that 0 ≤ r ≤ n ≤ m− 2. Show
that P (m, n, r) is positive and that

∑n
r=0 P (m, n, r) =

(
m+n

n

)
.



Some Recent Monthly Problems

11442. Proposed by José Dı́az-Barrero and José Gibergans-Bá-

guena, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let 〈ak〉 be a sequence of positive numbers defined by an =
1
2(a2

n−1 + 1) for n > 1, with a1 = 3. Show that

[( n∑

k=1

ak

1 + ak

)( n∑

k=1

1

ak(1 + ak)

)]1/2

≤ 1

4

(a1 + an√
a1an

)
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Some Recent Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given a, b, c >
0 with b2 > 4ac, let 〈λn〉 be a sequence of real numbers, with
λ0 > 0 and cλ1 > bλ0. Let u0 = cλ0, u1 = cλ1 − bλ0, and for
n ≥ 2 let un = aλn−2 − bλn−1 + cλn. Show that if un > 0 for all
n ≥ 0, then λn > 0 for all n ≥ 0.
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◮ involve one or more discrete variables.

◮ are not polynomial.

Today’s topic:

◮ How can CAD be helpful for such problems.
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Problem: (x + 1)n − (1 + nx) 6∈ Q[n, x]

◮ But for any specific integer n, it is a polynomial in x.

◮ View (x + 1)n − (1 + nx) as a sequence of polynomials.

◮ View Bernoulli’s inequality as a sequence of polynomial
inequalities.



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

-4 -3 -2 -1 1 2 3 4

-20

-15

-10

-5

5

10

15

20



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ∈ N ∀ x ≥ −1 : fn(x) ≥ 0⇒ fn+1(x) ≥ 0



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ∈ N ∀ x ≥ −1 : fn(x) ≥ 0⇒ fn+1(x) ≥ 0

◮ Exploit the recurrence fn+1(x) = (x + 1)fn(x) + nx2



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ∈ N ∀ x ≥ −1 : fn(x) ≥ 0⇒ (x + 1)fn(x) + nx2 ≥ 0

◮ Exploit the recurrence fn+1(x) = (x + 1)fn(x) + nx2



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ∈ N ∀ x ≥ −1 : fn(x) ≥ 0⇒ (x + 1)fn(x) + nx2 ≥ 0

◮ Exploit the recurrence fn+1(x) = (x + 1)fn(x) + nx2

◮ Generalize fn(x) to y and n ∈ N to n ≥ 0



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ≥ 0 ∀ y ∀ x ≥ −1 : y ≥ 0⇒ (x + 1)y + nx2 ≥ 0

◮ Exploit the recurrence fn+1(x) = (x + 1)fn(x) + nx2

◮ Generalize fn(x) to y and n ∈ N to n ≥ 0



A Simple Example

Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ≥ 0 ∀ y ∀ x ≥ −1 : y ≥ 0⇒ (x + 1)y + nx2 ≥ 0

◮ Exploit the recurrence fn+1(x) = (x + 1)fn(x) + nx2

◮ Generalize fn(x) to y and n ∈ N to n ≥ 0
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Bernoulli’s inequality:

∀ n ∈ N ∀ x ≥ −1 : (x + 1)n − (1 + nx) ≥ 0.

◮ Idea: Combine induction on n and CAD.

◮ Let fn(x) := (x + 1)n − (1 + nx).

◮ Induction step:

∀ n ∈ N ∀ x ≥ −1 : fn(x) ≥ 0⇒ fn+1(x) ≥ 0

◮ This proves the induction step.

◮ The induction base 0 ≥ 0 is trivial.

◮ This completes the proof.
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In order to prove a statement ∀ n ∈ N : Φ(n),

◮ Consider ∀ n ∈ N : Φ(n)⇒ Φ(n + 1).

◮ Replace the nonpolynomial quantities in Φ(n) and Φ(n + 1)
by as few as possible new real variables y1, . . . , yk.

◮ Use CAD to prove the formula
?

This condition is suf-
ficient but not neces-
sary.

What if it is not true?

∀ n ≥ 0 ∀ y1, . . . , yk : Φ′(n, y1, . . . , yk)⇒ Φ′′(n, y1, . . . , yk).

◮ Use CAD to prove Φ(0).

◮ Done.
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∀ n ∈ N ∀ x ≥ −2 : (x + 1)n − (1 + nx) ≥ 0

The induction step formula:

∀ n ≥ 0 ∀ y ∀ x ≥ −2 : y ≥ 0⇒ (x + 1)y + nx2 ≥ 0

is false.

New idea: Instead of Φ(n)⇒ Φ(n + 1), try

Φ(n) ∧ Φ(n + 1)⇒ Φ(n + 2)



A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

∀ n ∈ N ∀ x ≥ −2 : (x + 1)n − (1 + nx) ≥ 0

The extended induction step formula:

∀ n ≥ 0 ∀ y ∀ x ≥ −2 : y ≥ 1 + nx ∧ (x + 1)y ≥ 1 + (n + 1)x

⇒ (x + 1)2y ≥ 1 + (n + 2)x

is true.
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A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

∀ n ∈ N ∀ x ≥ −2 : (x + 1)n − (1 + nx) ≥ 0

Check two initial values:

n = 1 : x ≥ −2⇒ (x + 1) ≥ 1 + 1x

n = 2 : x ≥ −2⇒ (x + 1)2 ≥ 1 + 2x

The truth of the inequality follows.
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A Slightly Less Simple Example

Observations:

◮ There are various possibilities to polynomialify an inequality.

◮ If one fails, another one might still work.

◮ The “Gerhold-Kauers-method”: For r = 1, 2, 3, . . . , try

Φ(n) ∧ Φ(n + 1) ∧ · · · ∧ Φ(n + r)⇒ Φ(n + r + 1).

◮ Also this does not work for every inequality.

◮ In general, you have to experiment!

◮ Claim: Finding a CADable reformulation of a conjectured
inequality can be much easier than finding a CAD-free proof.
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Let m, n, and r be integers such that 0 ≤ r ≤ n ≤ m− 2. Show
that P (m, n, r) is positive and that

∑n
r=0 P (m, n, r) =

(
m+n

n

)
.

Summation software finds the recurrence

P (m+2, n, r) =
n + 1

m
︸ ︷︷ ︸

≥0

P (m+1, n, r)+
n + m− 2r − 1

m
︸ ︷︷ ︸

≥0

P (m, n, r)

Sometimes you have got to be lucky. . .



Back to the Monthly Problems

11033. Proposed by M.N. Deshpande and R.M. Welukar, Insti-

tute of Science, Nagpur, India. Let

P (m, n, r) =

r∑

k=0

(−1)k

(
m + n− 2(k + 1)

n

)(
r

k

)

.

Let m, n, and r be integers such that 0 ≤ r ≤ n ≤ m− 2. Show
that P (m, n, r) is positive and that

∑n
r=0 P (m, n, r) =

(
m+n

n

)
.

(Side remark: The identity can of course also be done by computer
algebra.)
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11442. Proposed by José Dı́az-Barrero and José Gibergans-Bá-

guena, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let 〈ak〉 be a sequence of positive numbers defined by an =
1
2(a2

n−1 + 1) for n > 1, with a1 = 3. Show that
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∀ a > 1 : 1

2(a2 + 1) > a,

the sequence an is increasing.
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guena, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let 〈ak〉 be a sequence of positive numbers defined by an =
1
2(a2

n−1 + 1) for n > 1, with a1 = 3. Show that

[( n∑

k=1

ak

1 + ak

)( n∑

k=1

1

ak(1 + ak)

)]1/2

≤ 1

4

(a1 + an√
a1an

)

.

Square the claim to get s1(n)s2(n) ≤ (3+an)2

48an
where s1(n) and s2(n)

are the first and the second sum, respectively.

Besides the defining recurrence of an, we have

s1(n) = s1(n− 1) + an
1+an

, s2(n) = s2(n− 1) + 1
an(1+an) .
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Let 〈ak〉 be a sequence of positive numbers defined by an =
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Since an is positive and increasing, so are s1(n) and s2(n), hence

an ≥ a1 = 3, s1(n) ≥ s1(1) = 3
4 , s2(n) ≥ s2(1) = 1
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Since an is positive and increasing, so are s1(n) and s2(n), hence

an ≥ a1 = 3, s1(n) ≥ s1(1) = 3
4 , s2(n) ≥ s2(1) = 1

15 .

For n ≥ 3, we can even assume

an ≥ 13, s1(n) ≥ 211
84 , s2(n) ≥ 667

5460 .
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Let 〈ak〉 be a sequence of positive numbers defined by an =
1
2(a2

n−1 + 1) for n > 1, with a1 = 3. Show that

[( n∑

k=1

ak

1 + ak

)( n∑

k=1

1

ak(1 + ak)

)]1/2

≤ 1

4

(a1 + an√
a1an

)

.

CAD proves the induction step formula

∀ a, s1, s2 :
(

a ≥ 13 ∧ s1 ≥ 211
84 ∧ s2 ≥ 667

5460 ∧ s1s2 ≤ (a+3)2

48a

)

⇒ (a2(s1 + 1) + 3s1 + 1)((a4 + 4a2 + 3)s2 + 4)

(a2 + 1)(a2 + 3)2
≤ (a2 + 7)2

96(a2 + 1)
.
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11442. Proposed by José Dı́az-Barrero and José Gibergans-Bá-

guena, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let 〈ak〉 be a sequence of positive numbers defined by an =
1
2(a2

n−1 + 1) for n > 1, with a1 = 3. Show that

[( n∑

k=1

ak

1 + ak

)( n∑

k=1

1

ak(1 + ak)

)]1/2

≤ 1

4

(a1 + an√
a1an

)

.

Now the problem is solved by checking the inequality for n = 1, 2, 3.
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11445. Proposed by H. A. ShahAli, Tehran, Iran. Given a, b, c >
0 with b2 > 4ac, let 〈λn〉 be a sequence of real numbers, with
λ0 > 0 and cλ1 > bλ0. Let u0 = cλ0, u1 = cλ1 − bλ0, and for
n ≥ 2 let un = aλn−2 − bλn−1 + cλn. Show that if un > 0 for all
n ≥ 0, then λn > 0 for all n ≥ 0.

We show more: λn > ( b
2c)

nλ0 > 0.

For n = 1 this is part of the assumption.

For n 7→ n + 1, we use CAD:

∀ a, b, c, λ, λ′, λ′′ :
(

a > 0 ∧ b > 0 ∧ c > 0 ∧ b2 > 4ac

∧ aλ− bλ′ + cλ′′ > 0 ∧ λ′ >
b

2c
λ > 0

)

⇒ λ′′ >
b

2c
λ′.
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Moll’s Conjecture

Name: Victor H. Moll

Affiliation: Tulane, New Orleans

Passion: Experimental Mathematics

Obsession: Integrals

One of his absolute favorites:
∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx

where a > −1 is real and m ≥ 0 is an integer.
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◮
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1
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16384
√

2(a+1)11/2

◮ · · ·
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Pm(a) =

m∑

l=0

dk(m)ak

We have the formula

dk(m) =
k∑
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Object of interest: The coefficients of Pm(a).

Call them dk(m):

Pm(a) =

m∑

l=0

dk(m)ak

We have the formula

dk(m) =
k∑

j=0

m−j
∑

s=0

m∑

i=s+k

(−1)i−k−s

23i

(
2i

i

)(
2m + 1

2s + 2j

)

×
(

m− s− j

m− i

)(
s + j

j

)(
i− s− j

k − j

)

.

What else can we say about the dk(m)?
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Theorem (Moll) dk(m) > 0

Proof (Paule) Easy observations:

◮ dm(m) = 2−2m
(
2m
m

)
> 0

◮ d−1(m) = 0 ≥ 0

Summation software delivers:

2(m + 1)
︸ ︷︷ ︸

+

dk(m + 1) = 2(k + m)
︸ ︷︷ ︸

+

dk−1(m) + (2l + 4m + 3)
︸ ︷︷ ︸

+

dk(m)

Theorem follows by induction. (No CAD needed here.)
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Moll’s Conjecture

Moll’s Conjecture: dk(m) is log-concave.

meaning log dk(m) is concave.

meaning log dk−1(m) + log dk+1(m) ≤ 2 log dk(m).

meaning dk−1(m)dk+1(m) ≤ dk(m)2 .

Theorem (Kauers/Paule, 2007): That’s true.
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1. Use summation software to find short recurrences for dk(m).

2. Set up an induction on m.

3. Find all (m, k) where the induction step formula is false.

4. For these (m, k), switch to a nicer but stronger statement.

5. Prove this stronger statement by induction on m.
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2. Set up an induction on m.

Goal: dk−1(m)dk+1(m) ≤ dk(m)2.

Rewrite dk−1(m) and dk+1(m) in terms of dk(m) and dk(m + 1).

To show:

(16km2 + 28km + 9k + 16m3 + 40m2 + 33m + 9)dk(m)2

4(m + 1)(2k2 − 4m2 − 7m− 3)dk(m + 1)dk(m)

− 4(m + 1)2(k −m− 1)dk(m + 1)2 ≥ 0
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Induction step formula:

∀ m ∀ k ∀ D0 ∀ D1 :
(

0 < k < m ∧D0 > 0 ∧D1 > 0

∧ (. . . )D2
0 + (. . . )D0D1 + (. . . )D2

1 ≥ 0
)

⇒ (. . . )D2
0 + (. . . )D0D1 + (. . . )D2

1 ≥ 0.

In the range of interest, this is equivalent to

0 < m ≤ 1
2 +
√

2 ∨ 0 < k ≤ algfun(m)

for some cubic algebraic function algfun.
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This algebraic function splits the re-
gion into two parts.

In the part below, the induction step
is proven.

In the part above, we don’t know yet.

What’s going wrong there?
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0 < m ≤ 1
2 +
√

2 ∨ 0 < k ≤ algfun(m) ∧D0 > 0

∧ p1(m, k)−
√

p2(m, k)

p3(m, k)
D0 < D1 <

p1(m, k) +
√

p2(m, k)

p3(m, k)
D0

for some polynomials p1(m, k), p2(m, k), p3(m, k).

Meaning: if some (m, k) in the gray area is really a counterexample,
then for this (m, k) we must have

dk(m + 1) <
p1(m, k) +

√

p2(m, k)

p3(m, k)
dk(m).
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4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

dk(m + 1) ≥ p1(m, k) +
√

p2(m, k) + u(m, k)

p3(m, k)
dk(m).

Idea: Introduce under the root a (small) positive polynomial u(m, k)
that turns p2(m, k) + u(m, k) into a square.

Suitable polynomials u(m, k) are easy to find.
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5. Prove this stronger statement by induction on m.

For our choice of u(m, k), the new claim is:

dk(m + 1) ≥ 4m2 + 7m + k + 3

2(m + 1− k)(m + 1)
dk(m).

Using CAD and the recurrence equations, this can be proven just as
explained before for Bernoulli’s inequality.

This completes the proof.
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No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)

2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)

3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
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These polynomials form one of the clas-
sical families of orthogonal polynomials.

As such, they satisfy lots of useful identities,
including

(n + 2)Pn+2(x) = (2n + 3)xPn+1(x)− (n + 1)Pn(x)

(x2 − 1)
d

dx
Pn(x) = (n + 1)Pn+1(x)− (n + 1)xPn(x)

There are also some interesting inequalities, including

∀ n ∈ N ∀ x ∈ [−1, 1] : −1 ≤ Pn(x) ≤ 1.
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A proof for general n can be obtained in the same way as for
Bernoulli’s inequality using induction, recurrences, and CAD.
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Can we show this also by induction?

Not directly.

The obvious induction step formula is
large and false.
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∆n(x) = Pn+1(x)2 − Pn(x)Pn+2(x) ≥ αn(1− x2)

We have

d

dx

∆n(x)

1− x2
=

(

(n− 1)nPn(x)2 − ((2n + 1)x2 − 1)Pn(x)Pn+1(x)

+ (n + 1)xPn+1(x)2
)/(
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A positivity proof for the latter expression by CAD and induction
on n succeeds.
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locally approximated by polynomials.

◮ Some basis polynomials lead to better
numerical performance than the
standard basis 1, x, x2, x3, . . . .

◮ Good basis functions have good properties.

◮ What a good properties are, this depends on the particular
application.
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Schöberl’s Conjecture

◮ For one particular application, Schöberl chose

fn(x) :=
1

2x(n + 1)

2n∑

k=n

(k+1)(Pk+1(x)Pk(0)−Pk+1(0)Pk(x))

◮ He showed that this family has all the desired properties
if and only if

n∑

k=0

(4k + 1)(2n− 2k + 1)P2k(0)P2k(x) ≥ 0

◮ Hence was born the Schöberl conjecture.
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Schöberl’s Conjecture

Consider

Sn(x) :=

n∑

k=0

(4k + 1)(2n− 2k + 1)P2k(0)P2k(x)

for n = 0, 1, . . . , 20.

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15
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Schöberl’s Conjecture

Consider

Sn(x) :=

n∑

k=0

(4k + 1)(2n− 2k + 1)P2k(0)P2k(x)

for n = 0, 1, . . . , 20.

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15
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◮ For n≫ 0 and |x| → 1: easy.

◮ For “symbolic” n and x:
not easy at all!
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Note: Computer algebra can prove this, but it cannot discover
good forms (yet).
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Task: Bring the thing into a better form.

Veronika Pillwein found that a good form is
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(2k − 1)(2k + 3)

Note: Computer algebra can prove this, but it cannot discover
good forms (yet). Why is it good after all?
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Schöberl’s Conjecture

(2n + 1)P2n(0)
(
xP2n+1(x)− 2(2n+1)

4n+3 P2n(x)
)

︸ ︷︷ ︸

?
≥

2n∑

k=0

2Pk(0)Pk(x)
(2k−1)(2k+3)

︸ ︷︷ ︸

.

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4
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It suffices to prove the stronger statement
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◮ This latter inequality contains no sum.

◮ It could not be found in the literature, nor proven by hand.

◮ But recurrences+CAD+induction succeeds!

◮ The computations take about 1h.

◮ This completes the proof of Schöberl’s conjecture.

◮ Punch line: Both the human part and the CAD part are
nontrivial.
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Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
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3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
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3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.



Conclusions



Conclusions

◮ Special Function inequalities are painful.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.

◮ But polynomial inequalities are algorithmic (CAD).



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.

◮ But polynomial inequalities are algorithmic (CAD).

◮ CAD+recurrences+induction provides a proving method.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.

◮ But polynomial inequalities are algorithmic (CAD).

◮ CAD+recurrences+induction provides a proving method.

◮ This method may or may not succeed.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.

◮ But polynomial inequalities are algorithmic (CAD).

◮ CAD+recurrences+induction provides a proving method.

◮ This method may or may not succeed.

◮ Appropriate preparation of the input is often required.



Conclusions

◮ Special Function inequalities are painful.

◮ This is true both for humans as well as for computers.

◮ There is no algorithm for proving special function inequalities.

◮ But polynomial inequalities are algorithmic (CAD).

◮ CAD+recurrences+induction provides a proving method.

◮ This method may or may not succeed.

◮ Appropriate preparation of the input is often required.

◮ It’s not clear a priori what “appropriate” means.



What’s next?

For the future we plan to go into two directions.



What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.



What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if an,m,k,l is such
that

1
1−x−y−z−w+ 2

3
(xy+xz+xw+yz+yw+zw)

=
∑

n,m,k,l

an,m,k,lx
nymzkwl

then all an,m,k,l are positive.



What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if an,m,k,l is such
that

1
1−x−y−z−w+ 2

3
(xy+xz+xw+yz+yw+zw)

=
∑

n,m,k,l

an,m,k,lx
nymzkwl

then all an,m,k,l are positive.

We got some partial results together with Zeilberger in 2008.
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What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

2. Understand systematically what will work when, and why.

Example: If f(n) satisfies a linear recurrence with polynomial coef-
ficients, under which circumstances does there exist a finite number
r ∈ N such that

f(n) ≥ 0∧ f(n + 1) ≥ 0∧ · · · ∧ f(n + r) ≥ 0⇒ f(n + r + 1) ≥ 0.

We got some partial results together with Pillwein in 2010.



A Simple Exercise

Prove, by whatever method you prefer, the following three
inequalities:

◮

n∑

k=1

L2
k

Fk
≥ (Ln+2 − 3)2

Fn+2 − 1
(n ≥ 2)

◮

( n∑

k=1

√
k
)2
≤

( n∑

k=1

3
√

k
)3

(n ≥ 0)

◮

n∏

k=1

(1− ak) <
1

1 +
n∑

k=1

ak

(n ≥ 1; a1, . . . , ak ∈ (0, 1))




