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Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.
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Therefore the identity holds for all n € N
if and only if it holds forn =0,1,2,...,6.
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Definition: A function f(z) is D-finite if it satisfies a linear
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Main consequence: If f(x) and g(z) are D-finite then so are

f@)+g(@),  fla)glx), [, f(2),

Equations for each of those can be computed from equations for

f(z) and g(x).
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Also a multivariate recurrence for f,, ;. like

P2,2(1, k) frt2 k2 + P0.3(1, k) fr kg3 + 01,2(0, k) frg1 k42
+p1,0(n, k) fnt1e + 03,10, k) fossk+1 =0

can be used for reducing a term f,, 7+ to “smaller” ones.
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» A single bivariate recurrence
» A system of bivariate recurrences

Further reduction may be possible by using suitable
combinations of the recurrences in the system.

» If not, we say the system is a Grobner basis.

» From now on, all systems are assumed to be Grobner bases.



Definition: f, 1 is D-finite if it satisfies a system of multivariate
recurrence equations with polynomial coefficients of the form

(only finitely many points under the stairs).



Definition: f, 1 is D-finite if it satisfies a system of multivariate
recurrence equations with polynomial coefficients of the form

(only finitely many points under the stairs).

f(x,y) is D-finite if it satisfies a system of multivariate differential
equations with polynomial coefficients of this form.
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If f(x,y) and g(z,y) are D-finite then so are

fl@,y) + gz, y), gy, [, f(@y), [ f(@y)dy, ...

Defining systems for all these can be computed from defining
systems of f and g.



The results generalize to functions

fn17n27---7ns (‘Tlﬂ L2, ... 7x7“)

depending on any number s of discrete and any number r of
continuous variables.



The results generalize to functions

fn17n27---7ns (.Tl, L2, ... 7x7“)

depending on any number s of discrete and any number r of
continuous variables.

The only requirement is to have enough equations that there are
only finitely many points under the stairs.



The results generalize to functions

fn17n27---7ns (.Tl, L2, ... 7x7“)

depending on any number s of discrete and any number r of
continuous variables.

The only requirement is to have enough equations that there are
only finitely many points under the stairs.

Question: Is this requirement really necessary?



The results generalize to functions

fn17n27---7ns (.Tl, L2, ... 7x7“)

depending on any number s of discrete and any number r of
continuous variables.

The only requirement is to have enough equations that there are
only finitely many points under the stairs.

Question: Is this requirement really necessary?

Answer: No!



The results generalize to functions

fn17n27---7ns (.Tl, L2, ... 7x7“)

depending on any number s of discrete and any number r of
continuous variables.

The only requirement is to have enough equations that there are
only finitely many points under the stairs.

Question: Is this requirement really necessary?
Answer: No!

We can exploit that in general oo # oc.
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For a function f, let A(f) be a system of equations it satisfies.

Theorem (C.K.S. ISSAC'09):

dim A(f + ¢g) < max(dim A(f),dim A(g))
dim A(fg) < dim A(f) + dim A(g)

dim A(Y . f) < dim A(f)

dim A(f_ f) < dim A(f)
(
(

v

dim A f f) < dim A(f)
dim A(Y"F f) < dim A(f) + pol A(f) —

vV v.v v VY

What the hell means pol A(f)?

Answer: It's a number we call the polynomial growth of A(f).
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For fixed d € N, consider some point (7, ) with i + j < d.

» Reduce f,4k+; to under the stairs.

» This corresponds to a representation

. poly(n,k)e + --- + poly(n, k)e
B denom(n, k)

» Find this denom(n, k) for each (i, j) with i + j < d.
» Their least common multiple is a certain polynomial P;(n, k).

> If deg Py(n, k) = O(dP) (d — o0), then the system is said to
have polynomial growth p.
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& If f, 1 is D-finite then
polA(f)=1 <= fn is holonomic

& “We always have pol A(f) = 1, except for counterexamples.”
& When pol A(f) =1, the bound for dim A(>~>_ f) is nice.
& But pol A(f) can be larger than expected if dim A(f) > 0.
&) And the definition of pol A(f) is awefully technical.

& And the computation of pol A(f) is awefully complicated.
& And the motivation for pol A(f) is awefully weak.

& And the intuition behind pol A(f) is awefully poor.

< This is not the end of the story. But it is the end of the talk.



