
Fast Solvers for Dense Linear Systems

Manuel Kauers∗a

aResearch Institute for Symbolic Computation (RISC)
Altenbergerstraße 69
A4040 Linz, Austria, Europe

It appears that large scale calculations in particle physics often require to solve systems of linear equations

with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time

needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a

standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this

technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination

over the rationals.

1. Motivation

Suppose we know the first terms of a sequence
(an) of rational numbers, say,

(an) = 0, 1, 7
5 , 29

17 , 73
37 , 437

197 , 169
69 , 1343

503 , 3001
1041 , 29809

9649 , . . .

and suppose we suspect that the sequence (an)
admits a closed form representation in terms of
harmonic numbers, say

an =
p(n, Hn)

q(n, Hn)
(n ≥ 0)

for some polynomials p, q. In order to find p, q,
we can make an ansatz with undetermined coef-
ficients for generic polynomials of a certain fixed
degree d,

p =
∑

i,j≤d

ci,j,1x
iyj , q =

∑

i,j≤d

ci,j,2x
iyj .

Then, equating the expression

q(n, Hn)an − p(n, Hn)

evaluated at n = 1, 2, 3, . . . to zero gives a system
of linear constraints for the undetermined coeffi-
cients ci,j,k.

Solutions of this system are candidates for
closed forms of (an). For the sample values given

∗Partially supported by the Austrian Science Foundation
(FWF) grants SFB F1305, P19462-N18 and P20162-N18.

in the beginning, making an ansatz with p and
q of degree d = 1 and solving the corresponding
linear system reveals the conjecture

an =
n + Hn

1 + Hn

(n ≥ 0)

If the system had not had a solution, we could
have repeated the computation with a higher de-
gree ansatz for p and q (linear polynomials will
hardly ever suffice) and/or we could take further
expressions like harmonic numbers of higher or-

der H
(2)
n , H

(3)
n , . . . into account (n and Hn will

hardly ever suffice).
Proceeding in this way very soon leads to rather

big linear systems over the rationals, and so to a
demand for solving such systems. Note that we
cannot hope for sparsity in the systems arising
in this approach; typically there is not a single
zero coefficient. Therefore, we focus on dense lin-
ear systems and leave the large subject of solving
sparse linear systems entirely aside. Our problem
is the following:

GIVEN A ∈ Qn×m (dense),
FIND a basis of kerA.

By kerA we denote the kernel (or nullspace or
solution space or solution) of the matrix A, i.e.,
the linear subspace of all x ∈ Qm with Ax = 0.

In principle, this problem can be solved with
the usual Gaussian elimination. But there is a

1

2 M. Kauers

catch when Gaussian elimination is applied to a
dense matrix: When the jth column is being elim-
inated using some element ai,j 6= 0 as a pivot,
then all elements ak,l in the remaining subma-
trix are replaced by a′

k,l := ak,l − ak,jai,l/ai,j. In
general, the addition of two rational numbers p
and q will give a rational number p + q of about
twice the bit size of the two summands, and so
in the generic case, the entries a′

k,l of the subma-
trix will have about twice as many digits than the
elements ak,l from before the elimination. As n
columns have to be eliminated in total, and the
bitsize of the entries doubles at each step, it fol-
lows that the elimination consumes a time that
is proportional to 2n. This phenomenon is called
expression swell.

Expression swell is not only a hypothetical
worst case scenario, but arises for almost every
dense matrix, including typical dense matrices
arising in applications. For these, however, the
expression swell is often only intermediate, i.e.,
elimination produces very long fractions which in
the very end all cancel out to give solution vectors
with reasonably sized coefficients. In the follow-
ing, we explain two ways of avoiding this inter-
mediate expression swell in Gaussian elimination.
The first way is a fraction free elimination scheme,
applicable to integer matrices. The second uses
homomorphic images. None of these approaches
is new, they both belong to the standard folklore
in computer algebra. Pointers to the relevant lit-
erature are given in the end.

2. Fraction Free Gaussian Elimination

If A ∈ Zn×m, then we may modify the elimina-
tion step in such a way that no fractions are in-
troduced: Instead of a′

k,l := ak,l−ak,jai,l/ai,j, we
use the update formula a′

k,l := ak,lai,j − ak,jai,l.
This is obviously correct as well because multiply-
ing a matrix row by a nonzero element does not
change the solution space. This scheme, however,
still leads to an exponential expression swell, be-
cause a product pq has in general twice as many
digits as the factors p or q.

It can now be shown that when the ith col-
umn is about to be eliminated, then all the entries
from the remaining submatrix are divisible by the

pivot that was used for eliminating the (i − 1)st
column. If we keep on dividing out these old piv-
ots, we gain a considerable improvement on the
expression swell. The full elimination algorithm
is then as follows:

INPUT A = ((ai,j)) ∈ Zn×m

OUTPUT A ∈ Zn×m in reduced echolon form

1 d = 1; r = 1;
2 for k from 1 to m do

3 if apk = 0 for all p then next k
4 Let p be such that apk 6= 0
5 Exchange rows p and r
6 for i from r + 1 to n do

7 for j from k to m do

8 aij = (arkaij − arjaik)/d
9 d = ark; r = r + 1;

10 return A

This algorithm differs from the usual elimi-
nation algorithm only in the update formula in
line 8. By theory, the division in this line will al-
ways yield an integer. Surprisingly enough, this
simple modification turns the exponential run-
time into a polynomial runtime.

3. Homomorphic Images

If the entries of A are not just integers but ar-
bitrary rational numbers, then the fraction free
approach is not directly applicable. Of course it
is possible to first clear all denominators and then
apply the fraction free elimination, but clearing
denominators will in general already lead to an
explosion of size of the entries.

We now turn to an independent approach
which is applicable also to matrices with rational
number entries. The idea is to perform the elimi-
nation in an algebraic domain where all elements
have a certain fixed length, so that no expression
swell can occur. These “algebraic domains” are
finite fields.

3.1. Finite Fields

Let p be a prime number and consider the setZp := {0, 1, . . . , p − 1}. We define operations ⊕
and ⊗ on Zp via

a⊕ b := (a+ b) mod p, a⊗ b := (a · b) mod p

Fast Solvers for Dense Linear Systems 3

(a, b ∈ Zp), where + and · on the right refer to
ordinary addition and multiplication of integers,
and mod refers to the remainder upon (integral)
division by p. We will write + instead of ⊕ and
· instead of ⊗ from now on, although the opera-
tions in Zp must be carefully distinguished from
those in Z.

The set Zp is called a finite field. Arithmetic
in Z and Zp is closely related: consider the map

m : Z→ Zp, m(a) := a mod p,

which maps any a ∈ Z to its remainder modulo p.
Then

m(a+b) = m(a)+m(b), m(a·b) = m(a)·m(b)

(a, b ∈ Z), i.e., addition and multiplication may
be exchanged with application of m. (Maps with
this property are called homomorphisms.)

The map m may be extended from Z to (most
of) Q by defining that a fraction u/v ∈ Q (u, v ∈Z, v ≥ 1) is mapped to the solution x ∈ Zp of
the linear equation m(v)x = m(u) in Zp. Such
a solution will exist whenever v is not a multiple
of p. For example, in Z7, we have m(4/3) = 6
because 3 · 6 = 4 in Z7. Given v ∈ Z, we can find
m(1/v) with the extended Euclidean algorithm,
which, for the sake of completeness, we describe
next.

3.2. The Extended Euclidean Algorithm

Let us temporarily forget about finite fields and
consider two integers a, b ∈ Z. The greatest com-
mon divisor gcd(a, b) of these numbers can be
found with the Euclidean algorithm by repeatedly
replacing the larger number (in absolute value) by
its remainder upon division by the other number.
The sequence of numbers computed in this way
will eventually become zero, and the last nonzero
number is precisely the desired gcd.

It can be shown that for every a, b ∈ Z there
will exist numbers s, t ∈ Z such that

as + bt = gcd(a, b).

These numbers are called cofactors or Bezout co-

efficients, and they can be computed by the ex-
tended Euclidean algorithm (EEA), as follows.

INPUT: a, b ∈ Z
OUTPUT: g, s, t ∈ Z with as+bt = g = gcd(a, b).

1 (g, s, t, g′, s′, t′) := (a, 1, 0, b, 0, 1);
2 while g′ 6= 0 do

3 q = g quo g′

4 (g, s, t, g′, s′, t′)
:= (g′, s′, t′, g − qg′, s − qs′, t − qt′);

5 return (g, s, t)

The token quo in line 3 refers to the integer
quotient, e.g., 8 quo 3 = 2. As an example, ap-
plying the algorithm to a = 34567 and b = 76543
gives the following trace for (g, s, t):

34567 1 0

76543 0 1

34567 1 0

7409 −2 1

4931 9 −4

2478 −11 5

2453 20 −9

25 −31 14

3 3058 −1381

1 −24495 11062

Indeed, we have gcd(34567, 76543) = 1 and

1 = (−24495) · 34567 + 11062 · 76543.

The EEA can be used for performing division
in Zp. Let a ∈ Zp. Then gcd(a, p) = 1 (because
p is prime) and so we can find s, t ∈ Z with

1 = as + pt,

i.e., 1 = as mod p, i.e. m(1/a) = s if m : Q→ Zp

is as before. For example, by the computation
above m(1/34567) = −24495 = 52048 in Z76543.
We will see next that the EEA can not only be
used for mapping rational numbers to elements
of Zp, but it can also be used for the opposite
direction.

3.3. Rational Reconstruction

After having mapped a given matrix over Q to
some finite field Zp and after having solved the
system in that field, we only have a solution that
is valid for this field. If this solution is the image
m(x) of a “true” solution x, then we need a way
to reconstruct a rational number x ∈ Q from its
homomorphic image m(x) ∈ Zp.

4 M. Kauers

Unfortunately, the map m is not invertible.
If, for example, p = 76543 and m(x) = 34567
then we clearly have m(34567) = 34567, but
also m(111110) = 34567 or m(−1/24495) =
34567. There are infinitely many rational num-
bers that are mapped to 34567 under m. Among
those, we wish to determine the number u/v
where max{|u|, |v|} is minimized. Intuitively, this
means that we want to distribute the available in-
formation evenly among numerator u and denom-
inator v. (In contrast, in the preimages 34567/1
and −1/24495 all information is pressed into nu-
merator and denominator, respectively.)

Consider the values of g, s, t during execution
of the EEA algorithm applied to a, b ∈ Z. The
identity

g = as + bt

is true in every iteration. So m(g/s) = a in Zb

for all pairs (g, s) in the trace of the algorithm.
We will get a good rational preimage if we abort
the iteration when g and s are approximately the
same in size, this is when |g| ≈ |s| ≈

√
b. (Note

that we may assume p = b > a ≥ 0 for our pur-
pose.) So we obtain an algorithm for rational
reconstruction by replacing line 2 of the EEA by

2 while |g| >
√

b do

and returning g/s in the end.
For example, with a = 34567 and p = b =

76543 we find that m(−25/37) = 34567 in Z76543.

3.4. System Solving with a Big Prime

Now we turn to linear systems. Let A ∈ Qn×m

and let p be a large prime number. Let m : Q→Zp be as defined as above (if we later run into one
of the few x ∈ Q for which m(x) is undefined,
then we discard p and try another prime. Almost
all primes will be fine.) We map A to a matrix
m(A) ∈ Zn×m

p , then solve the system over Zp,
obtaining a basis Bp of kerm(A) ⊆ Zm

p , which
will (with high probability) be the image m(B)
of a basis B of kerA ⊆ Qn×m:

A ∈ Qn×m

mod

��

kerA ⊆ Qm

m(A) ∈ Zn×m
p

Gauss // kerm(A) ⊆ Zn×m
p

rational
recon-
struction

OO

As an example, let

A =





1/2 1/3 1/4 1/5
1/6 1/7 1/8 1/9
1/10 1/11 1/12 1/13





and p = 10007. Then

m(A) =





5004 3336 2502 4003
1668 7148 1251 1112
7005 3639 834 6928



 .

The kernel of this matrix in Zp is generated by
the vector (4875, 617, 6772, 1). Applying rational
reconstruction to this vector gives the solution
candidate b = (− 8

39 , 77
65 , 87

34 , 1). But this vector
is not a solution as Ab 6= 0. Our prime was too
small for the method to succeed.

Taking the bigger prime p = 76543, we get

m(A) =





38272 51029 19136 45926
63786 43739 9568 42524
22963 13917 31893 5888



 .

The kernel of this matrix in Zp is generated by the
vector (9813, 60058, 48279, 1). Applying rational
reconstruction to this vector gives the solution
candidate b = (− 8

39 , 77
65 ,− 128

65 , 1). This vector is
actually a solution, as Ab = 0.

It can happen that m(A) has more solutions inZp than A has in Q. For example, the system

(

1 6
1 1

)

has obviously no solution in Q, but it has the
solution (1,−1) in Z5, because 6 = 1 in Z5.
Primes p for which the nullspace of m(A) in Zp

has a larger dimension than the nullspace of A
in Q are called unlucky. Fortunately, large un-
lucky primes are very rare. In practice, they vir-
tually never occur. (And if there occurs one, we
discard it and take another prime.)

Note that 10007 is not an unlucky prime in this
sense: the image of (− 8

39 , 77
65 ,− 128

65 , 1) in Z10007 is
precisely the vector (4875, 617, 6772, 1) that we
obtained by solving the system in Z10007. It
was the rational reconstruction that has failed
to hit the right rational solution, because there
are shorter preimages for the prime 10007. With

Fast Solvers for Dense Linear Systems 5

increasing length of the chosen prime, all these
preimages that are shorter than the rational solu-
tion will eventually disappear, so that the short-
est preimage of m, as found by rational recon-
struction, will coincide with the rational solution.
As a rule, this will happen as soon as p exceeds
the square of the largest numerator or denomina-
tor appearing in the solution vectors, in our ex-
ample 1282 = 16384. Indeed, the reconstruction
succeeds for the first prime beyond this number,
p = 16411.

A bound for the coefficients in the solution
vector in dependence of the entries of A can be
obtained from bounds for determinants such as
Hadamard’s bound. However, most often these
bounds will be too pessimistic on practical ex-
amples and would unnecessarily slow down the
computation. It is better to do the computation
with some large prime, and redo the computation
with a prime of, say, twice the size if necessary.
Eventually we will be using a prime that is large
enough but, typically, still much smaller than the
worst case bounds. A disadvantage of this proce-
dure is that potentially many modular solutions
are computed just to be thrown away. It would
be much more economic if these results could be
reused. This is indeed possible, as we will see
next.

3.5. Chinese Remaindering

Let p, q ∈ Z with gcd(p, q) = 1 but not neces-
sarily prime. Let mp : Q→ Zp and mq : Q→ Zq

be the modular maps and suppose that about
some unknown rational number x ∈ Q we know
its images mp(x) ∈ Zp and mq(x) ∈ Zq. Our goal
is to compute from this information the image of
x in Zpq. This will enable us to combine different
small modular solutions to a single big modular
solution for which we then can proceed as before.

By gcd(p, q) = 1, there exist numbers s, t ∈ Z
such that sp + tq = 1, and such numbers can be
found with the EEA. Now set

u := mp(x) + (mq(x) − mp(x))sp

= mp(x) + (mq(x) − mp(x))(1 − tq)

and observe that u mod p = mp(x) and u mod
q = mq(x). It can be shown that u is the only
number in Zpq with this property, and therefore it

must be the image of x in that domain. We have
the following simple algorithm, which is known as
the Chinese Remainder Algorithm:

INPUT: a ∈ Zp, b ∈ Zq where gcd(p, q) = 1.
OUTPUT: u ∈ Zpq such that u mod p = mp(x)
and u mod q = mq(x)

1 Find s, t such that sp + tq = 1.
2 return a + (b − a)sp

3.6. System Solving with Small Primes

Instead of one big prime, we will now use sev-
eral small primes. We solve the linear system for
each prime, and then combine the results with
Chinese remaindering. This has two advantages:
First, we need not compute with very long primes,
even if the output contains very long numbers. In
particular, we can stick to primes that are short
enough to fit into a processor word (typically 32
or 64 bit) so that fast hardware arithmetic can
be exploited. Secondly, we need not estimate in
advance the length of the numbers in the output,
but instead keep on including new primes until
their product is so long that rational reconstruc-
tion gives the right answer. This leads to the fol-
lowing algorithm, in which also the unlikely event
of encountering unlucky primes is handled.

INPUT: A ∈ Qn×m

OUTPUT: a basis B of kerA ⊆ Qm.

1 q = 0
2 repeat

3 Let p be a new prime.
4 if mp(A) = ⊥ then

5 next // discard unlucky prime.
6 Let Bp be a basis of kermp(A) ⊆ Zm

p .
7 if q = 0 or |Bp| < |Bq| then

8 q = p; Bq = Bp; // (re)initialize
9 else if |Bp| = |Bq| then // combine

10 Bq = CRA(Bq, Bp, q, p); q = q · p
11 B = RR(Bq, q);
12 until A · b = 0 for all b ∈ B
13 return B

The condition mp(A) = ⊥ means that the ho-
momorphic image of A in Zn×m

p does not exist,
because some denominator in A is a multiple of p.

6 M. Kauers

The token next is meant to break the current it-
eration and proceed directly to the next. The
function CRA refers to the Chinese remainder al-
gorithm as described in the previous section, ap-
plied to corresponding entries of Bq and Bp. The
function RR refers to rational reconstruction as
described in Section 3.3.

As an example, consider the matrix A from Sec-
tion 3.4. For p = 131 we obtain the modular
solution bp = (114, 108, 125, 1) of mp(A). Ratio-
nal reconstruction turns bp into (− 5

8 ,− 7
6 ,−6, 1)

which is not yet a solution over Q. For the next
prime, p = 137, we obtain the modular solution
bp = (56, 115, 17, 1). With the Chinese remainder
algorithm, we combine this solution with the pre-
vious one to the solution (13345, 14911, 2483, 1)
valid modulo 131 · 137 = 17947. Rational recon-
struction turns this vector into (− 8

39 , 77
65 ,− 128

65 , 1).
This is the correct solution and the algorithm
stops.

It is important to normalize the modular solu-
tions such as to ensure that modular solutions for
different primes share the same preimage. If, in
the example, we had chosen 2 ·(114, 108, 125, 1) =
(97, 85, 119, 2) as the first solution (after all, the
solution of a linear system is not unique), then the
algorithm would never have terminated. To avoid
this effect, we force one component to 1 in every
modular solution (in the example, we took the
fourth). Similarly, if the solution space is higher
dimensional, we can bring the modular solution
vectors to a form

(∗, . . . , ∗, 0, . . . , 0, 1, 0, . . . , 0)

to ensure that different modular solutions corre-
spond to the same preimage.

The complexity of the algorithm depends on
the size of the input matrix as well as on the
length of the numbers in the output. Let us con-
sider a square matrix A ∈ Qn×n for simplicity.
Application of mp to the n2 matrix elements re-
quires time proportional to n2, Chinese remain-
dering and rational reconstruction take time pro-
portional to n2ℓ, where ℓ bounds the length of the
numbers in the output. The runtime bottleneck
is the computation of the modular solutions, each
of which takes time proportional to n3, together
n3ℓ (the number of primes needed is proportional

to ℓ.) As the computations of solutions in Zp

are entirely independent of each other, they can
be done in parallel on P processors. The overall
complexity is then proportional to n2ℓ + n3ℓ/P .

4. Concluding Remarks

We have been focussing on matrices over Q,
i.e., matrices without any parameters. Similar
techniques can be applied for matrixes overQ(x),
i.e., matrices containing a single parameter x.
Such matrices are reduced to several matrices
over Q by evaluating x at several points (analo-
gous to the reduction to several Zp). Their solu-
tions are then combined via interpolation (analo-
gous to Chinese remaindering), and Pade approx-
imation (analogous to rational reconstruction) is
used to turn interpolating polynomials into ratio-
nal functions. For matrices over Q(x1, . . . , xn),
the method can be applied recursively, giving,
however, a complexity that is exponential in the
number of parameters.

The algorithms described in this paper prove
useful for solving large dense linear systems over
rationals. We repeat that they are well known.
Further details can be found in textbooks on com-
puter algebra such as [1] and [4]. These algo-
rithms should be used only for dense systems
which have no special structure. Otherwise there
are typically faster special purpose algorithms
(see, e.g., [2]). Also for general dense matrices,
modern algorithms (e.g., [3]) are faster than the
ones presented here.

REFERENCES

1. Keith O. Geddes, Stephen R. Czapor, and
George Labahn. Algorithms for Computer Al-

gebra. Kluwer, 1992.
2. Victor Y. Pan. Structured Matrices and Poly-

nomials. Birkhäuser, 2001.
3. Arne Storjohann and Gilles Villard. Comput-

ing the rank and a small nullspace basis of
a polynomial matrix. In Proceedings of IS-

SAC’05, pages 309–316, 2005.
4. Joachim von zur Gathen and Jürgen Gerhard.

Modern Computer Algebra. Cambridge Uni-
versity Press, 1999.

