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I Suppose you have given a sequence an of rational numbers,
say

25
24 , 3898

4213 , 4774398
5383247 , 445394100

509117429 , 1875780301068
2147400656503 , 445092169340

507340266747 , . . .

I Suppose you suspect that an can be written as

an = rat(n, Hn, H(2)
n , H(3)

n ),

for some rational function rat.

I How could you discover such a rational function?

I Make an ansatz!
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n + c10H
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i.e.,

0 = c1 + c2n + c3Hn + c4H
(2)
n + c5H

(3)
n

− c6an − c7nan − c8Hnan − c9H
(2)
n an − c10H

(3)
n an.

By plugging in n = 1, . . . , 10 we get a dense linear system:







∗ · · · ∗
...

. . .
...

∗ · · · ∗








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
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...
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


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




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Example

This system has no solution. Try a bigger ansatz:

an =
c1 + · · · + c15nHnH

(2)
n + · · · + c30n

2(H
(3)
n )2

c31 + · · · + c45nHnH
(2)
n + · · · + c60n2(H

(3)
n )2

.

This leads to a system of size 60 × 60.
This system has a solution that corresponds to the closed form

an =
(

(n + 3)H2
n + (2n + 3)Hn + (3n − 2)H(2)

n Hn

+ (2n − 5)H(2)
n + (n2 + n − 3)H(3)

n

+ (2n + 17)H(2)
n H(3)

n

)/(

3nH2
n + (5n − 3)(H(2)

n )2

+ (6n + 5)(H(3)
n )2 + (2n + 3)H(2)

n + (7n − 5)H(3)
n + 1

)

.
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Example

If there had not been a closed form at this point, we would have
included cubic terms.

The corresponding system would have been of size 160 × 160.

The ugliest coefficient in this system would have been
908832599038694847038986851619916896699069828520278576734313218152228688617842975740915627396600
773096516860514938584475180035408435641902208677547085204403335118857901897921641508178647778278
950903964390545421753413156253428091388374361101038380706238279355922616786499296651605565677324
470873903641969510610033133866940362732235659419739168449043859859310108067614923918419572568852
463851315094097859434813883995756702579167128186328425670763241523886987083882016038071001636239
882720818524396979841994456391528090086739296315810673976687526368697214077911507428570965825294
889257827598342283599564261186266965141843600586071958087703197746205189825787434923775654359633
142865809525435636703214553432835616991039905573484634179460089512753393831372170001034464084815
860074912527360333164889060007697392681240306838092094762240357437235301741257767771407557323331
98776514572024833132166748245392570781813055455442682338791285775275321/608071561520469263771864
912900208340519341228462325866654070954648781382761160831047292475594970168876391229713333361460
617524426158506233015628532580104175799899603569619861748499212232349202704257338492766228143557
938393336466485636213537922123315123885938042342534943489837490551827553484761723686376518648743
365387695416861600852713536364490121065994222729396210947647475233184372489732847890966566597135
449686235059997946055799717491204008129578384888903681795059365804600893257023388718806123574709
883282534363429790748372716661107973838303728281458354476754486477224385836362983346375210030954
250430003579185696334806802111301940101874894701556977700464998889377408829983347785295119355949
072698840068582490079977153154387203675675429903671982942691774960800951099556416364355824981174
954670310861065507270681127707808170666366703709841624760002521355747824458767885526659062092840
5585081746477547520000000000000000000000
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Example

If there had not been a closed form at this point, we would have
included cubic terms.

The corresponding system would have been of size 160 × 160.

The total size of the system would have been 7.5 Megabytes.

And this was only a toy example. . .
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Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.
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400000

500000
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700000

800000

But this is very slow. . .

Observation:

This seems to be exponential.

Ex: expected runtime for solving a 300 × 300 system: 1033 years.
(If you are 100 000 times faster, you still have to wait 1027 years.)
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Indeed it does, but let’s have a closer look:



















2
3648645

1
2432430 0 − 211

510810300

0 1
102162060 0 − 4

297972675

0 0 2
1216215

1
291060





















Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look:
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Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look:
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Solution: (11
40 ,−48

35 , 117
56 ,−1)

Ugliest intermediate coefficient: 1
186376544704350
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Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, if numbers could be multiplied in constant time.

But in Q, this time depends on the bitsize of the number.

The bitsize of the coefficients doubles at each elimination step.

Therefore, we have

I exponential “bit complexity” despite of the

I polynomial “arithmetic complexity”.

What to do? Goal: Find ways to avoid expression swell.
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This is applicable to integer matrices.

Let A = ((ai,j)) be such a matrix.













a1,1 a1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 a1,1a2,2 − a1,2a2,1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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











Thm. All elements in the remaining matrix are divisible by a1,1.
Ex. ∗ ∗ ∗ = a1,1(−a1,4a2,2a4,1 + a1,2a2,4a4,1 + a1,4a2,1a4,2

− a1,1a2,4a4,2 − a1,2a2,1a4,4 + a1,1a2,2a4,4)
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Gauss-Bareiss Elimination

This is applicable to integer matrices.

Let A = ((ai,j)) be such a matrix.

In general, all entries in the submatrix of step i are divisible by the
pivot of step i − 2.

Keep on dividing out the old pivots!

This division takes some time, but the resulting reduction in expres-
sion swell is worth it.

In fact, the resulting algorithm as only polynomial bit complexity.
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Gauss-Bareiss Elimination

This is applicable to integer matrices.

Let A = ((ai,j)) be such a matrix.

This technique is useless for rational matrices.

Given a matrix over Q, we could clear denominators to obtain a
matrix over Z.

But this will lead to an explosion in the bitsize of the coefficients.

We need another idea here.
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Homomorphic Images

Idea: Perform the computation in an algebraic domain where all
elements have the same bitsize.

Let p be a prime number, e.g., p = 7 or p = 2147483647.

Let Zp := {0, 1, 2, 3, . . . , p − 1}.

Define + and · on Zp via

a + b := (a + b) mod p a · b := (a · b) mod p (a, b ∈ Zp)

Example: 4 + 5 = 2 and 4 · 5 = 6 in Z7.

The algebraic domain Zp is called a finite field of characteristic p.
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The domains Z and Zp are closely related:

Let m : Z → Zp be the map a 7→ a mod p.

Then

m(a + b) = m(a) + m(b), m(a · b) = m(a) · m(b) (a, b ∈ Z).

The map m is called a homomorphism.

We can extend m from Z to rational numbers by mapping
u/v ∈ Q to the solution of m(v) · x = m(u) in Zp.

This will be possible whenever p - v (otherwise m(v) = 0.)

Example: m(4/3) = 6 in Z7, because 3 · 6 = 4 in Z7.
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I Problem: m is not invertible. How to “lift” m(x) to x?

I To do: Given a ∈ Zp, find u/v ∈ Q with m(u/v) = a.

I One possible solution is a/1.

I We want the solution u/v where max(|u|, |v|) is minimal.

I Example: For a = 3, p = 7, we want to obtain −1/2.

I Example: For a = 209510601, p = 2147483647, we want to
obtain 53/41.

I There is an efficient way to compute u, v for given a, p with a
modified version of the Euclidean algorithm.

I This is called rational reconstruction.
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Theorem. This works.

More precisely:

Theorem. If A ∈ Qn×n and p is a sufficiently large prime, then the
rational reconstruction x of a solution m(x) of m(A) in Zp is a
solution of A in Q.

What means “sufficiently large”?

The prime p has to be about twice as large as the largest
numerator or denominator in the solution vector x ∈ Qn.

This might be too large to be efficient. We prefer to compute with
small primes.
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Idea: Instead of one big prime p, compute with several small
primes p1, p2, . . . , pk.

Then we get several homomorphic images, m1(x), . . . , mk(x) of
the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image
m(x) in Zp1p2···pk

, called Chinese Remaindering:

If gcd(p, q) = 1 then we can find s, t with sp + tq = 1.
Let a ∈ Zp, b ∈ Zq.
Consider c = a + (b − a)sp = a + (b − a)(1 − tq).
Then c = a mod p and c = b mod q.
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Idea: Instead of one big prime p, compute with several small
primes p1, p2, . . . , pk.

Then we get several homomorphic images, m1(x), . . . , mk(x) of
the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image
m(x) in Zp1p2···pk

, called Chinese Remaindering:

Example: If a = 3 in Z7 and b = 4 in Z11,
then (−3) · 7 + 2 · 11 = 1
and c = 3 + (4 − 3)(−3)7 = −18 = 59 in Z77.



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).

I Combine all images m1(x), . . . , mk(x) to a big image m(x).



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).

I Combine all images m1(x), . . . , mk(x) to a big image m(x).

I Apply rational reconstruction to recover a preimage x
from m(x).



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).

I Combine all images m1(x), . . . , mk(x) to a big image m(x).

I Apply rational reconstruction to recover a preimage x
from m(x).

I If Ax = 0 in Q, stop.



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).

I Combine all images m1(x), . . . , mk(x) to a big image m(x).

I Apply rational reconstruction to recover a preimage x
from m(x).

I If Ax = 0 in Q, stop.

I Otherwise, proceed with the next prime.



Homomorphic Images

Algorithm: For primes pk = p1, p2, p3, . . . do

I Solve the system Ax = 0 in Zpk
, obtaining an image mk(x).

I Combine all images m1(x), . . . , mk(x) to a big image m(x).

I Apply rational reconstruction to recover a preimage x
from m(x).

I If Ax = 0 in Q, stop.

I Otherwise, proceed with the next prime.

Cool: The images m1(x), . . . , mk(x) can be computed
independently in parallel, each prime on a seperate processor.
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In total, we get a bit complexity of dn2 + dn3/N with

I n the size of the matrix,

I d the length of the output,

I N the number of processors.

This allows to crack much
larger systems in a reason-
able time, even on a single
processor machine.
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Feature: This technique extends to linear systems with polynomial

coefficients:

A ∈ Q[t]n×n x ∈ Q[t]n

↑

↓
m(A) ∈ Zp[t]

n×n m(x) ∈ Zp[t]
n

↑

↓

M(m(A)) ∈ Zn×n
p

Gauss in Zp
−−−−−−−−−→ M(m(x)) ∈ Zn

p
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I Linear systems can be solved in polynomial time. Seriously.

I Matrix sizes of up to 2000 × 2000 are feasible on a laptop, at
least if the solution has a reasonable bitsize.

I The algorithms presented in this talk are known since long.

I Modern algorithms are even faster than this. (But also more
difficult.)

I In applications, special knowledge about a matrix should
always be taken into account (sparsity, structure, . . . ) before
a general purpose algorithm is applied.


