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ABSTRACT
A new method is proposed for finding the logarithmic part
of an integral over an algebraic function. The method uses
Gröbner bases and is easy to implement. It does not have
the feature of finding a closed form of an integral whenever
there is one. But it very often does, as we will show by a
comparison with the built-in integrators of some computer
algebra systems.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Symbolic Integration, Algebraic Functions

1. INTRODUCTION
In 1979, Norman and Davenport wrote [10]

Ten years ago an integration program could be
judged by the proportion of some set of (known
integrable) examples it could cope with, whereas
now failure to solve an easy problem is seen as a
bug.

They characterize here the development from early heuris-
tic approaches to solid algebraic algorithms for integration.
Indeed, there is now a complete algorithmic solution to the
problem of indefinite integration of elementary functions,
“complete” in the sense that there is an algorithm which is
guaranteed to find a closed form of an integral in terms of
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elementary functions whenever there is one [11, 12, 1, 5].
In this situation, why should we still care about incomplete
heuristic approaches?

Parts of the complete integration algorithm are rather
complicated. Implementors need a thorough mathematical
understanding of the underlying theory and a lot of time
to create a complete implementation of the complete algo-
rithm. As a matter of fact, all of today’s computer algebra
systems only contain a partial implementation of the com-
plete algorithm. Difficult parts of the algorithm that are
only needed for certain types of integrals are often consid-
ered not worth the effort of implementing and are therefore
left out. A simple heuristic may be an attractive way of
filling these gaps. And even if a complete code is desired,
a fast heuristic could be executed as a preprocessor before
the complete code is entered. This may enhance the overall
performance.

These reasons were stated by Bronstein [6, 5] in favor
of parallel integration, an incomplete integration alterna-
tive to the Risch algorithm for integration of transcendental
elementary functions. An incomplete (yet very successful)
integrator of his based on this approach requires less than
100 lines of Maple code [4].

In this paper, we propose an incomplete method for find-
ing the logarithmic part of an algebraic integral. As imple-
menting our method requires no more than about ten lines
of code in Maple or Mathematica, it might be interesting in
situations where a full implementation of Davenport’s [8] or
Trager’s [13] algorithm, which both involve complicated and
time-consuming algebraic computations, is not adequate.

We use Gröbner bases to compute potential contributions
to the logarithmic part. Very often, we can find the complete
logarithmic part in this way. At least some components of
the logarithmic part can usually be found, and some uninte-
grated part of the integrand may be left. We cannot give any
proofs as to how often our method succeeds, but instead we
measure its usefulness by comparing it with the integrators
of Axiom, Maple, and Mathematica. We do believe that the
integrators of these systems would benefit from including
our method.

2. TRAGER’S ALGORITHM
Let k be a field, Q ⊆ k. Let m ∈ k[x, y] with d :=

degy m ≥ 2 irreducible over k̄(x). We consider the differ-
ential field K := k(x)[y]/〈m〉 with the derivation D defined
via Dc = 0 (c ∈ k), Dx = 1. Elements of K whose minimal
polynomial has a leading coefficient with respect to y that is



free of x are called integral. We may assume that y itself is
integral in K (otherwise, choose a different generator). For
polynomials p we will write p̄ for its residue class modulo
an ideal that will be clear from the context. We will slop-
pily write p(x, y, γ) for the polynomial obtained from p by
substituting γ for the last indeterminate, and in similar sit-
uations. All these definitions and conventions will be used
throughout the paper.

Suppose an integrand f ∈ K is given. If the integral
R

f is
elementary, then, according to Liouville’s theorem, there ex-
ist g ∈ K and γ1, . . . , γr ∈ k̄ and p1, . . . , pr ∈ K(γ1, . . . , γr)
such that

f = Dg + γ1
Dp1

p1
+ · · · + γr

Dpr

pr

,

and hence
R

f = g + γ1 log(p1) + · · · + γr log(pr). Here, g
is called the algebraic part and the sum of the γi log(pi) is
called the logarithmic part of the integral.

Following Trager [13], g, the γi and the pi may be com-
puted as follows.

1. Choose a point x0 ∈ k where f has no pole or branch
point, and perform the change of variables x = 1/(x′−
x0), dx = −1/x′2 dx′. We call the new integrand again
f and rename x′ back to x.

2. Compute an integral basis ω = (ω1, . . . , ωd) of K. This
is a basis which generates the subring Ok[x] ⊆ K of all
integral elements as a k[x]-module.

3. Write

f =
a1ω1 + · · · + adωd

b

for a1, . . . , ad, b ∈ k[x] such that gcd(a1, . . . , ad, b) =
1. Then, using a generalization of Hermite reduction,
compute g, h ∈ K such that h has simple poles only
and

f = Dg + h.

4. If the algebraic function x2h(1/x) has a pole at the
origin, return “not integrable”; the integral is not ele-
mentary in this case.

5. Write

h =
u1 + · · · + udyd−1

v

for u1, . . . , ud, v ∈ k[x] such that gcd(u1, . . . , ud, v) =
1. Compute the splitting field of

resx(resy(u1 + · · · + udyd−1 − tDv, m), v) ∈ k[t],

say γ1, . . . , γr ∈ k̄ generate this field as a vector space
over Q.

6. For each γi, construct an ideal ai �Ok[x] that encodes
the finite places and multiplicities of the singularities
a potential logand pi with coefficient γi has to have.

7. For each ai, determine whether there is a positive in-
teger ni such that a

ni

i is a principal ideal. If so, say
a

ni

i = 〈pi〉 for some pi ∈ Ok[x], then γi

ni

log(pi) is the

desired contribution to the logarithmic part of the in-
tegral. If no ni exists, then return“not integrable”; the
integral is not elementary in this case.

8. After undoing the substitution of Step 1, return

g +
γ1

n1
log(p1) + · · · + γr

nr

log(pr).

The computation of an integral basis in Step 2 is easy
if y is a radical over k(x), i.e., if m = ayd − b for some
a, b ∈ k[x] [3]. Otherwise, the computation is not trivial, but
algorithms for this purpose are known [13, 14]. The integral
basis is needed for the Hermite reduction and also in Step 7.
For a modified Hermite reduction [2, 3], however, an integral
basis is not needed in the first place. The standard basis
1, y, . . . , yd−1 can be used instead as a first “approximation”
to the integral basis. The modified Hermite reduction then
returns, in addition to g and h, a refined basis ω1, . . . , ωd,
which is just as close to an integral basis as was necessary
for finding the desired g and h.

For details about steps 5, 6, and 7, we refer to Trager’s
thesis [13]. These are parts that are often only partially
implemented (if at all), and for these we will give a simple
alternative below.

3. CZICHOWSKI’S OBSERVATION
For the integration of rational functions f ∈ k(x), Czi-

chowski [7] observed that the logarithmic part can be read
off directly from a certain Gröbner basis. Let f = u/v
with u, v ∈ k[x] such that gcd(u, v) = gcd(v, Dv) = 1 and
deg u < deg v, and consider the Gröbner basis

G = {g0, g1, . . . , gn} ⊆ k[x, t]

of the ideal 〈v, u − tDv〉 � k[x, t] with respect to the lexico-
graphic order eliminating x. Denote by ci := contx(gi) ∈ k[t]
and pi := ppx(gi) ∈ k[x, t] the contents and the primitive
parts of the gi with respect to x (i = 0, . . . , n), and sup-
pose the gi are sorted according to ascending leading terms.
Then:

• p0 = cn = 1

• c0 is the square free part of the Rothstein-Trager re-
sultant resx(v, u − tDv) ∈ k[t].

• ci | ci−1 (i = 1, . . . , n)

• for qi := ci−1/ci ∈ k[t] (i = 1, . . . , n) we have

Z

u

v
=

n
X

i=1

X

γ:qi(γ)=0

γ log(pi(x, γ)).

Example 1. For u = x3 + 9x2 − 18x + 9 and v = x4 −
17x2 − 18 we have

G = {(2t − 1)(8t2 − 9), (2t − 1)(x − 4t), 7x2 − 152t2 + 45}
and therefore

Z

x3 + 9x2 − 18x + 9

x4 − 17x2 − 18
dx

=
X

γ:8γ2
−9=0

γ log(x − 4γ) +
X

γ:2γ−1=0

γ log(7x2 − 152γ2 + 45)

=
3√
8

log(x − 3
√

2) − 3√
8

log(x + 3
√

2) +
1

2
log(7x2 + 7)

The following facts are immediate consequences of Czi-
chowski’s observation.



• If c0 is irreducible then G = {c0, p1} with

p1(x, γ) = gcd(u − γDv, v)

where γ is a root of c0.

• More generally, if q is an irreducible factor of c0, then
the Gröbner basis of 〈q, u − tDv, v〉 ∈ k[x, t] with re-
spect to an order eliminating x will have the form {q, p}
with p(x, γ) = gcd(u − γDv, v) where γ is a root of q.

• Consequently, if q(1), . . . , q(m) ∈ k[t] are all the irre-

ducible factors of c0 and if p(i) ∈ k[x, t] is the cor-

responding element in the Gröbner basis of 〈q(i), u −
tDv, v〉 (i = 1, . . . , m), then

Z

u

v
=

m
X

i=1

X

γ:q(i)(γ)=0

γ log(p(i)(x, γ)).

4. THE ALGEBRAIC CASE
Our goal is to extract the logarithmic part of an algebraic

function integral from a Gröbner basis, similar as Czichowski
does it for a rational function integral. Suppose, to this end,
that for a given f ∈ K = k(x)[y]/〈m〉 we have executed
Trager’s algorithm up to, and including, step 4 (cf. Sec-
tion 2). The remaining integrand is then of the form u/v for
some u ∈ k[x, y] and v ∈ k[x]. We may assume that u/v has
at least a double root at infinity.

In the rational case, we can identify the ideals 〈q, v, u −
tDv〉 = 〈q, p〉 � k[x, t] for irreducible q ∈ k[t] with principal
ideals 〈p̄〉 � k[x, t]/〈q〉. These ideals give rise to a contribu-
tion

P

γ:q(γ)=0 γ log(p(x, γ)) to the logarithmic part. Like-

wise, if in the algebraic case we can find some p ∈ k[x, y] with
〈q, m, v, u − tDv〉 = 〈q, m, p〉 � k[x, y, t], then this ideal can
be identified with the principal ideal 〈p̄〉 � k[x, y, t]/〈q, m〉.
It gives rise to a contribution

P

γ:q(γ)=0 γ log(p(x, y, γ)) to
the logarithmic part of the integral.

Example 2. For u = y and v = x4 + 1 with m = y2 −
(x2 + 1) and using q = 128t4 + 16t2 + 1 we find

{128t4 + 16t2 + 1, y2 − 16t2 − 2, x − 32t3y}
as the Gröbner basis of 〈q, m, v, u − tDv〉 with respect to
lexicographic order x > y > t. It is easily checked that in
fact

〈v, u − tDv, m〉 = 〈q, m, x − 32t3y〉
(both ideals have the same Gröbner basis). Indeed,

Z
√

x2 + 1

x4 + 1
dx =

X

γ:128γ4+16γ2+1=0

γ log(x − 32γ3
p

x2 + 1).

The Gröbner basis of 〈m,v, u − tDv〉 � k[x, y, t] with re-
spect to an order eliminating x and y will contain one uni-
variate polynomial in t. For an irreducible polynomial q ∈
k[t], the ideal 〈q, m, v, u − tDv〉 will be nontrivial iff q is a
divisor of this polynomial. This restricts q to finitely many
candidates that can be considered one after the other.

Example 3. For u = ix + y and v = x4 + 1 with m =
y2 − (x2 + 1) we find

{(16t2 − 8t + (2 − i))(16t2 + 8t + (2 + i)),

128it3 + 16t2 − 16it + 7y2 − 1,

192yt3 − 80iyt2 + 4yt + 14x − 9iy}

as the Gröbner basis of 〈m, v, u − tDv〉 � k[x, y, t]. For q =
16t2 − 8t + (2 − i), we have

〈q, v, u − tDv〉 = 〈q, m, 2x + (1 − i)(4t − 1)y〉,
while for q = 16t2 + 8t + (2 + i), we have

〈q, v, u − tDv〉 = 〈q, m, 2x + (1 + i)(4t + 1)y〉.
Indeed,

Z

ix +
√

x2 + 1

x4 + 1
dx

=
X

γ:16γ2
−8γ+(2−i)=0

γ log(2x + (1 − i)(4γ − 1)
p

x2 + 1)

+
X

γ:16γ2+8γ+(2+i)=0

γ log(2x + (1 + i)(4γ + 1)
p

x2 + 1).

For a given ideal 〈q, m, v, u−tDv〉�k[x, y, t], there may or
may not exist a p ∈ k[x, y, t] such that 〈q, m, v, u − tDv〉 =
〈q, m, p〉. It is not trivial to decide whether such a “princi-
pal generator” p exists, and even if it is known that there
is one it is not obvious how to find it. But it turns out
that often a principal generator p will belong to the Gröb-
ner basis of 〈q, m, v, u − tDv〉 with respect to a block order
[x, y] > [t] which orders the block [x, y] by a degree order,
say degrevlex. We therefore suggest to compute this Gröb-
ner basis and consider its elements as candidates for p. For
each candidate p, we can simply check whether the ideal
〈q, m, p〉 has the same Gröbner basis, and if so, we have
found a contribution to the logarithmic part. We know of
no convincing algebraic justification of this heuristic, but we
can assert that it does succeed in many cases (see the next
section).

In order to give rise to a contribution to the logarithmic
part of an integral, it is not necessary that a := 〈v̄, ū −
tDv̄〉 � k[x, y, t]/〈q, m〉 itself is a principal ideal. It suf-
fices that some power of it is. For if n ∈ N and p ∈
k[x, y, t] are such that a

n = 〈p̄〉, this would give a contri-
bution

P

γ:q(γ)=0
γ

n
log(p(x, y, γ)) to the logarithmic part.

Therefore, if we fail to find a p with 〈q, m, v, u − tDv〉 =
〈q, m, p〉 we check 〈q, m〉+〈v, u−tDv〉2, 〈q, m〉+〈v, u−tDv〉3,
and so on. One of the main difficulties in the construction of
a complete integration procedure is finding a bound on the
exponent n above which it can be asserted that the integral
is not elementary. But as our approach is heuristic any-
way, we need not bother about finding a rigorous bound but
choose some fixed number, say 12, and give up if we exceed
this power without having found anything. (If the divisor
is over the rationals, the choice of 12 is in fact a rigorous
bound, as pointed out by one of the referees.)

Example 4. For u = y and v = x3 + 1 with m = y2 −
(x2 + 1) we find

{(9t2 − 2)(9t2 + 1), y + 9yt2 − 27t3 − 3t,

x + 3ty − 1, y2 + 3yt − 9t2 − 2}
as the Gröbner basis of 〈m, v, u − tDv〉. The Gröbner basis
of 〈9t2 + 1, m, v, u − tDv〉 is

{9t2 + 1, x + 3ty − 1, y2 + 3ty − 1},
and it turns out that

〈9t2 + 1, m, v, u − tDv〉 = 〈9t2 + 1, m, x + 3ty − 1〉.



The Gröbner basis of 〈9t2 − 2, m, v, u − tDv〉 is

{9t2 − 2, y − 3t, x + 1},
but

〈9t2 − 2, m, v, u − tDv〉 6= 〈9t2 − 2, m, y − 3t〉 and

〈9t2 − 2, m, v, u − tDv〉 6= 〈9t2 − 2, m, x + 1〉,
so there seems to be no principal generator for n = 1. The
Gröbner basis for 〈9t2 − 2, m〉 + 〈v, u − tDv〉2 is

{9t2 − 2, x + 3ty − 1, y2 − 6ty + 2},
and it turns out that

〈9t2 − 2, m〉 + 〈v, u − tDv〉2 = 〈9t2 − 2, m, x + 3ty − 1〉.
Indeed,

Z
√

x2 + 1

x3 + 1
dx =

X

γ:9γ2+1=0

γ log(x − 1 + 3γ
p

x2 + 1)

+
X

γ:9γ2
−2=0

γ

2
log(x − 1 + 3γ

p

x2 + 1).

We have implicitly assumed so far that the integral clo-
sure Ok[x] of k[x] in K is just k[x, y], but it may actually
be more that this. Just using k[x, y] then in a computation
may cause some contributions to the logarithmic part to be
overlooked.

Example 5. Consider the integral
Z

1
`

4x + 4 − 3
p

x2(x + 1)
´

3
p

x2(x + 1)
dx.

Let

u = 4(x + 1)x2 + x2y + 16(x + 1)y2,

v = x2(x + 1)(7x + 8)(9x + 8)

and m = y3 − x2(x + 1). Then the integrand can be written

u(x, 3
p

x2(x + 1))/v(x).
Note that despite of the double factor x in v, the inte-

grand has simple poles only. It turns out that no princi-
pal generators can be found in the Gröbner bases of ideals
〈q, m〉 + 〈v, u − tDv〉n � k[x, y, t] for n = 1, . . . , 30 and any
irreducible q ∈ k[t].

By adjoining new formal elements to k[x, y] and stipulat-
ing appropriate relations between them, the whole integral
closure Ok[x] can be taken into account during the compu-
tation.

Example 6. Continuing Example 5, an integral basis for
K = k(x)[y]/〈m〉 is given by (1, y, y2/x). Introducing a new
indeterminate z referring to y2/x, the integrand may be writ-
ten r/s where

r = 4(x + 1)x + xy + 16(x + 1)z

s = x(x + 1)(7x + 8)(9x + 8).

Let m = 〈y3−x2(x+1), z3−x(x+1)2, zx−y2〉�k[x, y, z, t].
Then m + 〈s, r− tDs〉∩k[t] = 〈(4t− 3)(4t+3)〉 and we have

〈4t − 3〉 + m + 〈s, r − tDs〉3

= 〈4t − 3〉 + m + 〈8 + 9x + 6y + 12z〉,
〈4t + 3〉 + m + 〈s, r − tDs〉3

= 〈4t + 3〉 + m + 〈8 + 7x + 6y − 12z〉.

The principal generators were found in the Gröbner basis of
the ideals on the left with respect to a block order [x, y, z] >
[t] ordering [x, y, z] by degrevlex. Indeed,

Z

1
`

4x + 4 − 3
p

x2(x + 1)
´

3
p

x2(x + 1)
dx

= 1
4

log
`

8 + 9x + 6 3
p

x2(x + 1) + 12 3
p

x(x + 1)2
´

− 1
4

log
`

8 + 7x + 6 3
p

x2(x + 1) − 12 3
p

x(x + 1)2
´

.

When y is not a radical over k(x) the computation of an
integral basis is a difficult and expensive task. Lazy Hermite
reduction [2, 3] does not require an integral basis as input
but begins the computation with (1, y, . . . , yd−1) and refines
this basis as much as necessary to complete the reduction.
The approximation to the integral basis thus obtained may
be used in search of the logarithmic part, as described above.
No full integral basis is necessary to proceed this way, but
of course the finer the approximation the more likely a log-
arithmic part will be found.

Additional formal elements can also be used if the inte-
grand involves several different algebraic functions: instead
of computing with a primitive element, each algebraic func-
tion arising in the integrand may be represented by an indi-
vidual indeterminate.

Example 7. For

u = (x − 1)(4x + 1)y + (x + 1)(4x − 3)z − 2(2x − 1)yz,

v = (x − 1)(x + 1)(4x − 5)

with m = 〈y2 − (x + 1), z2 − (x − 1)〉 we find first

m + 〈v, u − tDv〉 ∩ k[t] = 〈t2(t − 1)(t + 3)〉

and then

〈t − 1〉 + m + 〈v, u − tDv〉2 = 〈t − 1〉 + m

+ 〈16 − 20x − (9 − 12x)y + (13 + 4x)z − 12yz〉
〈t + 3〉 + m + 〈v, u − tDv〉2 = 〈t + 3〉 + m + 〈4 + 3y − z〉.

Indeed,
Z

“

(x + 1)(4x − 3)
√

x − 1 + (x − 1)(4x + 1)
√

x + 1

− 2(2x − 1)
√

x − 1
√

x + 1
”.

(x − 1)(x + 1)(4x − 5) dx

= 1
2

log(16 − 20x − (9 − 12x)
√

x + 1

+ (13 + 4x)
√

x − 1 − 12
√

x + 1
√

x − 1)

+ 1
2

log(4 + 3
√

x + 1 −
√

x − 1).

Alternatively, we may rephrase the integrand in terms of a
primitive element. Let q be an indeterminate representing√

x + 1+
√

x − 1 and m = q4−4xq2+4. Then the integrand
may be written as r/s ∈ k(x)[q]/〈m〉 with

r = (2x − 1)q3 − 2(2x − 1)q2 + 2(x − 2)q + 4x(2x − 1),

s = 4(x − 1)(x + 1)(4x − 5).

We find 〈m, s, r − tDs〉 ∩ k[t] = 〈t2(2t − 1)(2t + 3)〉 and

〈2t − 1, m, s, r − tDs〉 = 〈2t − 1, m, q3 − 2q2 − q + 2〉
〈2t + 3, m, s, r − tDs〉 = 〈2t + 3, m, q + 2〉.



Substituting
√

x + 1 +
√

x − 1 for q leads to the alternative
closed form

log(2 − 4x − (3 − 4x)
√

x + 1

+ (1 + 4x)
√

x − 1 − 4
√

x + 1
√

x − 1)

+ log(
√

x + 1 +
√

x − 1 + 2).

Summarizing, our procedure for finding the logarithmic
part of an integral over an algebraic function u/v is as fol-
lows.

G := GröbnerBasis({v, u − tDv} ∪ M); int = 0
for all irreducible factors q of min G do

A := {1}
for n from 1 to 12 do

A := GröbnerBasis((A · G) ∪ {q} ∪ M)
for all p in A do

if A = GröbnerBasis({q, p} ∪ M) then
int := int +

P

γ:q(γ)=0
γ

n
log(p(x, y, γ))

next q
return int

Notational remarks.

• GröbnerBasis is meant to compute a Gröbner basis in
k[x, y, t] with respect to a block order [x, y] > [t] using
the degrevlex order for breaking ties in the block [x, y].

• M is meant to contain the relations among the gen-
erators, typically M = {m}, but there may be more
relations (and more indeterminates) in the case of non-
trivial integral closures or multiple algebraic functions
in the integrand.

• min G is meant to refer to the element of G with the
lowest leading term. This is the unique element of G
involving t but not x or y.

• If the polynomial min G has repeated factors, it is un-
derstood that the outer loop takes into account the
multiplicities by repeating the body of a repeated fac-
tor an according number of times (cf. Section 6.3).

• A · G is meant to refer to the ideal product, i.e., if
A = {a1, . . . , ar} and G = {g1, . . . , gt} then A · G :=
{aigj : i = 1, . . . , r, j = 1, . . . , t}.

• The statement “next q” is meant to break the two in-
ner loops and proceed with the next iteration of the
outermost loop.

It is an easy matter to implement this procedure in an
actual computer algebra system. In the appendix, we give a
sample code for Mathematica.

5. EXPERIMENTS
Though Norman and Davenport may find it antiquated,

we will judge our method by the proportion of some set of
(known integrable) examples it can cope with. We com-
pare its performance to the built-in integrators of Maple 10,
Mathematica 5.2, and Axiom 3.9, knowing that any com-
parison of this sort is unfair to some extent.

We chose four different algebraic functions and randomly
generated 1000 logarithmic expressions for each, which we

differentiated to obtain candidate integrands in Q(x, y). A
typical integrand from our collection is

“

−214632x7 − 90880x5 − 39020x4 − 238623x3

+ 4160x + 7378 + (−128496x4 − 143517x3 + 1300x

+ 12614)
p

x4 + 1
”.

“

17424x8 + 7040x6 + 6138x5 + 40414x4

+ 7040x2 + 6138x + 22990 + (9504x5 + 17061x4

+ 2200x2 + 10494x + 17666)
p

x4 + 1
”

.

The integrands were generated such as to admit a closed
form in terms of a linear combination of three logarithms
with logands of total degree 1 with respect to x and y.
Typically, two of the logarithms involve constants from a
quadratic extension of Q. For example, the integral over
the algebraic function above admits the closed form

1
44

(13 + i
√

359) log((9 − i
√

359)x + 11 − 33
p

x4 + 1)

+ 1
44

(13 − i
√

359) log((9 + i
√

359)x + 11 − 33
p

x4 + 1)

− 27
4

log(5 − 16
p

x4 + 1).

If an integrator did not deliver a logarithmic part in this
form, but with higher degree logands, or with arctan ex-
pressions, we also accepted these as correct answers. The
integrands were chosen at random, but simple rational func-
tions in x produced occasionally by the test case generator
were discarded.

We have implemented an integrator for algebraic func-
tions in Mathematica that executes steps 1–4 of Trager’s
algorithm (as described in Section 2), followed by an im-
plementation of our procedure for finding the logarithmic
part. Singular was used as Gröbner basis engine. Our code
for finding the logarithmic part is given in the appendix.
We then presented the test case integrands to Maple (Mpl),
Mathematica (Mma), Axiom (Ax) and our procedure (P).
Each integrator got 180 seconds per integrand to perform
the integration. The results are summarized below.

5.1 Integrals involving
p

x
2 + 1

P Ax Mpl Mma
Success 100.0% 100.0% 100.0%/40.5% 11.6%
Timeout — — — /59.5% —
Failure — — — / — 88.4%

Maple’s standard integrator does not appear to search for
elementary closed forms of algebraic integrals by default.
The first percentage shown for Maple refers to the default
integration procedure, the second percentage refers to the
case where an elementary closed form was explicitely re-
quested.

The integrals that Mathematica could not do were re-
turned unevaluated. For the other three integrators a run-
time comparison might be interesting. One might think that
iterated computation of Gröbner basis in P will make this
integrator much slower than his competitors. But this is not
the case.

In the following diagram, a dot at the point (x, y) repre-
sents an integral that was evaluated by P in x seconds and
by Ax in y seconds. We see that the runtime is somewhat
correlated, with an advantage for Ax on fast examples and



a slight advantage for P on slower examples. The center is
at (1.8, 2.8).
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The corresponding figure for P vs. Mpl is shown next.
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Mpl is much faster than P, but it should be noted that
the results produced by Mpl are a whole lot messier than
those of P or Ax. In the next figure, a point (x, y) corre-
sponds to an integral for which P produced a logarithmic
part of length x and Mpl produced a logarithmic part of
length y. (For the “length” of a result, we simply counted
the number of characters in Mathematica and Maple syntax,
respectively.)
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5.2 Integrals involving
p

x
3 + 1

P Ax Mpl Mma
Success 99.6% 24.3% .2%/22.0% 2.2%
Timeout .3% 6.6% — /78.0% .1%
Failure .1% 69.1% 99.8%/ — 97.7%

The Failure line covers different behaviors. For Ax, a fail-
ure was counted when the integrator aborted with an error
(e.g. “implementation incomplete”). Mpl never failed in
this way, but always returned non-elementary closed forms
involving elliptic functions. Mma returned the integrals un-
evaluated. Ways how P can fail are discussed in the next
section.

The percentage of timeouts and failures increases more
rapidly for Ax, Mpl and Mma than for P. Runtime compar-
isons for the cases in which at least two integrators succeed

lead to less expressive diagrams, which are therefore not
shown here.

5.3 Integrals involving
p

x
4 + 1

P Ax Mpl Mma
Success 99.5% 12.3% 1.8%/24.7% 1.8%
Timeout .1% 16.4% — /75.3% .3%
Failure .4% 71.3% 98.2%/ — 97.9%

Concerning the Failure line, the same remarks apply as
for 5.2. The main difference to the previous case is the
increase in timeouts for Ax. Also P slows down for this
case: the runtime median here (counting successful cases as
well as timeouts and failures) is 68.0 sec, compared to 16.0
sec in the previous case.

5.4 Integrals involving 3
p

x
2 + 1

P Ax Mpl Mma
Success 67.9% 4.2% — /18.1% 2.4%
Timeout 29.2% 95.8% — /81.9% —
Failure 2.9% — 100.0%/— 97.6%

Failure here means for both Mpl and Mma that the inte-
gral was returned unevaluated.

Although the success rate of P drops considerably in this
case, it is still superior to Ax, Mpl, and Mma. The substi-
tution carried out in the first step of the integrator might
lead to an algebraic function field with a nontrivial integral
basis. The new indeterminates introduced in this case may
be responsible for slowing down the Gröbner basis compu-
tations and raising the timeout percentage for P compared
to the previous test cases.

6. REASONS FOR FAILURE
Our procedure will never detect that an algebraic func-

tion cannot be integrated in terms of elementary functions.
Even if an elementary integral exists, there is no guarantee
that our procedure will find it. It can fail for the following
reasons.

6.1 The Principal Generator is Hidden
We search the principal generator p of an ideal among the

elements of a Gröbner basis. Though the principal generator
can often be found there, this is not always the case.

Example 8. In Example 4 we found that the Gröbner
basis of a := 〈9t2 − 2, m, v, u − tDv〉 is

{9t2 − 2, y − 3t, x + 1},

and since

〈9t2 − 2, m, v, u − tDv〉 6= 〈9t2 − 2, m, y − 3t〉 and

〈9t2 − 2, m, v, u − tDv〉 6= 〈9t2 − 2, m, x + 1〉,

we concluded that there is no p ∈ a such that a = 〈9t2 −
2, m, p〉. However, p = x + 3ty − 1 ∈ a and we do have
a = 〈9t2 − 2, m, p〉.

It does not harm if we overlook a principal generator in
some ideal a if we find a generator in one of its powers a

n.
In the example above, the principal generator is found in
the next step, as a member of the Gröbner basis for

〈9t2 − 2, m〉 + 〈v, u − tDv〉2



(cf. Ex. 4). In our experiments, we have never observed a
failure because the principal generator could not be found
in any of the powers of an ideal.

6.2 The Power Bound is Exceeded
An obvious source of failures is that the fixed bound on

the powers of 〈v, u − tDv〉 that are inspected is exceeded
without that a principal generator was found. Of course,
there could still be some principal ideal beyond the bound.
In our experiments, we have used the bound 12 but this
bound was never reached.

6.3 The Ideal is not Radical
For rational function integrands u/v ∈ k(x), Czichowski

has shown that the ideal 〈v, u − tDv〉 is always radical, in
particular the polynomial in its Gröbner basis which is free
of x will always be square free. For algebraic function in-
tegrands, this need no longer be true. Branch places over
roots of the denominator may cause multiple factors.

In many of these cases, the correct result is obtained when
the contributed logarithms are multiplied with the multiplic-
ity of the corresponding factors of the univariate polynomial
in t.

Example 9. For u = 1 + y and v = (x2 + 1)(x + 1) with
m = y2 − (x2 + 1) we find

˘

(4t2 + 4t − 1)(8t2 − 4t + 1)2,

−2560t5 − 640t4 + 1776t3 − 1136t2 + 306t + 9y − 41,

1792t5 + 576t4 − 1184t3 + 744t2 − 160t + 9x + 19
¯

as the Gröbner basis of 〈m,v, u − tDv〉 � k[x, y, t].
For q = 4t2 + 4t − 1 we find

〈q, m〉 + 〈v, u − tDv〉2 = 〈q, m, 1 − x − (1 + 2t)y〉.
For q = 8t2 − 4t + 1 we find

〈q, m〉 + 〈v, u − tDv〉2 = 〈q, m, 4t − 1 + x〉.
As 8t2 − 4t + 1 is a double factor, we count the contribution
from the latter ideal twice. Indeed,

Z

x +
√

x2 + 1

(x2 + 1)(x + 1)
dx = 2

X

γ:8γ2
−4γ+1=0

γ

2
log(4γ − 1 + x)

+
X

γ:4γ2+4γ−1=0

γ

2
log(1 − x − (1 + 2γ)

p

x2 + 1).

Handling multiple factors this way might, however, not be
correct. All the failures reported in Section 5 for our integra-
tor are of this kind. The logarithmic expression int returned
by the integrator for an integrand u/v may then be viewed
as a partial closed form, leaving u

v
−D(int) as unintegrated

remainder. It usually pays off to apply the integrator to this
remainder once again, for it may well succeed in integrating
it in a second attempt.

Example 10. For u = 2x3+6x2−7x−7−(x−1)(3x+1)y
and v = (x2 − 1)x(x2 − x − 1) with m = y2 − (x + 1) we
find that the Gröbner basis of 〈m,v, u − tDv〉 contains the
polynomial (t − 3)(t − 2)2t(t + 6)(t + 8). We have

〈t − 3, m, v, u − tDv〉 = 〈t − 3, m, x − 1〉,
〈t − 2, m, v, u − tDv〉 = 〈t − 2, m, 1 + x + xy〉,
〈t + 6, m, v, u − tDv〉 = 〈t + 6, m, y − 1〉,
〈t + 8, m, v, u − tDv〉 = 〈t + 8, m, y + 1〉.

However,

u

v
− D

“

3 log(x − 1) − 6 log(y − 1)

− 8 log(1 + y) + 4 log(1 + x + xy)
”

= −2x2 + x − 1 − (x + 2)y

(x + 1)(x2 − x − 1)
6= 0.

Applying the procedure to this nonzero remainder gives the
result −2 log(x + y). Indeed,

Z

2x3 + 6x2 − 7x − 7 − (x − 1)(3x + 1)
√

x + 1

(x2 − 1)x(x2 − x − 1)
dx

= 3 log(x − 1) − 6 log(
√

x + 1 − 1) − 8 log(1 +
√

x + 1)

+ 4 log(1 + x + x
√

x + 1) − 2 log(x +
√

x + 1).

In the examples in Section 5.2 and 5.3, when the inte-
grator is applied twice, there are no failures any more. In
the examples in Section 5.4, when the integrator is applied
twice the failure rate drops from 2.9% to .1%. When it is
applied once more there are no failures. In 26 of the 29 ob-
served failures in 5.4, the “unintegrable” remainder was just
a rational function in x, in 22 of these cases it was just a
constant multiple of 1/x.

7. CONCLUSION
We have described a procedure for finding the logarithmic

part of an integral over an algebraic function. Our procedure
is simple and efficient, and, although there is no guarantee,
it finds the correct results in a great many cases. It has
come off well in a comparison with the built-in integrators
of Axiom, Maple, and Mathematica.

We do not see how our procedure could be turned into
a complete algorithm. In particular, we have no convinc-
ing argument that would justify our observation that princi-
pal generators often show up in the Gröbner bases we com-
pute. Obviously, any step towards an explanation of this
phenomenon would also be a step towards a new complete
algorithm, and therefore be highly interesting.
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Appendix: Mathematica Code
The following ten lines form a Mathematica 5.2 implementation of the procedure described in this paper. Gröbner basis
computations are done with Singular, accessed via an interface package [9]. The function to be integrated is num/den , where
den is a squarefree polynomial in the integration variable. The list v contains the formal variables (typically, x and y, but
perhaps additional indeterminates for encoding a nontrivial integral basis). The first element of v is taken as the integration
variable. The list u is an ideal basis for the relations among the variables in v (typically, the minimal polynomial of y). An
electronic version of this code can be found on the author’s homepage.

LogarithmicPart[num_, den_, u_List, v_List] := Module[ {G, t, factors, f, r, i, F, p},

G = SingularGroebner[Join[{den, num - t D[den, First[v]]}, u], v, {t}, MonomialOrder->"dp"];

factors = DeleteCases[Rest[FactorList[First[G]]], {t, _}];

F[p_, g_] := (t/#2*Log[#1])&@@PrincipalPower[g, Append[u, p], v, {t}];

Plus@@Apply[r[f[#1], f[#2 F[#1, G]]]&, factors, {1}] /. {t -> #, f -> Function, r -> RootSum}];

PrincipalDivisor[gb_, u_, v__] := Module[{G = SingularGroebner[Join[gb, u], v, MonomialOrder->"dp"]},

First[Append[Select[G, (SingularGroebner[Append[u, #], v, MonomialOrder->"dp"]===G)&, 1], 1]]];

PrincipalPower[gb_, u_, v__List, bound_Integer:12] := Module[ {id = gb, p, n = 1},

While[ n < bound && (p = PrincipalDivisor[id, u, v])===1, n++;

id = SingularGroebner[Join[SingularTimes[id, gb, v], u], v, MonomialOrder->"dp"]]; Return[{p, n}]];

Example.

In[1]:= LogarithmicPart[y,x(x^8+1),{y^2-(x^8+1)},{x,y}]

Log[-1 + y] Log[1 + y]

Out[1]= ----------- - ----------
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