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. . . arise regularly as Monthly problems . . .

. . . are often considered difficult . . .

. . . but are in fact trivial . . .

. . . if we have a fast computer.
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I Problem 11301 (Finbarr Holland; vol. 114(10), 2007, p. 547):
Find the least number M such that for all a, b, c,

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| ≤ M(a2 + b2 + c2)2.
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I variables (x, y, . . . )

I arithmetic operations (+,−, ·, /)

I comparison predicates (=, 6=, <, >,≤,≥)

I boolean operations (∧,∨, . . . )

I quantifiers (∀,∃)
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Theorem. (Tarski, 1948) Every Tarski formula is, as a statement
about real numbers, equivalent to a Tarski formula without any
quantifiers.

There are Quantifier Elimination algorithms which take arbitrary
Tarski formulas as input and compute an equivalent quantifier free
formula.

One such algorithm is due to Collins (Cylindrical Algebraic
Decomposition, CAD, 1975).
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Polynomial inequalities can be proven by CAD

without thinking.

The rest of this talk is about
inequalities that can be proven by CAD with thinking only.
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I View (x + 1)n − (1 + nx) as a sequence of polynomials.

I View Bernoulli’s inequality as a sequence of polynomial
inequalities.
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I The resulting formula is indeed true.
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I Can we show Bernoulli’s inequality with CAD?

I Can CAD be used to do induction on n?

I Let fn(x) := (x + 1)n − (1 + nx).

I Induction step:

∀n ∈ N ∀x ≥ −1 : fn(x) ≥ 0 ⇒ fn+1(x) ≥ 0

I This proves the induction step.

I The induction base 0 ≥ 0 is trivial.

I This completes the proof.



Bernoulli’s Inequality

Message:

We may use CAD to construct an induction proof

for the positivity of a quantity satisfying a

recurrence.
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polynomial inequality.

I For general n, it is not easy.
(Try it.)

A proof for general n can be obtained in the same way as for
Bernoulli’s inequality.
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Use the recurrence for Pn(x) to obtain
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∆n+1(x) = (n+1)2
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A “deep” special function inequality may be just an

immediate consequence of a polynomial inequality.
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We have the recurrence

(n + 3)(n + 4)αn+2

= (2n + 5)αn+1 + (n + 1)(n + 2)αn.

A Tarski formula encoding the induction step would be. . .
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dx

∆n(x)

1 − x2
≥ 0



Legendre Polynomials: Turan’s Inequality

Turan’s inequality can be improved to

∆n(x) = Pn+1(x)2 − Pn(x)Pn+2(x) ≥ αn(1 − x2)

We have

d

dx

∆n(x)

1 − x2
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(

(n − 1)nPn(x)2 − ((2n + 1)x2 − 1)Pn(x)Pn+1(x)

+ (n + 1)xPn+1(x)2
)/(

n(1 − x2)2
)
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Turan’s inequality can be improved to
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We have

d

dx

∆n(x)

1 − x2
=

(

(n − 1)nPn(x)2 − ((2n + 1)x2 − 1)Pn(x)Pn+1(x)

+ (n + 1)xPn+1(x)2
)/(

n(1 − x2)2
)

A positivity proof for the latter expression by CAD and induction
on n succeeds.
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Message:

A special function inequality may require some

non-obvious manipulation before an induction proof

via CAD succeeds.
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∫ 1

−1
kn(x, y)q(x)dx = q(y),

for all q with deg q ≤ n.

I So fn(x) := kn(x, 0) satisfies the first condition.

I But not the second.
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I Schöberl next considered the “gliding averages”

fn(x) :=
1

n + 1

2n∑

i=n

ki(x, 0).
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I He could show that this family does the job if and only if. . .

n∑

k=0

(4k + 1)(2n − 2k + 1)P2k(0)P2k(x) ≥ 0

for all x ∈ [−1, 1] and all n ∈ N.

I Hence was born the Schöberl conjecture.
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Schöberl’s Conjecture

Consider

Sn(x) :=
n∑

k=0

(4k + 1)(2n − 2k + 1)P2k(0)P2k(x)

for n = 0, 1, . . . , 20.

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15
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Schöberl’s Conjecture

Consider

Sn(x) :=
n∑

k=0

(4k + 1)(2n − 2k + 1)P2k(0)P2k(x)

for n = 0, 1, . . . , 20.

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15

I The conjecture seems to be
true.

I For specific n ∈ N, it can be
shown without thinking.

I It can be also be shown for
x = −1, x = 0, x = +1.
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I The conjecture seems to be
true.

I For specific n ∈ N, it can be
shown without thinking.

I It can be also be shown for
x = −1, x = 0, x = +1.

I But a proof for general x, n
could not be found for some
years.



Schöberl’s Conjecture

Message:

Special function inequalities arise

in real world applications.
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I The Askey-Gasper inequality:

n∑

k=0

P
(α,0)
k ≥ 0 (x ∈ [−1, 1], α ≥ −2, n ∈ N)

where P
(α,β)
k (x) refers to the Jacobi polynomials.

As Pk(x) = P
(0,0)
k (x), it includes Fejer’s inequality.
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I These inequalities are pretty deep.

I Their classical proofs depend on rewriting the sums in terms
of squares of other special functions.

I A computer proof would be highly interesting.

I But all attempts to prove them directly by CAD and induction
have failed so far.

I It is not clear how the inequalities could be reformulated such
as to make the proof go through.

I This is work in progress.

I Now back to Schöberl’s conjecture. . .
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Schöberl’s conjecture is not sharp

Consider, more generally, the graph of

Sα
n (x) :=

n∑

k=0

(2α+4k+1)(2n−2k+1)

(
2k+2α

α

)

4α
(
2k+α

α

)P
(α,α)
2k (0)P

(α,α)
2k (x)

for α = 1/2

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15
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Schöberl’s conjecture is not sharp

Consider, more generally, the graph of

Sα
n (x) :=

n∑

k=0

(2α+4k+1)(2n−2k+1)

(
2k+2α

α

)

4α
(
2k+α

α

)P
(α,α)
2k (0)P

(α,α)
2k (x)

for α = 1/2 near x = 1

-1 -0.5 0.5 1

-5

-2.5

2.5

5

7.5

10

12.5

15

0.8 0.8250.850.875 0.9 0.9250.950.975

-0.5

0.5

1

1.5

2
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Note: Sn(x) = S0
n(x).
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Note: Symbolic summation can also assert the absense of closed
forms.
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n (x)

where fα
n (x) is a sum expression that vanishes for α = ±1/2, and

gα
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This can be done in many ways.
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A Tarski formula for the induction step is. . .
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Mathematica’s CAD asserts (after some hours) that this is true.
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n+1(x) whenever gα
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n(x).

Showing the induction base
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This completes the proof of Schöberl’s conjecture.



Pillwein’s Proof

Message:

A special function inequality may require some very

non-obvious manipulation before an induction proof

via CAD succeeds.



Summary



Summary

I Polynomial inequalities can be proven without thinking.



Summary

I Polynomial inequalities can be proven without thinking.

I We may use CAD to construct an induction proof for a special
function inequality.



Summary

I Polynomial inequalities can be proven without thinking.

I We may use CAD to construct an induction proof for a special
function inequality.

I Special function inequalities arise in real world applications.



Summary

I Polynomial inequalities can be proven without thinking.

I We may use CAD to construct an induction proof for a special
function inequality.

I Special function inequalities arise in real world applications.

I Some “deep” special function inequalities are just an
immediate consequence of a polynomial inequality.



Summary

I Polynomial inequalities can be proven without thinking.

I We may use CAD to construct an induction proof for a special
function inequality.

I Special function inequalities arise in real world applications.

I Some “deep” special function inequalities are just an
immediate consequence of a polynomial inequality.

I Some inequalities require human preprocessing.



Summary

I Polynomial inequalities can be proven without thinking.

I We may use CAD to construct an induction proof for a special
function inequality.

I Special function inequalities arise in real world applications.

I Some “deep” special function inequalities are just an
immediate consequence of a polynomial inequality.

I Some inequalities require human preprocessing.

I The preprocessing may be hard (if at all possible).
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Conclusion

I Classical inequality proofs proceed by reducing the claim to an
obvious statement.

I Modern inequality proofs proceed by reducing the claim to
something that can be done with the computer.

I Stronger computer algebra methods for proving special
function inequalities would be highly appreciated. . .

I . . . because these inequalities are soo difficult.


