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Abstract. We consider some multivariate rational functions which have (or are conjectured to
have) only positive coefficients in their series expansion. We consider an operator that preserves
positivity of series coefficients, and apply the inverse of this operator to the rational functions.
We obtain new rational functions which seem to have only positive coefficients, whose positivity
would imply positivity of the original series, and which, in a certain sense, cannot be improved
any further.

1. Introduction

Are all the coefficients in the multivariate series expansion about the origin of

1

1 − x − y − z − w + 2
3 (xy + xz + xw + yz + yw + zw)

positive? Nobody knows. For a similar rational function in three variables, Szegö [7] has shown
positivity of the series coefficients using involved arguments. His dissatisfaction with the discrep-
ancy between the simplicity of the statement and the sophistication of the methods he used in
his proof has motivated further research about positivity of the series coefficients of multivariate
rational functions. For several rational functions, including Szegö’s, there are now simple proofs
for the positivity of their coefficients available. For others, including the one quoted above [1], the
positivity of their coefficients are long-standing and still open conjectures.

In this paper, we consider the positivity problem in connection with the operator Tp (p ≥ 0)
defined as follows:

Tp : R[[x1, . . . , xn]] → R[[x1, . . . , xn]],

(Tpf)(x1, . . . , xn) :=
f
(

px1

1−(1−p)x1

, . . . , pxn

1−(1−p)xn

)

(1−(1−p)x1)···(1−(1−p)xn)

By construction, the operator Tp preserves positive coefficients for any 0 ≤ p ≤ 1, i.e., if a power
series f has positive coefficients, then the power series Tpf has positive coefficients as well, for any
0 ≤ p ≤ 1. For example, via

T1/2

( 1

1 − x − y − z + 4xyz

)

=
1

1 − x − y − z + 3
4 (xy + xz + yz)

,

positivity of the former rational function [2] implies positivity of Szegö’s rational function [7].
This is a fortunate relation, because the positivity of the former can be shown directly by a simple
argument [4] while this is not as easily possible for the latter [5]. (Straub [6] gives a different
positivity preserving operator also connecting these two functions.)

This suggests applying the operator Tp “backwards” to a rational function f for which positivity
of the coefficients is conjectured, in the hope that this leads to a rational function which again
has positive coefficients, and for which positivity of the coefficients is easier to prove. We present
some empirical results in this direction. Our results may or may not lead closer to rigorous proofs
of some open problems. In either case, we also find them interesting in their own right.
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2. Sharp Improvements

Given a rational function f , we are interested in parameters p ∈ [0, 1] such that T−1
p f has positive

series coefficients. Because of T−1
p = T1/p, this is equivalent to asking for parameters p ≥ 1 such

that Tpf has positive series coefficients. Clearly, the set of all p ≥ 0 such that Tpf has positive
coefficients forms an interval [0, pmax) with a characteristic upper bound pmax for each particular f .
Computer experiments have led to the following empirical results.

Empirical Result 1. Let f(x, y, z) = 1/(1 − x − y − z + 4xyz). Let p0 be the real root of

2x3 − 3x2 − 1 with p0 ≈ 1.68. Then p0 = pmax.

Evidence. (1) pmax cannot be larger than p0, because the particular coefficient 〈xyz〉Tpf =
1 + 3p2 − 2p3 fails to be positive for p ≥ p0.

(2) CAD computations confirm that all terms 〈xnymzk〉Tpf with 0 ≤ n, m, k ≤ 50 are positive
for any 0 < p < p0.

(3) For p = 2430275/1448618, all terms 〈xnymzk〉Tpf with 0 ≤ n, m, k ≤ 100 are positive.
This p is the 15th convergent to p0 and only about 10−14 smaller than this value.

(4) For each specific choice of m, k, the terms 〈xnymzk〉Tpf are polynomials in n (and p) of
degree m+k with respect to n. For 0 ≤ m, k ≤ 10, CAD computations confirm that these
are positive for all n ≥ 1 and all 0 < p < p0.

�

Empirical Result 2. Let f(x, y, z, w) = 1/(1−x− y− z−w+ 2
3 (xy +xz +xw + yz + yw+ zw)).

Let p0 be the real root of x4 − 6x2 − 3 with p0 ≈ 2.54. Then p0 = pmax.

Evidence. (1) pmax cannot be larger than p0, because the particular coefficient 〈xyzw〉Tpf =
3 + 6p2 − p4 fails to be positive for p ≥ p0.

(2) CAD computations confirm that all terms 〈xnymzkwl〉Tpf with 0 ≤ n, m, k, l ≤ 25 are
positive for any 0 < p < p0.

(3) For p = 730647/287378, all terms 〈xnymzkwl〉Tpf with 0 ≤ n, m, k, l ≤ 240 are positive.
This p is the 15th convergent to p0 and only about 10−12 smaller than this value.

(4) For each specific choice of m, k, l, the terms 〈xnymzkwl〉Tpf are polynomials in n (and p)
of degree m + k + l with respect to n. For 0 ≤ m, k, l ≤ 5, CAD computations confirm
that these polynomial are positive for all n ≥ 1 and all 0 < p < p0.

�

For the rational function f considered in Statement 2, our hope was dispelled that a direct proof for
the positivity of Tpmax

f could be found more easily than for f itself. However, some “suboptimal”
values of p do lead to rational functions which have a promising shape. For instance, we found
that

T√
3

( 1

1 − x − y − z − w + 2
3 (xy + xz + xw + yz + yw + zw)

)

=
1

1 − x − y − z − w + 2(xyz + xyw + xzw + yzw) + 4xyzw
.

Also note that it seems to be a coincidence that pmax is determined by the coefficient of xyzw in
Tpf , because this does not hold in the expansion of

f(x, y, z, w) =
1

1 − x − y − z − w + 64
27 (xyz + xyw + xzw + yzw)

which is conjectured to have positive coefficients [5]. Here we have pmax < 1.66, by inspection of
the coefficients 〈xnymzkwl〉Tpf for 0 ≤ n, m, k, l ≤ 100, while 〈xyzw〉Tpf = − 13

27p4− 40
27p3 +6p2+1

is positive for p < 2.36.
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3. Asymptotically Positive Coefficients

Inspection of initial coefficients of

1

1 − x − y − z − w + 64
27 (xyz + xyw + xzw + yzw)

suggests values for pmax that become smaller and smaller as the amount of initial values taken
into consideration increases. Is the “real” value pmax determined by the asymptotic behavior of
the coefficients for general p?

Clearly, it is hard to extract conjectures about asymptotic behavior by just looking at initial
values. Instead, such information is better extracted from suitable recurrence equations by looking
at the characteristic polynomial and the indicial equation of the recurrence [8]. Using computer
algebra, obtaining recurrence equations for the coefficient sequences is an easy task. Often, the
asymptotics can be rigorously determined from a recurrence up to a constant multiple K, which
cannot be determined exactly, but for which numeric approximations can be found. For instance,
if p > p0 := (15 + 3

√
33)/2, we have

an := 〈xnynznw0〉Tp

(

1/(1 − x − y − z − w + 64
27 (xyz + xyw + xzw + yzw))

)

∼ K
(

(

155 + 27
√

33
) (

−4p + 3
√

33 − 15
)3

3456

)n

n−1 (n → ∞)

for K & 0.291 (Figure 1a shows an

/

((· · · )nn−1) for p = p0 + 1
10 , supporting the estimate for K).

This is oscillating. For 1 < p < p0, the asymptotic behavior turns into

an ∼ K
(

1 + 5
3p

)3n
n−1 (n → ∞),

for K & 0.227 (Figure 1b shows an

/

((· · · )nn−1) for p = p0 − 1
10 , supporting the estimate for K).

This is not oscillating, but ultimately positive. This supports the conjecture pmax < p0 ≈ 16.1168,
which is little news, however, as we already know pmax < 1.66 by inspection of initial values.
Other paths to infinity that we tried do not give sharper bounds on pmax. So it seems that pmax

in this example is determined neither by the initial coefficients, nor by the coefficients at infinity,
but somehow by the coefficients “in the middle”.

We can consider asymptotic positivity of coefficients as an independent question which may also
be asked for the rational functions considered in Statements 1 and 2: What are the values p ≥
pmax ≥ 1 such that the series coefficients of Tpf are ultimately positive? Denote by p∞max the
supremum of these parameters. We have carried out computer experiments in search for p∞max,
and we obtained the following empirical results.

Empirical Result 3. Let f(x, y, z) = 1/(1 − x − y − z + 4xyz). Then p∞max = 2.

Evidence. Let ǫ > 0 (sufficiently small) and an,m,k := 〈xnymzk〉T2−ǫf .

(1) First of all, we have p∞max ≤ 2, because for ǫ = 0, the asymptotics on the main diagonal is

an,n,n ∼ K(−27)nn−2/3 (n → ∞)

with K & 0.25, i.e., an,n,n is ultimately oscillating for ǫ = 0.
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(2) Let m, k ≥ 0 be fixed and consider an,m,k as a sequence in n. A direct calculation shows
that

an,m,k =

m
∑

r=0

k
∑

t=0

t
∑

s=0

(−1)r+s

(

n

r

)(

n + m − r

m − r

)(

n + m − 2r

s

)(

n + m − r + t − s

t − s

)

×
(

r

k − t

)

(3 − ǫ)r+k−t+s(3 − 2ǫ)k−t(ǫ − 1)r−k+t+s

=
(2 − ǫ)2(m+k)

m!k!
nm+k + o(nm+k) (n → ∞),

which is positive for n → ∞.
(3) For arbitrary (symbolic) i ≥ 0 and the particular values 0 ≤ j ≤ 3, the sequence an,n+i,j

satisfies a recurrence equation of order 3 which gives rise to

an,n+i,j ∼ K(3 − ǫ)2nn−1/2 (n → ∞)

for some constants K depending on i, j, and ǫ. Numeric computations suggest that these
constants are positive, and hence, an,n+i,j is positive for n → ∞.

(4) For the particular values 0 ≤ i, j ≤ 2, the sequence an,n+i,n+j satisfies a recurrence
equation of order 3 which gives rise to

an,n+i,n+j ∼ K(3 − ǫ)3nn−1 (n → ∞)

for some constants K depending on i, j, and ǫ. Numeric computations suggest that these
constants are positive, and hence, an,n+i,n+j is positive for n → ∞.

�

In parts 3 and 4, we could not carry out the arguments for both i and j being generic. We did
find a recurrence equation of order 6 for an,n+i,n+j for generic i, j, with polynomial coefficients of
total degree 16 with respect to n, i, j, but this recurrence was way to big for further processing.

Empirical Result 4. Let f(x, y, z, w) = 1/(1−x− y− z−w+ 2
3 (xy +xz +xw + yz + yw+ zw)).

Then p∞max = 3.

Evidence. Let p ≥ 1 and an,m,k,l := 〈xnymzkwl〉Tpf .

(1) First of all, we have p∞max ≤ 3 because for p > 3, the asymptotics on the main diagonal is
determined by the two complex conjugated roots

9 + 30p2 − 7p4 ± 4p(p2 + 3)
√

6 − 2p2

9
.

Their modulus is (p2 − 1)2. As (p2 − 1)2 itself is not a characteristic root, it follows [3]
that an,n,n,n is ultimately oscillating for p > 3.

(2) For i, j, k ≥ 0 fixed, an,i,j,k is a polynomial in n of degree i + j + k + 1 whose leading

coefficient is p2(i+j+k)/3i+j+k/i!/j!/k!. Therefore an,i,j,k is positive for n → ∞ regardless
of p.

(3) For the particular values i = 0, 1 and 0 ≤ j, k ≤ 2, the sequence an,n+i,j,k satisfies a
recurrence equation of order 3 which gives rise to

an,n+i,j,k ∼ K
(p +

√
3)2n

3n
nj+k−

1
2 (n → ∞)

for some constants K depending on i, j, k, and p. Numeric computations suggest that
these constants are positive, and hence, an,n+i,j,k is positive for n → ∞ regardless of p.

(4) For the particular values 0 ≤ j, k ≤ 1, the sequence an,n,n+j,k satisfies a recurrence
equation of order 4 which gives rise to

an,n,n+j,k ∼ K(1 + p)3nn−1 (n → ∞)

for some constants K depending on j, k, and p. Numeric computations suggest that these
constants are positive, and hence, an,n,n+j,k is positive for n → ∞ regardless of p.



EXPERIMENTS WITH A POSITIVITY PRESERVING OPERATOR 5

500 1000 1500 2000
0.1105

0.1115

0.112

0.1125

0.113

0.1135

Figure 2

(5) The main diagonal an,n,n,n satisfies a recurrence of order 4 which gives rise to

an,n,n,n ∼ K
(

64 + 1
27 (p2 − 9)(2p4 + 9p2 + 189 − 2(p2 + 3)3/2p)

)n

n−3/2

for some constant K depending on p.
Numeric computations suggest that K is positive for p < 3. For example, Figure 2

shows the quotients an,n,n,n/((· · · )nn−3/2) for p = 3 − 1
100 .

�

Stronger evidence in support of the conjectures made in the paper is currently beyond our com-
putational and methodical capabilities. So are rigorous proofs.
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