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Abstract

We consider a large class of sequences which are defined by systems of (possibly non-
linear) difference equations. A procedure for recursively enumerating the algebraic
dependencies of such sequences is presented. Also a procedure for solving linear
difference equations with such sequences as coefficients is proposed. The methods
are illustrated on some problems arising in the literature on special functions and
combinatorial sequences.
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1 Introduction

A difference equation of order r ∈ N is an equation of the form

F (u(n), u(n + 1), . . . , u(n + r), n) = 0 (n ≥ 1), (1)

where F : kr+2 → k is an explicitly given function. Any sequence u : N → k
which satisfies (1) is called a solution of that equation. If F is linear in the
first r + 1 arguments, i.e., if the equation reads

a0(n)u(n) + a1(n)u(n + 1) + · · · + ar(n)u(n + r) = g(n) (n ≥ 1) (2)
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for some sequences a0, . . . , ar, g : N → k, then we call it a linear difference
equation. Depending on the class of functions from which the ai and g are
chosen and on the class of functions in which solutions u are to be found,
there are various known algorithms for solving linear difference equations. In
the simplest case, the ai and g are independent of n. In this case, a closed form
solution in terms of exponentials can always be found by classical means [24].
Less trivial is the case where the ai and g are rational functions in n. There
are algorithms due to Abramov [2] and van Hoeij [36] which find all ratio-
nal function solutions u to such equations. Petkovšek’s algorithm [25] can
find hypergeometric solutions u of the same type of equations. Hendriks and
Singer [16] define the notion of liouvillean sequences and propose an algorithm
for computing such solutions of linear difference equations with rational co-
efficients. Schneider [28] has got an algorithm for the case where the ai may
involve complicated expressions of nested sums and products. His algorithm
finds solutions in terms of nested sums and products.

All these algorithms have in common that the coefficient sequences ai can be
written as rational functions of some basis sequences f1, . . . , fm which are al-
gebraically independent (transcendental). In addition, these algorithms have
the feature that they find all closed form solutions of a given equation in a
finite number of steps. In the present paper, the focus is different. We aim at
covering a very large class of linear difference equations, i.e., the class of func-
tions, from which the functions ai and g in (2) are chosen, is very rich. They
are taken from a class of sequences introduced in 2003 by Zimmermann [38].
This class contains all the above-mentioned classes as subclasses, plus a lot
of additional sequences, including in particular sequences that may obey non-
trivial algebraic dependencies (Section 2). We will describe how to determine
algebraic dependencies of such sequences, and how to find solutions of linear
difference equations (2) whose coefficients a0, . . . , ar, g belong to this class. As
we will argue, there is no reasonable hope that decision procedures for solv-
ing such problems exist. Instead, we will therefore propose procedures that
recursively enumerate the set of all algebraic dependencies, respectively of all
solutions to a given equation. Alternatively, these procedures may also be for-
mulated as semi-decision procedures which, in a finite number of steps, find
a solution if and only if there exists one, and otherwise run forever without
producing any output.

Questions about difference equations need not be decidable. For example,
the equivalence of systems of affine recurrence equations (SAREs) is undecid-
able [5]. There are several other problems for which it is not known whether
they are decidable. For instance, whether a solution of a linear difference
equation with constant coefficients has a root is not known to be decidable
if the recurrence order exceeds five [12]. (The problem is decidable for small
orders [15].) The situation in the differential case is similar. Here, we know
various algorithms for finding closed form solutions of particular types of dif-
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ferential equations [23,30,1,9,33,32,7]. For other types of differential equations,
the existence of solutions is undecidable [4,11]. Also the existence of roots is
undecidable already for a small class of continuous functions [27]. The zero
equivalence problem is decidable for some classes of functions [29,34], but un-
decidable for some others [10]. For several problems in differential algebra, it
is not known today whether or not they are decidable. For example it is not
known whether the membership problem for differential ideals is decidable,
while radical membership is known to be decidable [8]. It is also not known
if there is an algorithm for deciding whether one prime differential ideal is
contained in another [22]. To our knowledge, the corresponding questions in
difference algebra are open as well.

The development of the algorithms described in the present paper was moti-
vated by problems arising in the literature on special functions and combina-
torial sequences, especially summation problems, which up to now could not
be treated by symbolic computation. The overall goal is to devise methods for
problems to which the classical algorithms are not applicable. Indeed, with the
methods described in this paper, it is possible to solve some such problems.
Example applications involving expression like F2n (the 2n-th Fibonacci num-
ber) and other quantities, which are defined by nonlinear difference equations,
are interspersed throughout the paper. In contrast to some of the algorithms
mentioned in the beginning, our methods are conceptually simple and the
mathematical background they are based on is rather moderate. Familiarity
with basic facts of ideal theory and Gröbner basis techniques [6] is sufficient
for reading this paper.

Not only are we interested in the theoretical aspects of solving difference equa-
tions. Rather, we claim that most of the proposed procedures are actually
feasible on modern computer architectures. We are not able to justify this
claim by any sort of theoretical statements about the complexity of our pro-
cedures. In fact, the worst case runtime of most algorithms is so poor that it
is of little interest to actually determine bounds for their time and memory
requirements. However, as it is often the case with algorithms related to com-
mutative algebra, we observed that the computational cost for many examples
is reasonably low, and certain identities arising in the literature could indeed
be tackled by an implementation of the methods described in this article [19].

2 Admissible Sequences

In this paper, we consider sequences in a fixed computable field k of character-
istic zero, i.e., functions f : N→ k. The set of all sequences in k with pointwise
addition and multiplication forms a commutative ring and is denoted by S.
Algorithms for sequences necessarily operate only on certain subsets of S.
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Zimmermann [38] has introduced in 2003 a class of multivariate functions
that may depend on discrete as well as on continuous variables. The class
of sequences we consider is the subclass of Zimmermann’s class consisting of
univariate sequences, i.e., functions depending on exactly one discrete and no
continuous variable. For the purpose of this article, we call these sequences
admissible sequences. They may be defined by systems of difference equations
of a certain form, called admissible systems. Admissible systems are defined
as follows.

Definition 1 Let f1, . . . , fm : N→ k be solutions of a system

S = {diffeq1, . . . , diffeqm}

of difference equations where each diffeq i has the form

fi(n + ri) = rati

(

f1(n), f1(n + 1), . . . , f1(n + ri − 1), f1(n + ri),

...
...

fi−1(n), fi−1(n + 1), . . . , fi−1(n + ri − 1), fi−1(n + ri),

fi(n), fi(n + 1), . . . , fi(n + ri − 1),
...

...

fm(n), fm(n + 1), . . . , fm(n + ri − 1)
)

with a rational function rati over k whose numerator or denominator is con-
stant. (In other words, either rati = p or rati = 1/p for some polynomial p.)
Then the sequences f1, . . . , fm are called admissible and S is called an admis-
sible system for f1, . . . , fm.

In the sequel, we understand that phrases like “admissible sequences f1, . . . , fm

are given” mean that the following data is explicitly known:

• An admissible system S which has f1, . . . , fm as solutions
• The initial values fi(j) ∈ k for j = 1, . . . , ri (i = 1, . . . , m)

Given this data, any desired value fi(n) (n ∈ N) can be computed by a linear
number of field operations, by starting with the initial values and applying
the recurrence equations in S a suitable number of times.

Example 2 We list some admissible sequences.

(1) The sequence n 7→ n is admissible. It is a solution of the admissible
system {f(n + 1) = f(n) + 1} with initial value f(1) = 1.

(2) The sequence of Legendre polynomials Pn(x) [3] is admissible via the ad-
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missible system

{

f1(n+1) = f1(n)+1, f2(n+2) =
2f1(n) + 3

f1(n) + 2
xf2(n+1)−

f1(n) + 1

f1(n) + 2
f2(n)

}

with initial values f1(1) = 1 (so that f1(n) = n for all n) and f2(1) = x,
f2(2) = 1

2
(3x2 − 1) (so that f2(n) = Pn(x) for all n). Similarly, many

other orthogonal polynomials, in fact all univariate holonomic sequences
(also called P-finite sequences [37]) are admissible.

(3) The sequence of Fibonacci numbers is admissible. Moreover, the sequence
n 7→ F2n is admissible. To see this, recall that the Fibonacci numbers obey
the addition theorems

Fp+q = Fp+1Fq + FpFq+1 − FpFq,

Fp+q+1 = FpFq + Fp+1Fq+1.

Setting p = q = 2n, we find

F2n+1 = F2n+2n = F2n+1F2n + F2nF2n+1 − F2nF2n ,

F2n+1+1 = F2n+2n+1 = F2nF2n + F2n+1F2n+1,

and consequently

{f1(n + 1) = 2f2(n)f1(n) − f1(n)2, f2(n + 1) = f1(n)2 + f2(n)2}

is a suitable admissible system for specifying the sequence n 7→ F2n. By a
similar construction, admissible systems for n 7→ 2Fn, n 7→ FFn

, and in
fact for any sequence n 7→ f(g(n)) where f and g satisfy homogeneous
linear recurrences with constant coefficients and the coefficients in the
recurrence of g are integral, can be obtained.

(4) For some fixed a1, . . . , ar ∈ k, a sequence C satisfying the equation

C(n + r)C(n) = a1C(n + r − 1)C(n + 1) + a2C(n + r − 2)C(n + 2) + · · ·

· · ·+ arC(n + r − ⌊r/2⌋)C(n + ⌊r/2⌋)

is an (r-)Somos sequence [31,13].
Somos sequences are admissible; a suitable admissible system is

{

f1(n + r) = f2(n)
(

a1f1(n + r − 1)f1(n + 1) + · · ·

· · · + arf1(n + r − ⌊r/2⌋)f1(n + ⌊r/2⌋)
)

,

f2(n) = 1/f1(n)
}

Observe that the sequence f2 was introduced to fulfill the requirement of
Def. 1 that numerators or denominators of the rational functions on the
right hand side be constant.
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It should be remarked at this point that for some admissible systems, not
every choice of initial values yields well-defined sequences. This is because
denominators might become zero for some points. For instance, the admissible
system {f1(n + 1) = f1(n) + 1, f2(n) = 1/f1(n)} defines two admissible
sequences f1, f2 once the initial value f1(1) is chosen. If a negative integer is
chosen for f1(1), then f2(n) is undefined at n = −f1(1). For admissible systems
and initial values which are supplied as input of our algorithms, we will always
assume that this situation does not occur, i.e., that the input sequences are
well-defined.

New admissible sequences can be composed out of known ones by using the
following closure properties of the class of admissible sequences.

Theorem 3 [18, Thms. 3.5, 3.7] Let f and g be admissible sequences, a ∈ N
and α ∈ k. Then

(1) αf , f + g and f · g and, if g(n) 6= 0 for all n, f/g are admissible,
(2) n 7→

∑n
i=1 f(i), n 7→

∏n
i=1 f(i), and, if f(n) 6= 0 6= g(n) for all n,

n 7→ f(1) +
g(2)

f(2) +
g(3)

· · · +
g(n)

f(n)

are admissible,
(3) n 7→ f(n + a), n 7→ f(an), n 7→ f(⌊n/a⌋) are admissible,

and admissible systems for these sequences can be effectively computed from
admissible systems for f and g.

Using this theorem, it is possible to automatically transform an expression
involving sums and products into a corresponding defining admissible system.
Rather than giving a formal proof, we illustrate the theorem with an example.

Example 4 The expression

F 2
n

n−1∑

k=1

1

F 2
k F 2

k+1

k∏

i=2

Fi−1

2Fi − Fi−1

constitutes an admissible sequence in Q. (0, 0, 1, 5, 34
3
, 63

2
, . . . ) A suitable ad-

missible system can be constructed by first considering the innermost subex-
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pressions and then building up the whole expression step by step:

{

f1(n + 2) = f1(n + 1) + f1(n) ( f1(n) ∼ Fn )

f2(n + 1) = 1/(2f1(n + 1) − f1(n)) ( f2(n) ∼ 1/(2Fn − Fn−1) )

f3(n + 1) = f3(n)f1(n)f2(n) ( f3(n) ∼ Π )

f4(n + 1) = 1/(f1(n)2f1(n + 1)2) ( f4(n) ∼ 1/F 2
nF 2

n−1 )

f5(n + 1) = f5(n) + f4(n + 1)f3(n) ( f5(n) ∼ Σ )

f6(n + 1) = f1(n + 1)2f5(n)
}

( f6(n) ∼ whole expr. )

It is easily seen that the class of admissible sequences properly includes many
of the classes known for the algorithms mentioned in the introduction, such as
the (univariate) holonomic sequences [37] and Karr’s ΠΣ sequences [17], for
instance. In addition, sequences like n 7→ FFn

, which are admissible, do not
belong to any class of sequences that can be handled by a known algorithm. Yet
there are — of course — still sequences which are not covered. For instance, it
can be shown [18, Section 4.3] that the sequences n 7→ (−1)⌊log n⌋ and n 7→ 2n!

cannot be defined via an admissible system.

3 Reduction to Polynomial Algebra

Let f1, . . . , fm be admissible sequences, and consider the ring homomorphism
φ : k[x1, . . . , xm] → S that maps xi to fi and each c ∈ k to the constant se-
quence (c, c, c, . . . ). The homomorphism theorem asserts that the factor ring
k[x1, . . . , xm]/ ker φ is isomorphic to im φ, which is the smallest subring of S
containing f1, . . . , fm and all constant sequences. As ker φ is just a polynomial
ideal, the computational treatment of the ring k[x1, . . . , xm]/ ker φ is well un-
derstood. The theory of Gröbner bases [6] provides an algebraic framework
for solving problems in such domains. By the isomorphism, there is a one-
to-one correspondence between k[x1, . . . , xm]/ ker φ and im φ, so that results
obtained in the former ring (by Gröbner basis or other means) can be directly
translated into results in the latter ring, which is in our interest.

There is only a slight obstacle here: in order to perform computations in
the ring k[x1, . . . , xm]/ ker φ, we need to know some rather explicit informa-
tion about the ideal ker φ, for instance a list of ideal generators p1, . . . , ps ∈
k[x1, . . . , xm] such that ker φ = 〈p1, . . . , ps〉. Ideally, we would like to be able to
compute such generators p1, . . . , ps from a given admissible system and initial
values for the f1, . . . , fm. No algorithms are known for this problem. However,
in an earlier paper [20] we have shown that the membership problem for ker φ
(given p ∈ k[x1, . . . , xm], decide p ∈ ker φ) is decidable. The remarkable as-
pect of this algorithm is that generators of ker φ need not be known; only an
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admissible system for the f1, . . . , fm and initial values are required as input.

Note that p ∈ ker φ just means that F := p(f1, . . . , fm) is the zero sequence.
Regardless of whether this is the case, F is for sure an admissible sequence,
because the fi are admissible (Thm. 3). Our decision procedure [20] is hence
an algorithm for deciding zero equivalence of admissible sequences. It works
by constructing an induction proof for the sequence F to be zero. In the first
phase, it computes a number N ∈ N with the property that

∀n ∈ N : F (n) = F (n + 1) = · · · = F (n + N − 1) = 0 ⇒ F (n + N) = 0.

This N provides the induction step. In the second phase, the algorithm eval-
uates F (1), F (2), . . . , F (N) and determines whether they are all zero. (It is
assumed that the ground field k is such that zero equivalence in the ground
field can be decided.) This either supplies the base of the induction and thus
a decision that indeed F ≡ 0, or it leads to an index n ∈ {1, . . . , N} with
F (n) 6= 0 and thus a decision that F 6≡ 0. The algorithm reveals the following
theorem.

Theorem 5 [20,18] There exists an algorithm which for a given admissible
system S and p ∈ k[x1, . . . , xm] computes a number N ∈ N such that for all
solutions f1, . . . , fm of S:

∀n ∈ N : F (n) = 0 ⇐⇒ F (1) = F (2) = · · · = F (N) = 0,

where F = p(f1, . . . , fm). 2

It must be remarked that the number N asserted by the above theorem only
depends on the admissible system S, but not on the initial values of the
f1, . . . , fm. For further details about this algorithm, we refer to [20,18].

4 Recursive Enumeration of a Basis for the Kernel

Our goal is to find elements of the ideal ker φ. There is little hope that an
algorithm could be found which computes a basis of ker φ from an admissible
system and initial values for the f1, . . . , fm. This is because of the following
reduction.

Theorem 6 If there exists an algorithm which for given admissible sequences
f1, . . . , fm computes a basis of ker φ, then there exists an algorithm which for
a given admissible sequence f decides whether there exists an index n with
f(n) = 0, and, if yes, delivers the smallest such n.

Proof. Let f be an admissible sequence, say f is defined via an admissible
system for f1, . . . , fm and f = fi. If we define f0(n) := n and fm+1(n) =
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∏n
j=1 fi(j), then f0 and fm+1 are admissible, too, by Theorem 3.

Let φ : k[x0, . . . , xm+1] → S be defined via φ(xi) = fi (i = 0, . . . , m+1). Then
f(n0) = 0 for some n0 ∈ N if and only if

xm+1(x0 − 1)(x0 − 2) · · · (x0 − n0) ∈ ker φ.

Suppose now that a basis ker φ = 〈p1, . . . , pm〉 is known. Then we can compute
a Gröbner basis G for this ideal with respect to the lexicographic order xm+1 >
xm > · · · > x1 > x0. This G contains the polynomial xm+1(x0 − 1)(x0 −
2) · · · (x0 −n0) indicating the smallest root n0 of f — or no polynomial of this
form if f does not have any roots. 2

According to this theorem, the computation of a basis for ker φ is at least
as difficult as finding a root of an admissible sequence. Unfortunately, finding
roots of sequences is a very difficult problem. Already for the class of sequences
satisfying homogeneous linear recurrence equations with constant coefficients
(also called C-finite sequences [37]), it is an open problem whether the question
about the existence of a root is decidable [12, Sec. 2.3]. As this class is only
a very small subclass of the class of admissible sequences, it does not seem
reasonable to look for an algorithm that would be capable of solving this
problem for the much larger class. We want to describe instead a procedure
by which a basis of the kernel ker φ can be recursively enumerated.

4.1 Linear Dependencies of Admissible Sequences

As a subalgorithm for the enumeration procedure, we need an algorithm for
computing linear dependencies of admissible sequences. Given a finite set of
polynomials, P = {p1, . . . , pl} ⊆ k[x1, . . . , xm], this algorithm computes a
basis of the vector space

VP := (p1k + p2k + · · · + plk) ∩ ker φ ⊆ k[x1, . . . , xm].

The algorithm proceeds by making an undetermined ansatz, obtaining can-
didates for the desired relations by comparing them with the initial values
and solving a linear system. The candidates can be validated by the algo-
rithm of Theorem 5. If necessary, the ansatz is refined more and more, until
all candidates actually belong to the kernel.

Algorithm 7 Input: Admissible sequences f1, . . . , fm : N → k, a set P =
{p1, . . . , pl} ⊆ k[x1, . . . , xm]
Output: A basis of the vector space VP .

1 Define gi := pi(f1, . . . , fm) (i = 1, . . . , m)
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2 N = l;
3 repeat

4 N = N + 1
5 Compute a basis B ⊆ kl for the solution space of the linear system










g1(1) · · · gl(1)
...

. . .
...

g1(N) · · · gl(N)



















c1

...

cl










= 0

6 until b1g1(n)+b2g2(n)+ · · ·+blgl(n) = 0 (n ∈ N) for all (b1, . . . , bl) ∈ B
7 return { b1p1 + b2p2 + · · · + blpl : (b1, . . . , bl) ∈ B }

Observe that the gi are admissible sequences by Theorem 3(1). Therefore, the
condition in line 6 can be decided according to Thereom 5.

Theorem 8 Algorithm 7 is correct, i.e., if B is the set of polynomials returned
by the algorithm, then B is a basis of the vector space VP .

Proof. Obviously, each element of B belongs to VP by line 6, and by con-
struction the elements of B are linearly independent. It only remains to show
that every c1p1 + · · · + clpl ∈ VP is a linear combination of the vectors in B.
For every vector c1p1 + · · ·+ clpl ∈ VP the identity

c1g1(n) + · · · + clgl(n) = 0

holds for all n ≥ 1, by definition of VP . In particular it holds for n = 1, . . . , N ,
and hence (c1, . . . , cl) belongs to the solution space of the linear systems in
line 5. 2

Theorem 9 Algorithm 7 terminates, i.e., in the notation of the algorithm,
for sufficiently large N , all elements of B will give rise to kernel elements.

Proof. Let S be an admissible system defining f1, . . . , fm, and consider the
admissible system

S ′ := S ∪ {fm+1(n + 1) = fm+1(n), . . . , fm+l(n + 1) = fm+l(n)}

for f1, . . . , fm+l. Let P := fm+1p1(f1, . . . , fm) + · · · + fm+lpl(f1, . . . , fm). By
Theorem 5, there exists a number N ∈ N such that P ≡ 0 if and only if
P (1) = P (2) = · · · = P (N) = 0. This N bounds the number of iterations in
the loop in Algorithm 7. 2
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4.2 Algebraic Dependencies of Admissible Sequences

It is a simple matter to extend Algorithm 7 to the desired enumeration proce-
dure: just apply the algorithm in turn to find all linear dependencies of all the
polynomials with total degree d = 1, 2, 3, . . . . The union of the outputs for all
d ∈ N is obviously a k vector space basis for ker φ. Unless ker φ = {0}, this
basis will be infinite. The vector space basis is also an ideal basis, but a rather
redundant one. In order to obtain an irredundant ideal basis, we should re-
strict the set P in the input of Algorithm 7 in such a way that solutions of the
linear system are not already consequences of the dependencies accumulated
for degrees smaller than d. This can be done as follows.

Procedure 10 Input: Admissible sequences f1, . . . , fm : N→ k
Output: An ideal basis of ker φ

1 G = ∅; d = 0
2 repeat

3 Let P be a vector space basis of

{ p ∈ k[x1, . . . , xm] : deg p ≤ d }

4 Delete from P all elements p with Lt(g) | Lt(p) for some g ∈ G
5 Apply Algorithm 7 to f1, . . . , fm and P , obtaining B
6 Output the elements of B
7 G = GröbnerBasis(G ∪ B)
8 d = d + 1

To be specific, assume that k[x1, . . . , xm] is equipped with a total degree term
order. Any other admissible term order [6, Def. 4.59] could be taken instead.
By Lt(p) we mean the leading term of a polynomial p ∈ k[x1, . . . , xm] with
respect to that order.

Theorem 11 Procedure 10 is correct, i.e., the polynomials it outputs gener-
ate ker φ as an ideal.

Proof. Without line 4, the Theorem would be evident. We have to show that
no relations are lost in line 4. In other words, if a denotes the ideal generated
by the output of the procedure, we have to show that ker φ ⊆ a.

Suppose for the contrary that there exists p ∈ ker φ \ a. Then, because Al-
gorithm 7 is correct, Lt(p) must be a multiple of Lt(a) for some a ∈ a. The

leading term of p′ := p − Lm(p)
Lm(a)

a (with Lm being the leading monomial) is

smaller than that of p, and p′ also belongs to ker φ \ a, because p 6∈ a and
a ∈ a ⊆ ker φ. Repeating the argument, we find p′′ ∈ ker φ \ a with a leading
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term smaller than that of p′, and so on. This leads to an infinite descend-
ing chain of terms Lt(p),Lt(p′),Lt(p′′), . . . , which by the admissibility of the
term order cannot exist. 2

Example 12 Consider the sequences f1, f2, f3 defined by

f1(n) = F2n+a , f2(n) = F2n+a+1, f3(n) =
n∑

k=0

1

F2a+k

.

Applying Procedure 10, we find no algebraic dependencies of total degrees 0, 1, 2
between these sequences, i.e., there does not exists a polynomial p ∈ Q[x, y, z]
of total degree at most 2 with p(f1, f2, f3) ≡ 0. For degree 3, the procedure
delivers the relations

0 = F2n+aF 2
2n+a+1 − F 3

2n+a+1 + F 2
2n+a+1 + F 2

2n+aF2n+a+1

− F2n+aF2n+a+1 + F2n+a+1 − F 2
2n+a − 1,

0 = F 3
2n+a − 2F 2

2n+a+1F2n+a + F2n+a + F 3
2n+a+1 − F2n+a+1

therefore 〈xy2−y3+y2+x2y−xy+y−x2−1, x3−2y2x+x+y3−y〉 ⊆ ker φ, with
φ : Q[x, y, z] → S such that φ(x) = f1, φ(y) = f2, φ(z) = f3. For total degree
4, 5, 6, . . . , 10, there are no further relations. Observe that the ideal generated
by the relations we found may be written as 〈x−1, y−1〉∩〈1+x2+xy−y2〉, so for
each n ∈ N we have f1(n) = f2(n) = 1 or f1(n)2 + f1(n)f2(n) − f2(n)2 = −1.

Procedure 10 does not terminate. However, after a finite number of steps, it
will have output a complete basis of ker φ. This follows from Hilbert’s basis
theorem: If ad denotes the ideal generated by the output of the first d iterations
(d = 0, 1, 2, . . . ), then

a0 ⊆ a1 ⊆ a2 ⊆ · · ·

is an infinite ascending chain of polynomial ideals, so there must be some index
d0 such that ad = ad0

for all d ≥ d0. As the procedure in each iteration d > 0
only outputs elements of ad \ ad−1 (this is easy to see), it follows that for
d ≥ d0, no further output will happen. What is missing for a full algorithm is
a way to compute a suitable upper bound for the value d0.

A finite algorithm for computing a basis can be obtained by restricting the
attention to smaller classes of sequences. For instance, Karr’s summation algo-
rithm [17] includes as a subroutine an algorithm for computing the algebraic
dependencies of sequences which can be expressed in terms of nested sums and
products. Also the algebraic dependencies of sequences which satisfy homoge-
neous linear difference equations with constant coefficients can be effectively
computed [21,18]. It would be desirable to further investigate for which classes
of sequences the algebraic dependencies are computable.
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5 Applications

The procedures introduced in the previous section enable us to solve certain
problems appearing in the literature on special functions and combinatorial se-
quences automatically. In this section, we want to illustrate some applications
with concrete examples.

Example 13 Consider the 4-Somos sequence C(n) defined by

C(n + 2) = (C(n − 1)C(n + 1) + C(n)2)/C(n − 2) (n ∈ Z),

C(−2) = C(1) = C(0) = C(1) = 1.

It is of interest to know whether C(n) also satisfies an r-Somos recurrence for
some r 6= 4 (cf. [35]).

For any given r, say r = 8, this question can be answered using Algorithm 7:
compute a vector space basis {b1, . . . , bs} of

ker φ ∩ { p ∈ Q[x−r, x−r+1, . . . , xr] : deg p ≤ 2 },

where φ : Q[x−r, . . . , xr] → S maps xi to the sequence n 7→ C(n+i). For r = 8,
this basis is lengthy and not reproduced here.

We have to find out whether the bi can be combined to a relation of the desired
form. One way to do so is to make an ansatz

a4C(n − 4)C(n + 4) + a3C(n − 3)C(n + 3) + · · · + a0C(n)2 = 0

for the coefficients ai, compute the normal form of the polynomial a4x−4x4 +
a3x−3x3 + a2x−2x2 + a1x−1x1 + a0x

2
0 with respect to the ideal 〈b1, . . . , bs〉 (and

some term order), equate the coefficients of that normal form to zero and solve
the resulting linear system for the ai. The solutions of this system are precisely
the desired values for the coefficients.

In this way, we have found the relations

C(n + 2)C(n − 2) = C(n + 1)C(n − 1) + C(n)2

C(n + 3)C(n − 3) = C(n + 1)C(n − 1) + 5C(n)2

C(n + 4)C(n − 4) = 25C(n + 1)C(n − 1) − 4C(n)2,

and by an analogous ansatz for odd r the relations

C(n + 3)C(n − 2) = 5C(n + 1)C(n) − C(n + 2)C(n − 1)

C(n + 4)C(n − 3) = C(n + 1)C(n − 1) + 5C(n)2.

13



The first three relations were also given by van der Poorten [35], the last one
is new. By Theorem 8, we can be sure that every other r-Somos recurrence
of C for r ≤ 8 is a linear combinations of those given above.

Example 14 Certain nonlinear difference equations can be solved using Pro-
cedure 10. For instance, Rabinowitz [26] has asked for a solution of

u(n + 1) =
3u(n) + 1

5u(n) + 3
(n ≥ 1), u(1) = 1

in terms of Fibonacci numbers. If there exists a rational function r = p/q
with p, q ∈ Q[x, y] such that u(n) = r(Fn, Fn+1) for all n ≥ 1, then q(x, y)z −
p(x, y) ∈ ker φ, where φ : Q[x, y, z] → S maps x to the Fibonacci sequence n 7→
Fn, y to the shifted Fibonacci sequence n 7→ Fn+1, and z to u.

In order to find a solution, we apply Procedure 10. After each iteration, we
compute a lexicographic Gröbner basis G of a with respect to z > y > x
and check whether G contains a polynomial linear in z. Each such polynomial
supplies a solution, and if no such polynomial appears in G then no such
polynomial is contained in a, and we increase the degree.

This procedure will eventually reveal any solution of the difference equation in
terms of Fibonacci numbers—if such a solution exists at all. Otherwise, the
procedure will run forever. In the present situation, we find

u(n) = −
2F 2

n − 2FnFn+1 + F 2
n+1

4F 2
n − 6FnFn+1 + F 2

n+1

(n ≥ 1).

By leaving the initial value u(1) symbolic during the computation, the more
general solution

u(n) =
(3 − 7u(1))F 2

n − 4(2u(1) − 1)FnFn+1 + (1 − 3u(1))F 2
n+1

(15u(1) − 7)F 2
n + 4(2 − 5u(1))FnFn+1 + (5u(1) − 3)F 2

n+1

can be found.

Example 15 Linear difference equation can be treated as explained for non-
linear equations in the previous example. This includes indefinite summation
as a special case. The important aspect here is that any admissible sequence
may occur in the summand. Identities like

n∑

k=0

1

F2k

= 4 −
F2n+1

F2n

,
n∑

k=0

1

F3·2k

=
9

4
−

F3·2n+1

F3·2n

(n ≥ 1)

[14, Ex. 6.61] can thus be found automatically. In contrast, no closed form for
∑n

k=0 1/F2k+a in terms of F2n+a and F2n+a+1 is found (cf. Example 12).

14



6 Linear Difference Equations

Linear difference equations deserve special attention because of their impor-
tance in practice. Although we could find solutions of linear difference equa-
tions by means of Procedure 10 just as explained before for nonlinear difference
equations, we would like to describe an alternative method for this special case.
Let us consider an equation of the form

ar(n)u(n + r) + ar−1(n)u(n + r − 1) + · · · + a0(n)u(n) = g(n), (3)

where a0, . . . , ar, g are known admissible sequences and u is unknown. If ar has
finitely many roots only, then u is determined uniquely by finitely many initial
values, and in particular every solution is admissible. Otherwise, if ar(n) has
infinitely many solutions, then the equation has a continuum of solutions.

What interests us here is not the general solution of equation 3, but solutions
of a prescribed form. We will assume that admissible sequences f1, . . . , fm

are given and that solutions of (3) are to be computed which have the form
p(f1, . . . , fm) for some polynomial p.

6.1 The Homogeneous Equation

Let us first consider the case of a homogeneous equation, g(n) = 0. In order
to find polynomials p such that u := p(f1, . . . , fm) satisfies (3), we first use
Procedure 10 to compute generators of the ideal ker φ where

φ : k[x1,0, . . . , xm,0, . . . . . . , x1,r, . . . , xm,r, y0, . . . , yr]
︸ ︷︷ ︸

=:R

→ S

maps xi,j to n 7→ fi(n + j), yi to n 7→ ai(n), and constants to constants.
Assuming that ker φ is known, we then compute a basis of the syzygy module

S := Syz(y0, . . . , yr) = { (p0, . . . , pr) : p0y0 + · · ·+ pryr = 0 } ⊆ (R/ ker φ)r+1.

It is well known how to compute the syzygy module over a polynomial ring [6,
Sec. 6.1], and it is straightforward to generalize this algorithm to the case of
a factor ring k[X]/a [18, Thm. 2.9]. (For simplicity of notation, we will not
distinguish polynomials and their residue classes modulo ker φ.) Now observe
that for every polynomial p ∈ k[x1, . . . , xm] we have

p(f1, . . . , fm) solves (3)

⇐⇒ (4)
(

p(x1,0, . . . , xm,0), . . . . . . , p(x1,r, . . . , xm,r)
)

∈ S

15



Hence, we can find polynomials p with the desired property as follows. If we
make an ansatz p =

∑

i1,...,im ai1,...,imxi1
1 · · ·xim

m for the solution polynomial and
compute the normal form of the vector

(

p(x1,0, . . . , xm,0), . . . . . . , p(x1,r, . . . , xm,r)
)

for this general p with respect to a Gröbner basis of S, then we will end up
with some vector (q0, . . . , qr) where each qi is a polynomial whose coefficients
are linear combinations of the as yet undetermined ai1,...,im. The ansatz poly-
nomial p represents a solution precisely for those values ai1,...,im that make all
qi vanish, because of (4) and the fact that normal forms are zero precisely for
vectors which belong to the module. Comparing the coefficients of the qi to
zero gives rise to a linear system over k for the coefficients ai1,...,im which can
be solved.

Algorithm 16 Input: A Gröbner basis G of a module S ⊆ (R/a)s, a set
P = {p1, . . . , pl} ⊆ (R/a)s

Output: A basis for the vector space of all linear combinations p of p1, . . . , pl

with p ∈ S

1 Make an ansatz p = a1p1 + · · · + alpl

2 Compute the normal form (q1, . . . , qs) of p w.r.t. G
3 Let ci(a1, . . . , al) (i ∈ I) be the coefficients of q0, . . . , qs

4 Compute a basis B of the space { (a1, . . . , al) : ci(a1, . . . , al) = 0 (i ∈ I) }
5 return { a1p1 + · · ·+ alpl : (a1, . . . , al) ∈ B }

Termination of this algorithm is obvious, and its correctness follows from the
discussion above. Applying the algorithm in turn to bigger and bigger ansatz
polynomials, we obtain a procedure that recursively enumerates a basis for
the solution space of (3). We cannot hope for a termination criterion (such
as, e.g., a degree bound) here either, because the solution space may have
infinite dimension. As in Procedure 10, we can discard leading terms to avoid
redundant solutions and to keep the linear systems small. Cancellation of
leading terms also ensures the output solutions are linearly independent.

Procedure 17 Input: Admissible sequences a0, . . . , ar and f1, . . . , fm and a
basis of ker φ with φ : R → S as defined above.
Output: A basis of the vector space of all solutions u of

a0(n)u(n) + · · ·+ ar(n)u(n + r) = 0

which depend polynomially on f1, . . . , fm.

1 B = ∅; d = 0
2 Let G be a Gröbner basis of ker φ
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3 Let S be a Gröbner basis of Syz(y0, . . . , yr) ⊆ (R/ ker φ)r+1

4 repeat

5 Let P be a vector space basis of { p ∈ k[x1, . . . , xm] : deg p ≤ d }
6 Delete from P all elements p with Lt(g) | Lt(p) for some g ∈ G
7 Delete from P all elements p with Lt(b) = Lt(p) for some b ∈ B
8 P := { (p(x1,0, . . . , xm,0), . . . , p(x1,r, . . . , xm,r)) : p ∈ P }
9 Apply Algorithm 16 to P and S, obtaining B0

10 B0 := { q0 : (q0, . . . , qr) ∈ B0 }
11 Output the elements of B0

12 B := B ∪ B0; d = d + 1

Theorem 18 Procedure 17 is correct, i.e., its output constitutes a vector space
basis of the k vector space of all solutions u of (3) which can be written poly-
nomially in f1, . . . , fm.

Proof. First of all, it is clear that every output polynomial really gives rise to
a solution. We have to show that (a) no solutions are overlooked due to lines 6
and 7 and (b) the output solutions are linearly independent over k.

(a) Let p be a polynomial that corresponds to a solution u of the difference
equation. The polynomial p is equivalent modulo ker φ to a polynomial p′

that does not contain terms which are multiples of leading terms in G. This
polynomial p′ corresponds to the same solution u so it suffices to take the
terms into account that may possibly occur in p′.

Secondly, if a solution polynomial p involves a term τ which appears as a
leading term of some solution b ∈ B which was found before, then p′ := p−αb
for a suitable constant α ∈ k is another solution which does not involve τ .
Restricting the ansatz such that only p′ is found is just fine, because p is a
linear combination of p′ and b.

(b) Induction to d. For d = 0, B = ∅ is linearly independent. Now sup-
pose that B is linearly independent at iteration d and assume b1, . . . , bv ∈ B,
c1, . . . , cw ∈ B0, and β1, . . . , βv, γ1, . . . , γw ∈ k are such that

β1b1 + · · ·+ βvbv + γ1c1 + · · · + γwcw = 0. (5)

If β1b1 + · · ·+ βvbv is not the zero polynomial, then we must have

Lt(β1b1 + · · · + βvbv) = Lt(γ1c1 + · · ·+ γwcw),

which is excluded by line 7. It follows that β1b1 + · · · + βvbv = 0, and hence
by (5) also γ1c1 + · · · + γwcw = 0. Now using the linear independence of B
and B0, respectively, we obtain β1 = · · · = βv = γ1 = · · · = γw = 0, as
desired. 2
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Procedure 17 requires knowledge of ker φ as input, but we only know a recur-
sive enumeration procedure for computing ker φ (Procedure 10). If in practice
that procedure is aborted after a while, then it is not clear whether the ideal a

generated by the output produced before abortion already generates the whole
ideal ker φ. It is therefore interesting to know to what extend Procedure 17
remains correct if it is applied to some ideal a ( ker φ in place of ker φ. It is
quite easy to see that its output will still be correct and complete, but the
output might be redundant. The sequence of polynomials it produces will also
continue to be linearly independent, but this need no longer be true for the
sequence of solutions u that these polynomials represent.

Example 19 Procedure 17 applied to the difference equation

(Fn − 2Fn+1)u(n + 2) + (3Fn + 2Fn+1)u(n + 1) − Fnu(n) = 0

with the assumption ker φ = {0} gives the infinite output

F 2
n

F 2
n(F 2

n + FnFn+1 − F 2
n+1)

2

F 2
n(F 2

n + FnFn+1 − F 2
n+1)

4

F 2
n(F 2

n + FnFn+1 − F 2
n+1)

6

F 2
n(F 2

n + FnFn+1 − F 2
n+1)

8

...

All these solutions are correct. However, they are not linearly independent as
sequences. Indeed, because of the identity (F 2

n + FnFn+1 − F 2
n+1)

2 = 1 they
all represent the same solution. If we take ker φ = 〈(x2

0 + x0x1 + x2
1)

2 − 1〉,
assuming that x0 and x1 are the variables encoding Fn and Fn+1, respectively,
we get the single solution

F 2
n

as output. There ought to be a second solution to the equation, linearly inde-
pendent of u1(n) = F 2

n . This second solution is

u2(n) = F 2
n

n−1∑

k=1

1

F 2
k F 2

k+1

k∏

i=2

Fi−1

2Fi − Fi−1

and cannot be expressed as a rational function in Fn and Fn+1. This is the
reason why only one solution is output by Procedure 17. (Note, however, that
u2 is an admissible sequence according to Ex. 4.)

6.2 The Inhomogeneous Equation

Extension of Procedure 17 to the inhomogeneous equation (3) is straightfor-
ward. If an additional variable z is introduced to represent the inhomogeneous
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part g(n), then we have

p(f1(n), . . . , fm(n)) solves (3)

⇐⇒
(

p(x1,0, . . . , xm,0), . . . . . . , p(x1,r, . . . , xm,r),−1
)

∈ Syz(y0, . . . , yr, z)

Modifying lines 3 and 8 of Procedure 17 accordingly, we obtain a method to
find the solutions of the inhomogeneous equation.

This leads us to an alternative procedure for indefinite summation of admis-
sible sequences. In order to find a closed form for

∑n
k=1 f(k) in terms of some

other given admissible sequences f1(n), . . . , fm(n), solve the telescoping equa-
tion

u(n + 1) − u(n) = f(n + 1)

using the inhomogeneous extension of Procedure 17. If u(n) is a solution, then
∑n

k=1 f(k) = u(n) − u(0).

Example 20 For the Legendre polynomials Pn(x) we find the summation
identity

n∑

k=0

(2k + 1)Pk(x)Pk(y) =
n + 1

x − y
(Pn(y)Pn+1(x) − Pn(x)Pn+1(y))

by solving the telescoping equation

u(n + 1) − u(n) = (2n + 3)Pn+1(x)Pn+1(y)

in terms of n, Pn(x), Pn+1(x), Pn(y), Pn+1(y).

7 Conclusion

Difference equations of quite complicated form can be solved algorithmically.
In this paper, the focus was on quite a large class of univariate sequences that
we called admissible. We have given an effective method for enumerating a
basis of the ideal of all algebraic dependencies of a set of given admissible
sequences, a problem for which a finite algorithm is not likely to be found.
Applications related to combinatorial sequences and symbolic summation were
indicated.
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