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Abstract

We consider a class of sequences defined by triangular recurrence equations. This class contains
Stirling numbers and Eulerian numbers of both kinds, and hypergeometric multiples of those.
We give a sufficient criterion for sums over such sequences to obey a recurrence equation, and
present algorithms for computing such recurrence equations efficiently. Our algorithms can be
used for verifying many known summation identities about Stirling numbers instantly, and also
for discovering new identities.
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Find an efficient way to extend
the Gosper-Zeilberger algorithm

from hypergeometric terms
to terms that may involve

Stirling numbers.

Graham, Knuth, Patashnik [4]

1. Introduction

Stirling numbers are interesting not only because of their numerous occurrences in
various branches of mathematics, especially in combinatorics, but also because their
definition via a triangular recurrence excludes them from all the classes of sequences
for which summation algorithms have been devised until now. Summation algorithms
are known for hypergeometric summands [3, 16, 15, 9, 14, 10], and, more generally, for
holonomic summands [17, 2, 1], for a class of nested sum and product expressions [6, 7,
12, 13], and for several other classes of summands [5, 8, 18, e.g.]. But no algorithm is
known by which summation identities about Stirling numbers can be proven.
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In the present paper, we address the research problem of Graham, Knuth and Patash-
nik quoted above. We define a class of multivariate sequences that contains in particular
all the sequences which can be written as the product of a hypergeometric term and a
term S(an+bk, cn+dk) referring to the Stirling numbers of first or second kind (a, b, c, d
being fixed, specific integers subject to a minor technical restriction). We present a suffi-
cient criterion for sums over such sequences to satisfy a recurrence equation, and we give
algorithms that compute a recurrence equation for a given sum efficiently.

With our algorithms, many summation identities about Stirling numbers can be proven
effortlessly, by first having the algorithm compute a recurrence for the sum and then
checking that the “closed form” of the sum satisfies the same recurrence. There do exist
some important Stirling number identities which are not in the scope of our approach.
This mainly concerns sums involving expressions of the form nk which are not hypergeo-
metric with respect to both n and k, and sums with two or more appearances of Stirling
number expressions in the summand. We believe that our algorithm could be extended
to cover some of the latter, but have no suggestion concerning sums involving expressions
of the form nk.

Our algorithms are implemented as a Mathematica package which is available for
download from http://www.risc.uni-linz.ac.at/research/combinat/software/.

2. Preliminaries

2.1. Stirling Numbers

Various different notations for Stirling numbers are used in the literature. We write
S1(n, k), S2(n, k) for the Stirling numbers of the first and second kind, respectively, and
E1(n, k), E2(n, k) for the Eulerian numbers of the first and second kind, respectively.
These numbers have in common that they may be defined via bivariate “triangular”
recurrence equations, as follows:

S1(n, k) = S1(n− 1, k − 1)− (n− 1)S1(n− 1, k) S1(0, k) = δ0,k,

S2(n, k) = S2(n− 1, k − 1) + kS2(n− 1, k) S2(0, k) = δ0,k,

E1(n, k) = (n− k)E1(n− 1, k − 1) + (k + 1)E1(n− 1, k) E1(0, k) = δ0,k,

E2(n, k) = (2n + 1− k)E2(n− 1, k − 1) + (k + 1)E2(n− 1, k) E2(0, k) = δ0,k.

Motivated by their combinatorial interpretation these numbers are usually only consid-
ered for n, k ≥ 0 and set to 0 outside this range. This, however, implies that the recurrence
equations no longer hold on whole Z2 because of the exceptional point (n, k) = (0, 0).
Matters simplify considerably if we set them to 0 only for n · k < 0 and otherwise extend
the definitions in accordance with the recurrence equations, so that, e.g., S2(−3,−4) = 6.

It should be noted that our definition of S1 yields the signed Stirling numbers, while
some authors prefer to define |S1(n, k)| as the Stirling numbers of the first kind, and that
slightly different definitions for the Eulerian numbers are also in use.

2.2. Operator Algebras

Let C be a field of characteristic zero. The set of bivariate sequences f : Z2 → C
together with pointwise addition and multiplication forms a ring. We consider operators
of the form ∑

i,j∈Z
pi,j(n, k)N iKj
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with pi,j ∈ C(n, k) at most finitely many of which may be nonzero. These operators act
in the usual way on sequences f : Z2 → C, i.e.,( ∑

i,j∈Z
pi,j(n, k)N iKj

)
· f(n, k) =

∑
i,j∈Z

pi,j(n, k)f(n + i, k + j) (n, k ∈ Z).

The set of all operators of the above shape form a noncommutative ring which we denote
by C(n, k)〈N,K〉. In this ring, we have Nn = (n + 1)N and Kk = (k + 1)K, all other
generators commute with each other, e.g. Nk = kN . Note that we allow negative powers
of N,K, e.g., N−1 + N ∈ C(n, k)〈N,K〉.

For a given bivariate sequence f : Z2 → C, the set{
Q ∈ C(n, k)〈N,K〉 : Q · f ≡ 0

}
of all operators that annihilate f forms a left ideal of the ring C(n, k)〈N,K〉, called the
annihilator of the sequence f . For given Q1, Q2, . . . , Ql ∈ C(n, k)〈N,K〉, we denote by

〈Q1, . . . , Ql〉 := C(n, k)〈N,K〉Q1 + · · ·+ C(n, k)〈N,K〉Ql

the left ideal generated by Q1, . . . , Ql in C(n, k)〈N,K〉. As we will only consider left
ideals, we will drop the attribute “left” from now on.

The notation a � C(n, k)〈N,K〉 shall indicate that a is an ideal in C(n, k)〈N,K〉. If
a is an ideal of C(n, k)〈N,K〉 and p, q ∈ C(n, k)〈N,K〉 are such that p = q + a for some
a ∈ a, then we say that p and q are equivalent modulo a, written p ≡a q.

Classes of sequences may be characterized by restricting the generators of their anni-
hilator to a certain form. For instance, the classical summation algorithms are applicable
to (proper) hypergeometric terms [10], which may be defined as follows.

Definition 1. A sequence f : Z2 → C is called hypergeometric if its annihilator has the
form 〈s1N − t1, s2K − t2〉 for some s1, s2, t1, t2 ∈ C[n, k] \ {0}.

If the si, ti factor into integer-linear factors, then f is called proper hypergeometric.

Example 2. The annihilator of the binomial coefficient
(
n
k

)
is〈

(k + 1)K − (n− k), (n− k + 1)N − (n + 1)
〉

�C[n, k]〈N,K〉.

Therefore,
(
n
k

)
is proper hypergeometric.

The terminology and notation introduced above is naturally extended form bivariate
sequences to r-variate sequences Zr → C for any fixed r ∈ N.

3. Stirling-Like Sequences

The class of Stirling-like sequences is defined as the set of all sequences whose annihi-
lators are generated by a triangular recurrence.

Definition 3. A sequence f : Zr → C (r ≥ 2) is called Stirling-like if its annihilator is
generated by operators of the form siNi−ti (i = 3, . . . , r) for some si, ti ∈ C[n1, . . . , nr]\
{0} and an operator of the form

u + vNv1
1 Nv2

2 − wNw1
1 Nw2

2
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for some u, v, w ∈ C[n1, . . . , nr] \ {0} and v1, v2, w1, w2 ∈ Z with (v1, v2)Z+ (w1, w2)Z =
Z2 (or, equivalently,

∣∣∣ v1
v2

w1
w2

∣∣∣ = ±1).
If u, v, w and the si, ti factor into integer-linear factors, then f is called proper Stirling-

like.

We will reflect the distinguished role of the operators N1, N2 in the above definition
by our choice of naming. As a convention, we will write N,K for the operators playing
the roles of N1, N2, and use the names M1,M2, . . . (or just M := M1) for N3, N4, . . . . In
addition, unless otherwise stated, we will use the following naming conventions:
• C is a field of characteristic zero,
• r ≥ 0 and F = C(n, k,m1, . . . ,mr),
• f : Zr+2 → C is a Stirling-like sequence,
• a = 〈u + vNv1Kv2 − wNw1Kw2 , s1M1 − t1, . . . , srMr − tr〉 � F 〈N,K,M1, . . . ,Mr〉 is

the annihilator of f ,
• V := Nv1Kv2 , W := Nw1Kw2

• We assume without loss of generality that v1 6= 0 6= w2. (This can be done because
(v1, v2) and (w1, w2) are required to generate Z2, and the roles of V and W may be
exchanged if necessary. This assumption will be used in Theorem 19.)

• α, β ∈ Z shall be such that α(v1, v2) + β(w1, w2) = (0, 1), i.e., V αW β = K. (Again,
such a choice is possible because (v1, v2) and (w1, w2) are required to generate Z2.
These numbers will be used in Sections 5 and 6.)

3.1. Examples and Closure Properties

Example 4. The binomial coefficient
(
n
k

)
is not a Stirling-like sequence, although its

annihilator a contains 1 + N−1 −K (Pascal’s triangle), which is of the requested form.
The reason is that 〈1 + N−1 −K〉 ( a. For example, the operators (k + 1)K − (n − k)
and (n− k + 1)N − (n + 1) belong to a but not to 〈1 + N−1 −K〉.

Example 5. The Stirling numbers of the second kind, S2(n, k), are proper Stirling-like.
Owing to the defining recurrence relation the annihilator of S2 contains k − N + K−1.
Unlike the binomial coefficient, the sequence S2 does not satisfy a recurrence pure in K,
i.e., the terms S2(n, k + i) (i ∈ Z) are linearly independent over C[n, k]. For, suppose
otherwise that there are p1, . . . , pr ∈ C[n, k] with gcd(p1, . . . , pr) = 1, not all zero, with

p0(n, k)S2(n, k) + p1(n, k)S2(n, k + 1) + · · ·+ pr(n, k)S2(n, k + r) = 0.

Setting k = 0 in this recurrence and using the formula

S2(n, i) =
1
i!

i∑
j=0

(
i

j

)
jn(−1)i−j

gives

0 =
r∑

i=0

pi(n, 0)
i!

i∑
j=0

(
i

j

)
jn(−1)i−j =

r∑
i=0

i∑
j=0

(
i

j

)
pi(n, 0)

i!
jn(−1)i−j

=
r∑

j=0

r∑
i=j

(
i

j

)
pi(n, 0)

i!
jn(−1)i−j =

r∑
j=0

( r∑
i=j

(
i

j

)
pi(n, 0)

i!
(−1)i−j

)
jn.
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By the linear independence of the exponential sequences jn over C[n] it follows that
r∑

i=j

(
i

j

)
pi(n, 0)

i!
(−1)i−j = 0 for j = 0, . . . , r and all n ≥ 0.

For j = r follows pr(n, 0) = 0, then for j = r− 1 follows pr−1(n, 0) = 0, and successively

pr(n, 0) = pr−1(n, 0) = · · · = p0(n, 0) = 0 for all n.

Therefore k | pi(n, k) for i = 0, . . . , r in contradiction to gcd(p1, . . . , pr) = 1.
A similar argument shows that the annihilator of S2 does not contain a pure recurrence

in N . It follows that the annihilator is precisely the ideal 〈k − N + K−1〉, because any
potential annihilating operator of S2 is equivalent modulo k −N + K−1 to an operator
pure in N or pure in K.

Also the Stirling numbers of the first kind, S1(n, k), as well as the Eulerian numbers
of first and second kind, E1(n, k) and E2(n, k), are Stirling-like with respect to n and k.

Proposition 6. If a, b, c, d ∈ Z are such that∣∣∣∣ a b

c d

∣∣∣∣ = ±1,

and g : Zr+2 → C is defined via

g(n, k,m1, . . . ,mr) := f(an + bk, cn + dk,m1, . . . ,mr),

then g is Stirling-like. If f is proper Stirling-like then so is g.

Proof. As shifts in mi are irrelevant, assume without loss of generality r = 0. Let
α, β, γ, δ ∈ Z be such that (

α γ

β δ

)
=

(
a b

c d

)−1( v1 w1

v2 w2

)
.

Then (α, β)Z + (γ, δ)Z = Z2 and a straightforward calculation confirms that 〈u +
vNαKβ − wNγKδ〉 is the annihilator of g. The claim follows. 2

Example 7. S1(n+k, k), E2(3n+k, 2n+k), E1(n+23k, k), . . . are all proper Stirling-like.

Proposition 8. If h : Zr+2 → C is hypergeometric, and g : Zr+2 → C is defined via

g(n, k,m1, . . . ,mr) := h(n, k,m1, . . . ,mr)f(n, k,m1, . . . ,mr),

then g is Stirling-like. If f is proper Stirling-like and h is proper hypergeometric, then g
is proper Stirling-like.

Proof. Clearly, if (siMi − ti) · f = 0 and (ŝiMi − t̂i) · h = 0 then (siŝiMi − tit̂i) · g = 0
(i = 1, . . . , r). Furthermore, if (u + vNv1Kv2 − wNw1Kw2) · f = 0 and (s1N − t1) · h =
(s2K − t2) · h = 0, then (u + vpNv1Kv2 − wqNw1Kw2) · g = 0 for the rational functions

p =
h

Nv1Kv2h
and q =

h

Nw1Kw2h
.

Clearing denominators leads to an annihilator of the requested form. 2
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Example 9.
(
m
k

)
S1(n + k, k), (k + n)!E2(3n + k, 2n + k), (−1)k/(n− k)E1(n + 23k, k),

. . . are all proper Stirling-like.

Example 10. The term
(
m+n
m+k

)
S2(m+ k, n) is not Stirling-like. However, if we are given

the sum

f(n, m) =
∑

k

(
m + n

m + k

)
S2(m + k, n),

we can make the substitution (n, k,m) 7→ (n, m− n, k + n−m) and arrive at the sum

f1(n, m) =
∑

k

(
m

k

)
S2(k, n),

whose summand is proper Stirling-like. With the algorithms described below, a recurrence
for f1 can be computed. Backsubstitution (n, m) 7→ (n, n + m) leads to a recurrence for
the original sum f .

3.2. Normal Forms

We will later be frequently considering operators Q ∈ F 〈N,K,M1, . . . ,Mr〉 and their
action on the Stirling-like sequence f . It will be convenient to isolate distinguished op-
erators Q̄ ∈ Q + a that may be used as “normal forms” of the equivalence class Q + a.

Lemma 11. Let Q ∈ F 〈N,K,M1, . . . ,Mr〉 and

d ≤ min{ i : Q nontrivially involves a term V iW j }.

Then there exist rational functions ai,j , almost all of which are zero, such that

Q ≡a

∑
j<0

ad,jV
dW j +

∑
i≥d

ai,0V
i.

Proof. First of all, using the relations Mi ≡a ti/si (i = 1, . . . , r), any occurrence of Mi

in Q can be eliminated. Therefore, there are rational functions ai,j , almost all of which
are zero, such that

Q ≡a

∑
i≥d,j∈Z

ai,jV
iW j .

Secondly, using the relation W ≡a
u
w + v

wV , any term V iW j can be eliminated at the
cost of modifying the coefficients of V iW j−1 and V i+1W j−1 appropriately. Note that
this operation does not affect the property required for d. Therefore, there are rational
functions ai,j , almost all of which are zero, such that

Q ≡a

∑
i≥d,j≤0

ai,jV
iW j .

Thirdly, using the relation V ≡a −u
v + w

v W , any term V iW j with j < 0 can be eliminated
at the cost of modifying the coefficients of V i−1W j and V i−1W j+1 appropriately. This
leads to the desired representation. 2

The previous lemma says that every operator Q can be brought to a form that resem-
bles the letter Γ in the grid of exponent vectors of V and W . Putting powers of V to the
horizontal axis, the vertical part corresponds to the first sum, while the horizontal part
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corresponds to the second. Because of this interpretation, we refer to the first sum as the
“vertical part” and to the second sum as the “horizontal part” of this representation. We
show next that this representation is unique.

Lemma 12. Let Q ∈ F 〈N,K,M1, . . . ,Mr〉 and

d ≤ min{ i : Q nontrivially involves a term V iW j }.

Suppose that

Q ≡a

∑
j<0

ad,jV
dW j +

∑
i≥d

ai,0V
i and Q ≡a

∑
j<0

âd,jV
dW j +

∑
i≥d

âi,0V
i

for some rational functions ai,j , âi,j , almost all of which are zero. Then ai,j = âi,j for all
i and j.

Proof. It suffices to show that 0 is the only operator of the shape under consideration
which belongs to a. Indeed, consider an operator

B =
∑
j<0

bd,jV
dW j +

∑
i≥d

bi,0V
i ∈ a.

Suppose that B 6= 0. Then not all the coefficients in the first sum can be zero, for that
would imply a nontrivial relation

bd,0V
d + bd+1,0V

d+1 + · · ·

which is inconsistent with the linear independence of powers of V modulo a. Therefore,
we have bd,j 6= 0 for at least one j < 0.

Using the relation V ≡a −u
v + w

v W , the second sum can be brought to the form∑
i≥0

b̄d,iV
dW i

for some rational functions b̄d,i, almost all of which are zero. This implies a nontrivial
relation ∑

j<0

bd,jV
dW j +

∑
i≥0

b̄d,iV
dW i,

which is inconsistent with the linear independence of powers of W modulo a. 2

4. Existence of a Recurrence

Our goal is to derive an algorithm for computing recurrence equations with polynomial
coefficients for sums over Stirling-like terms. As shown by the following example, such a
recurrence may fail to exist.

Example 13. Consider the sequence g(n) :=
∑

k(−1)k k!
k+1S2(n, k). There does not exist

a recurrence equation

c0(n)g(n) + c1(n)g(n + 1) + · · ·+ cs(n)g(n + s) = 0

of any order s with coefficients ci ∈ C[n] not all zero.
To see this, observe that g(n) = Bn, where Bn denotes the nth Bernoulli number, and

recall that these numbers do not satisfy a recurrence of the desired type.
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We cannot offer an algorithm that would decide for a given Stirling-like term f(n, k)
whether or not the sum g(n) =

∑
k f(n, k) satisfies a linear recurrence with polynomial

coefficients. Instead, we will show in Theorem 14 below that all sums which involve at
least one additional free variable satisfy a recurrence equation. This applies to many
summation identities for Stirling numbers appearing in the literature. We restrict our
attention to those.

The remainder of this section is devoted to proving the existence of recurrence equa-
tions for sums over Stirling-like terms with at least two free variables. The proof is an
adaption of the corresponding existence proof for proper hypergeometric terms on which
Sr. Celine’s summation algorithm is based [15, 10] (see also Zimmermann [18] for a far-
reaching generalization of Sr. Celine’s method). The key property is that every summand
sequence admits a recurrence free of the summation variable k. Upon summing over all k,
any such recurrence gives rise to a recurrence for the sum.

Theorem 14. If f is proper Stirling-like and r ≥ 1, then

a ∩ C(n, m1, . . . ,mr)〈N,K,M1, . . . ,Mr〉 6= {0}.
In other words: every Stirling-like sequence in three or more variables satisfies a nontrivial
recurrence equation whose coefficients are free of k.

It suffices to show that there is a nontrivial relation connecting n, m1, N, K, M1, in
other words, we may consider the case r = 1 without loss of generality. Suppose that
a = 〈u + vV − wW, sM − t〉 with s, t, u, v, w factoring into integer-linear factors.

For p ∈ C(n, k,m) and i, j, l ∈ Z, let p(i,j,l) be such that p(i,j,l)V iW jM l = V iW jM lp
in the ring C(n, k,m)〈N,K,M〉, i.e.,

p(i,j,l)(n, k,m) := p(n + iv1 + jw1, k + iv2 + jw2,m + l).

Also, for the purpose of this proof, let degk
p
q := max{degk p, degk q} for p, q ∈ C[n, k,m]

relatively prime.

Lemma 15. For all al ∈ C(n, m) and for all L ≥ 0, the term
∑L

l=0 alM
l is equivalent

modulo a to some b ∈ C(n, k,m) with degk b ≤ (L + 1) max{degk s,degk t}.

Proof. Using sM − t ∈ a repeatedly, we find that
L∑

l=0

alM
l ≡a

L∑
l=0

al

l−1∏
λ=0

t(0,0,λ)

s(0,0,λ)
=

∑L
l=0 al

∏l−1
λ=0 t(0,0,λ)

∏L
λ=l s

(0,0,λ)∏L
λ=0 s(0,0,λ)

.

Write p, q for the numerator and the denominator, respectively, in the latter expression.
Since degk s(0,0,λ) = degk s and degk t(0,0,λ) = degk t for all λ ∈ N, it follows that

degk p ≤ (L + 1) max{degk s,degk t} and
degk q ≤ (L + 1) degk s ≤ (L + 1) max{degk s,degk t},

as desired. 2

Lemma 16. For all ai,j ∈ C(n, k,m) and for all I ≥ 0, the term
∑I

i=0

∑I−i
j=0 ai,jV

iW j

is equivalent modulo a to
∑I

i=0 biV
i for some bi ∈ C(n, k,m) which can be written as

finite sums of rational functions p/q ∈ C(n, k,m) with

degk p/q ≤ I max{degk u, degk v,degk w}+ max
i,j

degk(ai,j).
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Proof. The lemma obviously holds for I = 0. Suppose it holds for some I ≥ 0. We show
that it holds for I+1. Consider the term

∑(I+1)
i=0

∑(I+1)−i
j=0 ai,jV

iW j . Using u+vV −wW ∈
a, we have

(I+1)∑
i=0

(I+1)−i∑
j=0

ai,jV
iW j

=
I∑

i=0

I−i∑
j=0

ai,jV
iW j +

I+1∑
i=1

ai,I+1−iV
iW I+1−i + a0,I+1W

I+1

≡a

I∑
i=0

I−i∑
j=0

ai,jV
iW j +

( I∑
i=0

ai+1,I−iV
iW I−i

)
V

+ a0,I+1( u
w )(0,I,0)W I + a0,I+1( v

w )(1,I,0)V W I

=
I∑

i=0

I−i∑
j=0

āi,jV
iW j +

( I∑
i=0

I−i∑
j=0

âi,jV
iW j

)
V,

where ā0,I = a0,I + a0,I+1( u
w )(0,I,0) and āi,j = ai,j otherwise, and with â0,I = a1,I +

a0,I+1( v
w )(1,I,0) and âi,I−i = ai+1,I−i and âi,j = 0 otherwise. By induction hypothesis,

these sums are equivalent modulo a to
∑I

i=0 c̄iV
i and

∑I
i=0 ĉiV

i, respectively, where
c̄i, ĉi are finite sums of rational functions p/q ∈ C(n, m, k) with

degk p/q ≤ I max{degk u, degk v,degk w}+ max
i,j

degk(āi,j [resp. âi,j ] ).

We have
(I+1)∑
i=0

(I+1)−j∑
j=0

ai,jV
iW j ≡a c̄0 + (c̄1 + ĉ0)V + · · ·+ (c̄I + ĉI−1)V I + ĉIV

I+1.

Since degk āi,j ,degk âi,j ≤ max{degk u, degk v,degk w}+ maxi,j degk ai,j , it follows that
the c̄i and ĉi are finite sums of rational functions p/q with

degk p/q ≤ (I + 1) max{degk u, degk v,degk w}+ max
i,j

degk(ai,j),

thus the lemma holds for I + 1. 2

Lemma 17. For all ai,j,l ∈ C(n, m), and for all I, L ≥ 0, the term

I∑
i=0

I−i∑
j=0

L∑
l=0

ai,j,lV
iW jM l

is equivalent modulo a to a term
∑I

i=0 biV
i for certain bi ∈ C(n, k,m) which can be

written as finite sums of rational functions p/q ∈ C(n, k,m) with degk p/q = O(I + L).

Proof. By Lemma 15, the term
∑I

i=0

∑I−i
j=0

∑L
l=0 ai,j,lV

iW jM l is equivalent to a term∑I
i=0

∑I−i
j=0 bi,jV

iW j with certain bi,j ∈ C(n, k,m) with degk bi,j = O(L). Now apply
Lemma 16. 2

9



Lemma 18. For all ai,j,l ∈ C(n, m), and for all I, L ≥ 0, the term

I∑
i=0

I−i∑
j=0

L∑
l=0

ai,j,lV
iW jM l

is equivalent modulo a to
c0

d
+

c1

d
V + · · ·+ cI

d
V I

with polynomials ci, d ∈ C[n, k,m] with degk d = O(I + L) and degk ci = O(I + L).

Proof. By Lemma 17, the term in question is equivalent to
∑I

i=0 biV
i for certain bi ∈

C(n, k,m) which can be written as finite sums of rational functions p/q ∈ C(n, k,m)
with degk p/q = O(I + L). To show the present lemma, it suffices to show that all these
p/q in all the ci share a common denominator d which satisfies the desired degree bound.

To see this, first observe that following the calculations for Lemma 15 and 16 a common
denominator (not necessarily the least) is given by

d := lcm
{

s(i,j,l) : 0 ≤ i ≤ I, 0 ≤ j ≤ I − i, 0 ≤ l ≤ L
}

· lcm
{

w(i,j,0) : 0 ≤ i ≤ I, 0 ≤ j ≤ I − i
}
.

For a polynomial p ∈ C[n, k,m] and J ∈ N, define the new polynomial

π(J ; p) := (p− J)(p− J + 1) · · · (p− 1)p(p + 1) · · · (p + J) ∈ C[n, k,m].

Clearly degk π(J ; p) = (2J + 1) degk p = O(J). Consider the polynomial

D :=
∏

a,b,c∈Z,h∈C
an+bk+cm+h|ws

π(|a|(|v1|+ |w1|)I + |b|(|v2|+ |w2|)I + |c|L; an + bk + cm + h).

By assumption, w and s factor into integer-linear factors, so this product ranges over all
irreducible factors of w and s, and a, b, c, h are independent of I and L. As a consequence,
we have d | De for some fixed e ∈ Z that bounds the multiplicities of the irreducible
factors in w and s. The proof is completed by observing that degk De = O(I + L). 2

Proof of Theorem 14. Consider an ansatz
∑I

i=0

∑I−i
j=0

∑L
l=0 ai,j,lV

iW jM l with undeter-
mined coefficients ai,j,l. According to Lemma 18, the ansatz is equivalent modulo a to

c0

d
+

c1

d
V + · · ·+ cI

d
V I

for certain ci, d of degree at most O(I+L) with respect to k. These ci, d depend linearly on
the ai,j,l. Comparing the coefficients with respect to powers of k and V of the numerator
to zero thus gives a system of linear equations for the ai,j,l that can be solved in C(n, m).
This system has 1

2 (L + 1)(I + 1)(I + 2) = O(I2L) variables but only (I + 1)O(I + L) =
O(I2 + IL) equations, hence for sufficiently large I, L the system will have a nontrivial
solution. 2

5. Indefinite Summation

Theorem 14 gives rise to an algorithm for computing a recurrence equation for a given
sum

∑
k f(n, k,m) over a proper Stirling-like sequence with finite support: Guess I, L ≥ 0

10



and make an ansatz
I∑

i=0

I−i∑
j=0

L∑
l=0

ai,j,lV
iW jM l

for an annihilating operator of the summand f . Bring the ansatz to normal form (in the
sense of Lemma 18), clear denominators, and compare coefficients with respect to powers
of V and k. This gives a linear system for the coefficients ai,j,l over C(n, m) which will
have a nontrivial solution as soon as I, L are sufficiently large. Any nontrivial solution
gives rise to a k-free recurrence for f which in turn gives rise to a recurrence for the given
sum.

The algorithm just described is a generalization of Sr. Celine’s hypergeometric sum-
mation algorithm [10] (and is also close to Zimmermann’s generalization of Sr. Celine’s
algorithm [18]). The drawback of this algorithm is that it may require solving large lin-
ear systems with rational function coefficients which is impractical already for moderate
examples. Assuming for simplicity L = I, we need to determine 1

2 (I + 1)(I + 2)(I + 1)
coefficients ai,j,l, which requires roughly O(I9) operations in C(n, m) (counting a cubic
complexity for linear system solving). If we assume that I is not known a priori, the
algorithm has to be applied for I = 0, 1, 2, . . . until a solution is found. This leads to a
total complexity of roughly O(I10) field operations.

For the hypergeometric case, Zeilberger’s algorithm [10] provides an efficient alterna-
tive to Sr. Celine’s algorithm. This algorithm is based on Gosper’s algorithm for indefinite
summation of hypergeometric terms. In the next section, we present a fast algorithm for
summation of Stirling-like sequences which is based on Zeilberger’s approach. In the
present section, we give a procedure for indefinite summation which will later serve as a
substitute for Gosper’s algorithm.

An operator P is called summable if there exists another operator Q with (K−1)Q ≡a

P . In this event, Q is called an anti-difference of P .

Theorem 19. Recall the convention that α, β ∈ Z be such that α(v1, v2) + β(w1, w2) =
(0, 1), i.e., K = V αW β . Consider

P := ap1V
p1 + ap1+1V

p1+1 + · · ·+ ap2V
p2

with p1 < p2, ai ∈ F , ap1 6= 0 6= ap2 . If there exists some Q ∈ F 〈N,K,M1, . . . ,Mr〉 with

(K − 1)Q ≡a P,

then there also exists a Q with this property which has the form

Q = bq1V
q1 + · · ·+ bq2V

q2

where bj ∈ F , bq1 6= 0 6= bq2 and
(1) if α 6= 0 then q1 = p1 −min(0, α),
(2) if α + β 6= 0 then q2 = p2 −max(0, α + β).

Proof. By Lemma 11, we may assume without loss of generality that

Q =
∑
j<0

bd,jV
dW j +

∑
i≥d

bi,0V
i

for some d ∈ Z (chosen small enough to work for all normal forms considered in this proof)
and some rational functions bi,j , almost all of which are zero. We show that the first sum

11



(the “vertical part”) is zero. Suppose otherwise, and let j0 < 0 be minimal with bd,j0 6= 0.
It follows from v1 6= 0 6= w2 that β 6= 0. Therefore, the vertical part of KQ = V αW βQ
will start at j0 + β 6= j0. As a consequence, the normal form (in the sense of Lemma 11)
of (K − 1)Q will have a nonzero vertical part starting at min(j0, j0 + β) < 0. However,
by Lemma 12, this normal form is unique, and this is in contradiction to (K−1)Q ≡a P ,
since P is of the form of Lemma 11 but P ’s vertical part is zero.

Suppose now that α 6= 0. Let q1 ∈ Z be minimal such that the coefficient of V q1 in
Q is nonzero. Then, if KQ = V αW βQ is brought to the form of Lemma 11, q1 + α is
the minimal exponent of V with a nonzero coefficient. Since q1 + α 6= q1, it follows that
min(q1 + α, q1) = q1 + min(0, α) is the minimal exponent of V with nonzero coefficient
in (K − 1)Q. As this exponent must agree with the minimal exponent p1 of P , it follows
that p1 = q1 + min(0, α), thus q1 = p1 −min(0, α), as claimed.

The result for α + β 6= 0 is shown by a similar argument. 2

Corollary 20. For any Q ∈ F 〈N,K,M1, . . . ,Mr〉, we have: if Q 6∈ a then (K−1)Q 6∈ a.

Proof. We may assume without loss of generality that Q is in the form of Lemma 11. Like
in the proof of Theorem 19, it can be shown that if Q has a nontrivial vertical part, then
the normal form of (K− 1)Q will have a nontrivial vertical part, too, so (K− 1)Q 6∈ a in
this case. If Q has no vertical part, then it can be shown like in the proof of Theorem 19
that the normal form of (K−1)Q has no vertical part either, but has at least one nonzero
coefficient, so (K − 1)Q 6∈ a also in this case. 2

Since α(v1, v2)+β(w1, w2) = (0, 1), we cannot have α = β = 0, it is therefore also not
possible to have α = 0 and α+β = 0 at the same time. It follows that at least one of the
two situations in Theorem 19 (α 6= 0 or α + β 6= 0) occurs. In the fortunate case where
α 6= 0 and α + β 6= 0, we obtain an upper and lower bound for the range of nonzero
coefficients in Q. We can then make an ansatz and solve for the coefficients bi.

In the less fortunate (but more frequent) case where one of the conditions is satisfied
but the other is not, the theorem provides only a one-sided bound for the range of non-
zero coefficients. We can still make an ansatz and successively solve for the coefficients bi

of Q, as illustrated in the following examples.

Example 21. Consider the sum
∑m

k=0
(−1)k

k! S1(k, n). The sequence

f : Z2 → C, f(n, k) =
(−1)k

k!
S1(k, n)

has the annihilator 〈k −N−1 − (k + 1)K〉 and is therefore proper Stirling-like. We have
α = 0, β = 1 and set P = 1, thus, if the sequence is summable, the anti-difference will
have the form Q · f for some

Q = · · ·+ b−3(N−1)−3 + b−2(N−1)−2 + b−1(N−1)−1

= b−1N + b−2N
2 + b−3N

3 + · · ·
with bi ∈ C(n, k) to be determined. We have

(K − 1)Q = (K − 1)(b−1N + b−2N
2 + b−3N

3 + · · · )
=

(
b′−1NK + b′−2N

2K + b′−3N
3K + · · ·

)
−

(
b−1N + b−2N

2 + b−3N
3 + · · ·

)
≡a − 1

k+1b′−1 + ( k
k+1b′−1 − b−1 − 1

k+1b′−2)N

+ ( k
k+1b′−2 − b−2 − 1

k+1b′−3)N
2 + · · ·
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for b′i such that b′iK = Kbi. Comparing the coefficients of N i to P = 1+0N +0N2 + · · ·
gives

− 1
k+1b′−1

!= 1 ⇒ b′−1 = −k − 1 ⇒ b−1 = −k

⇒ k
k+1 (−k − 1)− (−k)− 1

k+1b′−2
!= 0 ⇒ b′−2 = 0 ⇒ b−2 = 0

Continuation gives b−3 = b−4 = · · · = 0, so we obtain the solution Q = −kN . It follows
that f is summable. We have

(−k − 1)f(n + 1, k + 1)− (−k)f(n + 1, k) = f(n, k),

and
∑m

k=0
(−1)k

k! S1(k, n) = (−m− 1) (−1)m+1

(m+1)! S1(m + 1, n + 1) = (−1)m

m! S1(m + 1, n + 1).

The algorithm terminates as soon as |α|+ |β| consecutive bi can be set to zero, because
then all further coefficients of Q can be set to zero as well, and the final operator Q

consists just of those terms that have been constructed up to this point. It might be that
in the course of generating Q, no coefficient ever evaluates to 0, i.e., the algorithm does
not terminate. This happens if and only if P is not indefinitely summable.

Example 22. Consider the sum
∑m

k=0

(
m
k

)
S2(k, n). The sequence

f : Z3 → C, f(n, k,m) =
(

m

k

)
S2(k, n)

has the annihilator a = 〈(k −m)n + (k −m)N−1 + (k + 1)K, (1− k + m)M − (m + 1)〉
and is therefore proper Stirling-like. We have α = 0, β = 1 and set P = 1, thus, if the
sequence is summable, the anti-difference will have the form Q · f for some

Q = · · ·+ b−3(N−1)−3 + b−2(N−1)−2 + b−1(N−1)−1

= b−1N + b−2N
2 + b−3N

3 + · · ·

with bi ∈ C(n, k,m) to be determined. We have

(K − 1)Q = (K − 1)(b−1N + b−2N
2 + b−3N

3 + · · · )
=

(
b′−1NK + b′−2N

2K + b′−3N
3K + · · ·

)
−

(
b−1N + b−2N

2 + b−3N
3 + · · ·

)
≡a

m−k
k+1 b′−1 +

( (m−k)(n+1)
k+1 b′−1 − b−1 + m−k

k+1 b′−2

)
N

+
( (m−k)(n+2)

k+1 b′−2 − b−2 + m−k
k+1 b′−3

)
N2 + · · ·

for b′i such that b′iK = Kbi. Comparing coefficients of N i with P = 1 gives

m−k
k+1 b′−1

!= 1 ⇒ b−1 = k
m−k+1

⇒ (m−k)(n+1)
k+1 b′−1 − b−1 + m−k

k+1 b′−2
!= 0 ⇒ b−2 = k(nk+2k−m−mn−2n−3)

(k−m−2)(k−m−1)

⇒ (m−k)(n+2)
k+1 b′−2 − b−2 + m−k

k+1 b′−3
!= 0 ⇒ b−3 = −k(n2k2+5nk2+6k2+···+24n+23)

(k−m−3)(k−m−2)(k−m−1)

⇒ (m−k)(n+3)
k+1 b′−3 − b−3 + m−k

k+1 b′−4
!= 0 ⇒ b−4 = · · ·

The sequence of bi thus obtained is presumably nonzero throughout, which would mean
that f is not indefinitely summable.
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Only in the next section we will be able to show the identity
∑m

k=0

(
m
k

)
S2(k, n) =

S2(m + 1, n + 1), which cannot be done by indefinite summation only. This is analo-
gous to the fact that Gosper’s algorithm does not suffice to prove the binomial theorem∑m

k=0

(
m
k

)
= 2m, for instance. A noteworthy difference between Gosper’s algorithm and

the indefinite summation procedure outlined above is that our procedure terminates if
and only if an anti-difference Q actually exists (except when α 6= 0 and α+β 6= 0, where
it always terminates), whereas Gosper’s algorithm is able to detect also the non-existence
of anti-differences. It will turn out in the next section, however, that our procedure is
sufficient for our purpose.

6. Definite Summation

Given a hypergeometric term f : Z → C, Gosper’s algorithm may find out that f is
not indefinitely summable, in the sense that there does not exist a hypergeometric term
g : Z → C such that g(k + 1) − g(k) = f(k + 1), or, equivalently, there does not exist
any Q ∈ C(k)〈K〉 such that (K − 1)Qf = f . More generally, given s hypergeometric
terms f0, . . . , fs : Z → C, an extension of Gosper’s algorithm can be used in order to
find all constants c0, . . . , cs such that the linear combination c0f0 + · · · + csfs becomes
indefinitely summable. The specification of the extended Gosper algorithm is summarized
in the following Lemma.

Lemma 23. Let a0, a1, f1, . . . , fs ∈ C(k). The set of all tuples (c1, . . . , cs; g) ∈ Cs×C(k)
with

(a1K − a0)g = c1f1 + · · ·+ csfs

forms a finite dimensional vector space over C, say of dimension d, and there is an
algorithm which takes a0, a1 and f1, . . . , fs as input and returns a vector b ∈ C(k)d

and a matrix A ∈ Cd×s such that the rows of the augmented matrix (A|b) are linearly
independent over C and (c1, . . . , cs; g) belongs to the solution space if and only if there
exist e ∈ Cd such that (c1, . . . , cs; g) = e · (A|b).

Zeilberger’s algorithm for finding recurrence equations satisfied by definite sums is
based on the extended Gosper algorithm. If f : Z2 → C is a hypergeometric term, then,
according to Zeilberger, we apply the extended Gosper algorithm to find c0, . . . , cs ∈ C(n)
such that

c0f + c1[N · f ] + · · ·+ cs[Ns · f ]
is indefinitely summable. For, this would imply the existence of Q ∈ C(n, k)〈N,K〉 and
P = c0 + c1N + · · ·+ csN

s ∈ C(n)〈N〉 such that (K − 1)Q · f = P · f . If f is such that
lim|k|→∞ f(n, k) = 0 for each fixed n ∈ Z, then summing this equation over all k makes
the left hand side collapse to 0 and so reveals that P annihilates

∑
k f(n, k).

The algorithm is backed by a theorem [10, Thm. 6.2.1] which guarantees that appro-
priate operators P and Q exist whenever the summand f is proper hypergeometric. The
following theorem contains the analogous result for proper Stirling-like sequences.

Theorem 24. Assume that f is proper Stirling-like. Then there exist operators

P ∈
|β|−1⊕
i=0

C(n, m)〈V,M〉W i and Q ∈ F 〈N,K,M〉

with (K − 1)Q ≡a P and P 6= 0.
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Proof. By Theorem 14, a contains an operator R 6= 0 which is free of k, i.e., R ∈
C(n, m)〈N,K,M〉. We have K = V αW β and also N = V γW δ for some γ, δ ∈ Z such that
γ(v1, v2)+δ(w1, w2) = (1, 0). Thus we may regard R as an element of C(n, m)〈V,W,M〉 =
C(n, m)〈V,W−1,M〉. We may assume that R involves only nonnegative powers of W+ :=
W sgn β and that the degree with respect to W+ is minimal among all the R with non-
negative powers of W+ only. (We can replace R by W dR for suitable d to achieve this
situation.)

Using division with remainder in C(n, m)〈V,M〉[W+], we can write

R = (V αW
|β|
+ − 1)Q− P

for certain Q ∈ C(n, k,m)〈V,W+,M〉 and P ∈ C(n, m)〈V,W+,M〉 where the powers of
W+ in P range between 0 and |β| − 1.

It remains to show that P 6= 0. Suppose otherwise that P = 0. Then R = (K−1)Q ∈ a.
But then Q 6= 0 (because R 6= 0) and Q ∈ a (by Cor. 20) and Q is k-free (because R and
V αW

|β|
+ −1 are). Since K = V αW

|β|
+ , it follows 0 ≤ degW+

Q < degW+
R, in contradiction

to the minimality assumption on R. 2

In the first place, the following three situations have to be distinguished:

Case Condition Example Operator

a) α = 0 u + vN−1 − wK

b) α + β = 0 u + vN − wNK

c) α 6= 0 and α + β 6= 0 u + vN − wN2K−1

Note that the cases are mutually exclusive.
We present two algorithms, the first being applicable to all three cases, the second

being faster but only applicable to cases a) and b). (Note that the third case is only of
little relevance anyway.)

In fact, case b) need not be considered because it can be reduced to case a) as follows.
Suppose that u+vV −wW is a generator of case b), i.e., V = Nv1Kv2 and W = Nw1Kw2

are such that K = V αW β for some α, β ∈ Z with α + β = 0. Then α(v1 − w1) = 0,
which implies v1 = w1. As (v1, v2) and (w1, w2) are linearly independent, we must have
v2 6= w2. Now observe that

N−v1K−v2(u + vV − wW ) = v(−1,0,0) + u(−1,0,0)N−v1K−v2 − w(−1,0,0)Kw2−v2 ,

which is of case a).
In case a), the triangular generator will always be of the form u + vV −wK±1, which

can be brought to the form u + vV − wK by multiplying by K if necessary. We will
proceed to describe our algorithms for this situation. For the modification of the first
algorithm that covers case c), an example will suffice.

We continue the use of the symbols C,F, f, a, . . . as introduced in Section 3, and
assume in addition W = K, α = 0, β = 1. For notational simplicity, we will also as-
sume r = 1. Our goal is to compute an operator P ∈ C(n, m)〈V,M〉 for which there
exists a Q ∈ C(n, k,m)〈V 〉 with (K − 1)Q ≡a P . If Q =

∑
i biV

i as predicted by Theo-
rem 19, then

(K − 1)Q ≡a

∑
i

(( u
w )(i,0,0)b′i − bi + ( v

w )(i−1,0,0)b′i−1)V
i.
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(Recall that b′ was defined such that b′K = Kb for b ∈ F ). In indefinite summation
(Section 5), we determine the coefficients bi such as to match the above representation of
(K−1)Q to a given operator P (which is 1 for indefinite summation). For a fixed P , this
may or may not lead to an operator Q with only finitely many nonzero coefficients bi.
In definite summation, we simultaneously construct both P and Q in such a way that P
will eventually be summable, i.e., a finite anti-difference Q exists.

The operator P may be constructed starting with P = 1 and adding either increasing
or decreasing powers of V with appropriate coefficients. These two possibilities (increasing
vs. decreasing powers of V ) correspond to the two algorithms given next.

6.1. First Algorithm

In the first algorithm, we extend the ansatz for P with negative powers of V , i.e., we
apply the indefinite summation procedure of the previous section to the operator

P =
∑
i≤0

|i|∑
j=0

ci,jV
iM j

with undetermined ci,j ∈ C(n, m). If Q =
∑

i≤−1 biV
i as predicted by Theorem 19, then

bringing (K− 1)Q−P to normal form and comparing coefficients of V i to zero gives the
requirement

( u
w )(i,0,0)b′i − bi + ( v

w )(i−1,0,0)b′i−1 −
|i|∑

j=0

ci,j

j−1∏
l=0

( t
s )(i,0,l) != 0.

Assuming that we know potential values for bi we can determine bi−1 immediately. Start-
ing from b0 = 0, we can so express all the bi (i < 0) as linear combinations of the
undetermined ci,j with coefficients in C(n, k,m). This leads to the following algorithm.

Algorithm 25. Input: u, v, w, s, t ∈ C[n, k,m]
Output: a nonzero operator P ∈ C(n, m)〈V,M〉 such that (K − 1)Q − P ∈ a for some
Q ∈ F 〈V,W,M〉.

1 P = 0; b0 = 0;
2 for i = −1,−2, . . . do
3 // in lines 4 and 5, the notation ci,j refers to symbolic variables

4 bi = K−1 · (w
v )(i,0,0)

(
bi+1 − ( u

w )(i+1,0,0)b′i+1 +
1−i∑
j=0

ci+1,j

j−1∏
l=0

( t
s )(i+1,0,l)

)
5 P = P +

1−i∑
j=0

ci+1,jV
i+1M j

6 if bi = 0 for a nontrivial choice of the cl,j ∈ C(n, m) then
7 return P with these values in place of the cl,j

The condition in line 6 can be checked by clearing denominators of bi, comparing their
coefficients with respect to k to zero and solving the resulting linear system over C(n, m)
for the undetermined coefficients cl,j . Also note that the undetermined cl,j hidden in the
operand (in particular those hidden in bi+1, bi+2, . . . ) are not affected by the application
of K−1 in line 4.
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Theorem 26. Algorithm 25 is correct. If f is proper Stirling-like, then the algorithm
terminates.

Proof. The output of the algorithm is obviously correct. In order to see that the algorithm
terminates when f is proper Stirling-like, observe that Theorem 24 predicts the existence
of nontrivial P,Q with (K − 1)Q− P ∈ a. Then also (K − 1)V iM jQ− V iM jP ∈ a for
any i, j ∈ Z. For appropriate i, j, we have that V iM jP only involves terms belonging
to {V iM j : i ≤ 0, j = 0, . . . , |i| }. Therefore, after finitely many iterations, the ansatz
for P will cover a set of terms from which an operator can be formed that admits an
anti-difference Q. This is when the algorithm terminates. 2

Example 27. Consider the sum g(n, m) =
∑m

k=0

(
m
k

)
S2(k, n). Recall from Example 22

that the summand has the annihilator

a =
〈
(k −m)n + (k −m)N−1 + (k + 1)K, (1− k + m)M − (m + 1)

〉
,

i.e., V = N−1, W = K, α = 0, β = 1. We make an ansatz P =
∑

i≤0

∑|i|
j=0 ci,jV

iM j

(ci,j ∈ C(n, m)) and construct a corresponding Q =
∑

i≤−1 biV
i (bi ∈ C(n, k,m)).

Coefficient comparison like in Example 22 gives, after eliminating powers of M , first

m−k
k+1 b′−1

!= c0,0 ⇒ b−1 = k
m−k+1c0,0,

then in the next step

(m−k)(n+1)
k+1 b′−1 − b−1 + m−k

k+1 b′−2
!= c−1,0 + m+1

1−k+mc−1,1

⇒ b−2 = k(m+2−k)c−1,0+k(m+1)c−1,1+k(nk+2k−m−mn−2n−3)c0,0
(k−m−2)(k−m−1)

By solving a linear system in C(n, m), it can be found that the choice

(c0,0, c−1,0, c−1,1) = (1, n + 2,−1)

leads to b−2 = 0. This terminates the algorithm. It follows that

(K − 1)Q = 1 + (n + 2)V −1 − V −1M = 1 + (n + 2)N −NM

for a certain Q. As the sum under consideration has finite support, it follows that the
sum g(n, m) satisfies the recurrence

g(n + 1,m + 1) = (n + 2)g(n + 1,m) + g(n, m).

This matches nicely with the defining recurrence for S2(m + 1, n + 1). After checking
that the sum agrees with S2(m+1, n+1) for m = 0 and all n (for instance), the identity∑m

k=0

(
m
k

)
S2(k, n) = S2(m + 1, n + 1) follows.

In order to find a recurrence of order I with respect to N and M , this algorithm
requires roughly O(I7) operations in C(n, m). This is because in the Jth iteration there
are 1

2J(J +1) coefficients cl,j to be determined, which requires roughly O(J6) operations.
Because the algorithm is applied iteratively for J = 1, 2, . . . , I, this gives a total of O(I7).

As for case c), the algorithm is based on coefficient comparison in the representation

(K − 1)Q ≡a

∑
i

(
s
(i−α,0,0)
0 b′i−α + · · ·+ s

(i−α−β,0,0)
β b′i−α−β − bi

)
V i,
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the sj emerging from the normal form of V αW β in the sense of Lemma 11. Also here, the
coefficients can be read off one after the other as linear combinations of the undetermined
coefficients in P , and as soon as sufficiently many consecutive coefficients bi are turned to
zero by some P , the algorithm stops. For P on the right hand side, it might be necessary
to also take up to |β| − 1 powers of W into account in order to guarantee termination
(cf. Theorem 24).

Example 28. Consider the sum g(n, m) =
∑

k

(
m
k

)
S2(n + 2k, k). The sequence

f : Z3 → C, f(n, k,m) =
(

m

k

)
S2(n + 2k, k)

has the annihilator

a =
〈
(m− k) + (k + 1)2N−2K − (k + 1)N−1K, (k −m− 1)M + (m + 1)

〉
,

i.e., V = N−2K, W = N−1K, α = −1, β = 2. We make an ansatz

P =
∑
i≤0

|i|∑
j=0

1∑
l=0

ci,j,lV
iM jW l

(ci,j,l ∈ C(n, m)) and construct a corresponding Q =
∑

i≤−1 biV
i (bi ∈ C(n, k,m)). We

have

(K − 1)Q ≡a

∑
i

(
((k + 1)2)(i−1,0,0)b′i−1 − ( (2k+1)(k−m)

k+1 )(i,0,0)b′i

+ ( (k−m−1)(k−m)
k(k+1) )(i+1,0,0)b′i+1 − bi

)
V i.

Comparison to P gives

b−1 = 1
k c−1,0,1 − m+1

k(k−m−1)c−1,1,1 + 1
k2 c0,0,0

b−2 = 1
k−1c−2,0,1 − m+1

(k−1)(k−m−2)c−2,1,1 + (m+1)(m+2)
(k−1)(k−m−3)(k−m−2)c−2,2,1 + 1

(k−1)2 c−1,0,0

+ k3−mk2−2k2+2mk+3k−m−1
(k−1)3k2 c−1,0,1 − m+1

(k−1)2(k−m−2)c−1,1,0

− (m+1)(k3−mk2−3k2+2mk+5k−m−2)
(k−1)3k2(k−m−2) c−1,1,1

+ 2k4−2mk3−6k3+5mk2+9k2−4mk−5k+m+1
(k−1)4k3 c0,0,0

b−3 = . . .messy . . .

b−4 = . . .messy . . .

The choice

c−2,0,0 = m + 1, c−2,1,0 = −2m− 3, c−2,2,0 = m + 2,

c−3,1,0 = 1, c−3,1,1 = 1, c−3,2,1 = −1

(all other ci,j,l = 0) gives b−2 = b−3 = b−4 = 0. Thus the algorithm stops and returns

P = V −3M + V −3MW − V −3M2W + (m + 1)V −2 − (2m + 3)V −2M + (m + 2)V −2M2.

As a consequence, the sum under consideration satisfies the recurrence equation

(m + 1)g(n + 4,m)− (2m + 3)g(n + 4,m + 1) + (m + 2)g(n + 4,m + 2)
+ g(n + 5,m + 1)− g(n + 5,m + 2) + g(n + 6,m + 1) = 0.
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6.2. Second Algorithm

We turn back to the situation a). In the second algorithm, we extend the ansatz for
P with positive powers of V , i.e., we consider an ansatz of the form

P =
∑
i≥0

|i|∑
j=0

ci,jV
iM j

with undetermined ci,j . Theorem 19 predicts that P will have an anti-difference Q of
the form Q =

∑
i≥0 biV

i, if any. In fact, Theorem 19 does not predict that Q starts
with i = 0 in the present situation. However, this does not do any harm because P is
undetermined: if i = 0 turns out to be the wrong choice, this will just cause some of the
initial coefficients ci,j to be zero.

Bringing (K − 1)Q−P to normal form and comparing coefficients of V i to zero again
gives the requirement

( u
w )(i,0,0)b′i − bi + ( v

w )(i−1,0,0)b′i−1 −
|i|∑

j=0

ci,j

j−1∏
l=0

( t
s )(i,0,l) != 0.

Assuming that we know potential values for bi−1 we can determine bi by an application
of the extended Gosper algorithm. This gives a vector space of potential values for bi and
corresponding values for the ci,j . This leads to the following algorithm.

Algorithm 29. Input: u, v, w, s, t ∈ C[n, k,m]
Output: a nonzero operator P ∈ C(n, m)〈V,M〉 such that (K − 1)Q − P ∈ a for some
Q ∈ F 〈V,W,M〉.

1 b = [ ];PTerms = [ ];
2 for i = 0, 1, 2, . . . do
3 PTerms = ListJoin(PTerms, [V i, V iM, . . . , V iM i]);
4 b = ListJoin((− v

w )(i−1,0,0)Kb,
[
1, ( t

s )(i,0,0), . . . ,
∏i−1

l=0( t
s )(i,0,l)

]
);

5 (b, A) = ExtendedGosper([1, ( u
w )(i,0,0)], b);

6 PTerms = A · PTerms;
7 if ∃v ∈ C(n, m)Length(b) \ {0} : v · b = 0 then
8 return v · PTerms;

Theorem 30. Algorithm 29 is correct. If f is proper Stirling-like, then the algorithm
terminates.

Proof. Write Q =
∑

i biV
i. We show the following loop invariant: At the beginning of

the ith iteration of the loop (before line 3), the array b contains a basis for the space
of potential values of bi−1. For each of these candidates, the PTerms array contains the
C(n, m)-linear combination of terms V jM l that lead to the candidate in the respective
component of the b array.

The invariant is clearly true when the loop is entered for the first time, i.e., for i = 0.
Suppose now it holds at the beginning of the ith iteration. The candidates for the bi are
solutions of a first order inhomogeneous difference equation whose inhomogeneous part
is a linear combination of the candidates of the (i − 1)th iteration, shifted with respect
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to k and multiplied by −( u
w )(i−1,0,0), and the coefficients of the ci,j (j = 0, . . . , i − 1).

This inhomogeneous part is constructed in line 4. Thus, the application of the extended
Gosper algorithm in line 5 (Lemma 23 with C(n, m) in place of C) gives a basis of the
space of potential values of bi, and a matrix A containing the coefficients of the linear
combinations of the inhomogeneous part which lead to these potential values. After
updating the PTerms array accordingly (line 6), the loop invariant holds for i + 1 in
place of i.

The loop is terminated as soon as the elements of b are linearly dependent over C(n, m),
because then bi may be set to 0 and all further coefficients of P and Q as well. This
completes the construction of P = v · PTerms. Note that v · PTerms 6= 0, because the
rows of the augmented matrix (A|b) as produced by the extended Gosper algorithm are
linearly independent.

This completes the proof that the algorithm delivers only correct results. The termi-
nation argument is analogous to that in Theorem 26. 2

Example 31. Consider once more the sum g(n, m) =
∑m

k=0

(
m
k

)
S2(k, n), and V,W, . . .

as in Example 27. We now make an ansatz P =
∑

i≥0

∑i
j=0 ci,jV

iM j and construct a
corresponding Q =

∑
i≥0 biV

i. First,

(m−k)n
k+1 b′0 − b0 = c0,0

has no nontrivial solution. Next, for
(m−k)(n−1)

k+1 b′1 − b1 = c1,0 + c1,1
m+1

1−k+m

the extended Gosper algorithm delivers

b =
(

k
k−1−m

)
and A =

(
−n 1

)
.

The operator leading to the nontrivial solution is

V̄ := A

 V

V M

 = −nV + V M.

Next, for
(m−k)(n−2)

k+1 b′2 − b2 = −c̄1
m−k
k+1 ( k

−1+k−m )′ + c2,0 + c2,1
m+1

1−k+m + c2,2
m+1

1−k+m
m+2

2−k+m

the extended Gosper algorithm delivers

b =
(
0, k

k−m−1 ,− k(m+1)
(k−m−1)(k−m−2)

)
and A =


−1 1 0 0

1− n 0 1 0

0 0 1− n 1

 .

The operators leading to these solutions are

A


V̄

V 2

V 2M

V 2M2

 =


−V̄ + V 2

(1− n)V̄ + V 2M

(1− n)V 2M + V 2M2

 =


nV − V M + V 2

(n− 1)nV − (n− 1)V M + V 2M

(1− n)V 2M + V 2M2

 .
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At this point, the entries of b are trivially linearly dependent over C(n, m):(
0, k

k−m−1 ,− k(m+1)
(k−m−1)(k−m−2)

)
·
(
1, 0, 0

)
= 0.

Therefore, we obtain

P =
(
1, 0, 0

)
·


nV − V M + V 2

(n− 1)nV − (n− 1)V M + V 2M

(1− n)V 2M + V 2M2

 = nV − V M + V 2

from which the recurrence

g(n + 1,m + 1) = (n + 2)g(n + 1,m) + g(n, m)

follows.

The effect of using the extended Gosper algorithm is that the size of the linear sys-
tems to be solved for the termination condition increases slowlier than in the first algo-
rithm, unless the extended Gosper algorithm returns in every iteration a solution space of
maximal dimension (which we have never observed in examples). Therefore, the second
algorithm is usually superior to the first.

7. Further Examples

We have implemented the algorithms described above in a small Mathematica package,
which is available for download at

http://www.risc.uni-linz.ac.at/research/combinat/software/
With the aid of this package, it is an easy matter to prove a lot of identities for sums
over Stirling-like terms.

Example 32. Bonus problem 67 of [4] asks for proving that∑
k

(−1)m−kk!
(

n− k

m− k

)
S2(n + 1, k + 1) = E1(n, m) (n, m ≥ 0).

Our implementation delivers the recurrence

(m− n)g(n, m)− (m + 2)g(n, m + 1) + g(n + 1,m + 1) = 0

for the sum on the left hand side. The identity is proven by observing that the right hand
side satisfies the same recurrence and that the identity holds for n = 0 and arbitrary m.

Example 33. Bonus problem 68 of [4] is related to the identity∑
k

(−1)k

(
2n + 1

k

)
S2(n + m + 1− k, m + 1− k) = E2(n, m) (n, m ≥ 0).

Our implementation delivers the recurrence

(2n−m)g(n, m) + (m + 2)g(n, m + 1)− g(n + 1,m + 1) = 0

for the sum on the left hand side. The identity is proven by observing that the right hand
side satisfies the same recurrence and that the identity holds for n = 0 and arbitrary m.
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Our algorithm can be easily modified such as to cover also differential operators. This
is useful for proving identities about Bernoulli polynomials, for instance.

Example 34. Consider the identity∑
k

(
m

k

)
ym−kBk(x) = Bm(x + y),

where Bn(x) denotes the nth Bernoulli polynomial [11]. These polynomials satisfy

DxBn(x)− nBn−1(x) = 0.

A slightly modified version of our algorithm finds that the sum satisfies the differential
equation

Dxf(m + 1, x, y)− (m + 1)f(m,x, y) = 0.

The identity is proven by observing that the right hand side satisfies the same recurrence
and that the identity holds for m = 0 and arbitrary x and y, and for x = y = 0 and
arbitrary m.

8. Concluding Remarks

We have shown that sums over proper Stirling-like terms with at least two free vari-
ables satisfy a linear multivariate (partial) recurrence equation with polynomial coeffi-
cients, and that such a recurrence can be efficiently computed given the annihilator of
the Stirling-like summand. Many summation identities about Stirling-numbers that can
be found in the literature can be verified by this algorithm. Whether our algorithm is
acceptable as a solution to the research problem posed by Graham, Knuth, and Patash-
nik mainly depends on the interpretation of the phrase “terms that may involve Stirling
numbers” they use.

It might be desirable to have an extension of the algorithm that would allow the
product of two or more Stirling-like terms to arise in the summand. We expect that
Theorem 14 generalizes to such terms, provided that the number of free variables is
increased further such as to exceed the ideal dimension of the annihilator.

Our algorithms can be applied also if no additional free variables (besides n) are
present. In this situation they will terminate if and only if the summand of the sum
under consideration admits a k-free recurrence. This way, for instance the conversion
formulas

n∑
k=0

S1(n, k)xk = xn and
n∑

k=0

S2(n, k)xk = xn

can be found automatically. An algorithm for deciding the existence of such a recurrence
would be interesting both for theoretical and for practical reasons.

Acknowledgement. I would like to thank the referees for their exceptionally careful
reading of the original manuscript.
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