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Yakub’s Inequality

Problem 11199 (proposed by Aliyer Yakub; vol.
113(1), 2006, p. 80): Let a, b, c > 0 be such that
a+ b+ c = 1. Show that

1

a
+
1
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+
1

c
≥ 25

1 + 48abc
.

I You should not need more than 30 seconds to come up with a
completely rigorous solution to this problem

I . . . because it can be done by a computer!

I Yakub’s problem is therefore as uninteresting as asking for a
proof that

317034851 · 41539045 = 13169324942257295
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Bernoulli’s Inequality

∀ x ≥ −1 ∀ n ∈ N : (x+ 1)n ≥ 1 + nx.

I CAD is not applicable directly, because (x+ 1)n 6∈ Q[n, x]
I Another trick is needed here.

I Let’s try induction on n.

Conclusion: A computer proof was obtained by reducing the original
inequality to a polynomial statement which is in the scope of CAD.

Warning: The polynomial statement need not be true.

If it is false, the proof has failed and another reduction has to be
used.

How to find a GOOD reduction? → By experimenting!
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Bernoulli’s Inequality

∀ x ≥ −2 ∀ n ∈ N : (x+ 1)n ≥ 1 + nx.

I Another trick is needed here, because

n ≥ 1 ∧ x ≥ −2 ∧ y ≥ 1 + nx⇒ (x+ 1)y ≥ 1 + (n+ 1)x

is false. (CAD can be used also for constructing
counterexamples.)
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I Extending the induction step helps:

(1 + x)n ≥ 1 + nx ∧ (1 + x)n+1 ≥ 1 + (n+ 1)x
⇒ (1 + x)n+2 ≥ 1 + (n+ 2)x

follows from
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⇒ (x+ 1)2y ≥ 1 + (n+ 2)x.

CAD does the rest. ¤
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Alzer’s Inequality

Consider the Legendre
polynomials

Pn(x) :=
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CAD.
But it’s hard to do by hand.
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Alzer’s Inequality

Alzer has conjectured the sharper variant

Pn+1(x)
2 − Pn(x)Pn+2(x) ≥ αn(1− x2)

with αn := µbn/2cµb(n+1)/2c where µn := (2n− 1)!!/(2n)!!.

I Observe

d

dx
fn(x) =

(

(n− 1)nPn(x)
2

− (2nx2 + x2 − 1)Pn(x)Pn+1(x)

+ (n+ 1)xPn+1(x)
2
)/(

n(1− x2)2
)

and leave the rest to CAD and induction. ¤
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Moll’s Inequality

For 0 ≤ l ≤ m ∈ Z, let

dl(m) =
l∑

j=0

m−j
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dl(m) =
l∑

j=0
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s=0

m∑

k=s+l

(−1)k−l−s

23k

(
2k

k

)(
2m+ 1

2s+ 2j

)

×
(
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)(
s+ j

j

)(
k − s− j

l − j

)

.

These numbers appear in the closed form of

∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx (a > −1,m ∈ N)
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Theorem follows by induction.
(No CAD needed here.)
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I “Human-mathematics” failed.

I CAD + induction on l failed.

I Extending induction hypothesis did not help.

I Same with induction on m.

I There is no witness recurrence.

I Another trick is needed here.
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I This is better because the dl(m) occur only linearly.

I It is worse because of the root expression
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2?

Observation: It suffices to show the stronger condition

dl(m+ 1) ≥ −2l2+(m+1)(4m+3)+
√

l(4l3−3l−4m(m+1))+u(l,m)

2(m+1)(m−l+1) dl(m)

for some appropriate u(l,m) ≥ 0.
Choosing u(l,m) = 4l2+4l3+4lm(m+1) turns the radicand into
a square and we are left with

dl(m+ 1) ≥ 4m2+7m+l+1
2(m+1−l)(m+1)dl(m).

This can be done with CAD and induction. ¤.


