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Yakub’s Inequality
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Yakub’s Inequality

Moty @ Problem 11199 (proposed by Aliyer Yakub; vol.
el 113(1), 2006, p. 80): Let a, b, ¢ > 0 be such that
a+ b+ c=1. Show that
1 1 1 25

_+b+_—1+%mc

» You should not need more than 30 seconds to come up with a
completely rigorous solution to this problem

.. because it can be done by a computer!

» Yakub’s problem is therefore as uninteresting as asking for a
proof that

317034851 - 41539045 = 13169324942257295
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» Consider formulas composed out of

>

vV vy VY VvYy

rational numbers (e.g., 0,1, —%32 42, ...)
variables (e.g., T1,L2,L35---, Y1,Y2,Y3, ... )
field operations (+,-,—, /)

order relations (=, #,>, <, >, <)

logical connectives (A, V, =, <, -, True, False)

quantifiers V, 3

» Such formulas are called Tarski-formulas.

» Examples:

» Va>0vb>0Ve>0:(a+btc=1=1+3 +
Ya>0Vb>0Ve>0: (a+b+c-1:> + +,

>

25
c = 1+48abc

c = 1+Jab('

)
)
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» Collin's algorithm solves the quantifier elimination problem:

» INPUT: a Tarski formula ¢
» OUTPUT: a quantifier free formula " with R = (¢ < @),
» Example:
» INPUT:
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Collin’s Algorithm (1975)

» Collin’s algorithm solves the quantifier elimination problem:

» INPUT: a Tarski formula ¢
» OUTPUT: a quantifier free formula ¢’ with R = (¢ < ¢').

» Example:
> INPUT:
Va>0%>0Ve>0: (a+bte=1=2434+1> 20
> OUTPUT:

(r<O0Ay>-=-27)V
(0<z<25Ay>3x—-27)V
(x>25Ay > a(x))

where a(r) = Root(16z% — 16z* +
(729 — 1053z + 30022 + 82%)X —
(216 + 1322 + 22) X2 + 16X3,2)) .
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Bernoulli’s Inequality

Ve>-1VneN:(z+1)">1+na.
» CAD is not applicable directly, because (z + 1)" € Q[n, x]
» Another trick is needed here.

» Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original
inequality to a polynomial statement which is in the scope of CAD.

Warning: The polynomial statement need not be true.

If it is false, the proof has failed and another reduction has to be
used.

How to find a GOOD reduction? — By experimenting!
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Bernoulli’s Inequality

Ve>-2VneN:(z+1)">1+nax.
» Another trick is needed here, because
n>1Ax>-2ANy>1l4nz=(x+1)y>1+(n+1)z

is false. (CAD can be used also for constructing
counterexamples.)
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Bernoulli’s Inequality

Ve>-2VneN:(z+1)">1+nax.
» Extending the induction step helps:

I+z)">1+neA(Ql+z)" P >1+(n+1)2
= (1+2)"2>1+(n+2)z

follows from

n>1ANz>-2ANy>l4+nzA(x+1)y>1+(n+1)z
= (z+1)% >1+(n+2)

CAD does the rest. O



Yakub’s Inequality

Bernoulli’s Inequality

Alzer’s Inequality

Moll’s Inequality



Alzer’s Inequality

Consider the Legendre
polynomials
1 d"

nl2" dxm
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Alzer’s Inequality

Consider the Legendre
polynomials >\/‘\ A

/X J

1 d» " ‘ S >
Pae) = i g @~ 1) V\'

Turan's inequality says

Pn+1(33)2 — Po(2)Ppi2(z) 2 0.

We can computer-prove it using
CAD.
But it's hard to do by hand.




Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.



Alzer’s Inequality

Alzer has conjectured the sharper variant
Poi1(2)? = Pu(2)Payo(x) > (1 — 22)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.




Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Nobody was able to prove
this by hand




Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)
with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Nobody was able to prove
this by hand

» Induction + CAD also did
not work




Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Nobody was able to prove
this by hand

» Induction + CAD also did
not work

» Also extending the induction
hypothesis did not help




Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Nobody was able to prove
this by hand

» Induction + CAD also did
not work

» Also extending the induction
hypothesis did not help

» Another trick is needed here



Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Key observation: It suffices to show that

Pn+1(x)2 B Pn(x)Pn+2(x)
1—22

fulz) =

is increasing on (0, 1).



Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Key observation: It suffices to show that

Pn+1(x)2 B Pn(x)Pn+2(x)
1—22

fulz) =

is increasing on (0, 1).

» fn is increasing iff %fn(x) >0



Alzer’s Inequality

Alzer has conjectured the sharper variant
Pyi1(2)? = Po(@) Paya(@) > an(l - 2?)

with oy, i= f1)5,/2) 1 (n+1)/2) Where i, == (2n — 1)11/(2n)!.

» Observe

d

—ful@) = ((n = 1InPo(a)?

— (2n2? 4+ 22 — 1) Py (x) Ppy1(2)
+(n+ 1)3;Pn+1(x)2>/(n(1 — x2)2)

and leave the rest to CAD and induction. O
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Moll’s Inequality

For0<Ii<mecZ,let

I m—j m k—l—s
(-1) 2k\ [2m + 1
dl(m) = Z Z Z 23k k 2s + 2j
7=0 s=0 k=s+I

o)



Moll’s Inequality

For0<1<m¢c7Z,let
l j m
(—1)k—t=s 2k (2m + 1
%Wﬂzz:z:E:__ﬁp— i ey

X m—s—jg\(s+i\(k—s—J
m—k j I .

These numbers appear in the closed form of

[e.9]
1
d -1
/0 (z* + 2ax? + 1)m+1 z (a>-1,meN)
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Moll’s Inequality

Theorem (Moll) d;(m) >0

Proof (Paule) Easy observations:
> dp(m) = 2*2’”(27;”) >0

» d_1(m)=0>0
m
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l
. Theorem (Moll) d;(m) >0
eeot Proof (Paule) Easy observations:
cececes > dp(m) = 2727 (*™) > 0
RESSEIEE . dy(m) =030
90009000000 m

Summation software delivers:

2(m+ D)di(m + 1) = 2(l + m)d;—1(m) + (2L + 4m + 3)d;(m)
+ + +

Theorem follows by induction.
(No CAD needed here.)
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How does d;(m) behave for fixed m?

di(50)
1.5x10%® o
1. 25x10% .
1x10%® o
7.5x10% o
.
A
o

*,

L]
L]
L]
L]
5x10% .
2.5x10%" ‘

- oo,
30 20 G'GZ

10 20



Moll’s Inequality

How does d;(m) behave for fixed m?
d;(50)

1.5x10% *
1. 25x10%
1x10%
7.5x10%"
5x10%

L]
L]
L]
L]
L]
2.5x10%" ‘

3
3
3
3
3
°
°

- oo,
20 30 20 G'GZ

Theorem (Moll) d;(m) is unimodal wrt. [ for any fixed m.



Moll’s Inequality

How does d;(m) behave for fixed m?

dl(50) . |O%gl(50)
28
1. 5><;|_[)25 o o‘ 0 A
1. 25x10 . - o ,
1x10%® . ° & %
7. 5x10%7 . . 50 s o..
5x10%7 . ° a5 » .
2.5 27 N . L]
. 5x10 o g'.;‘ 40F ® °
e ] ! hd Ly
0 10 20 30 40 50

Theorem (Moll) d;(m) is unimodal wrt. [ for any fixed m.
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28 L/
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100200 30 20 o 10 20 30 40 5 l
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1. 25x1028 . - o ,
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Moll’s Inequality

How does d;(m) behave for fixed m?

dl(50) |O%gl(50)
1.5x10% “
28 * L] 60
1. 25x10 . o ",
1x10% . %5 & %
7.5x10%" . 50 ° .
. 27 ° . 45 . °
5x10 0
* 27 N . N .
2.5x10 “ ° 40f ® °
) ®onee s l . °
100200 30 20 o 10 20 30 40 5 l

Theorem (Moll) d;(m) is unimodal wrt. [ for any fixed m.
Conjecture (Moll) d;(m) is log-concave wrt. [ for any fixed m.

di(m) log-concave : <= log d;(m) concave
1 <= logd;_1(m) + log d;4+1(m) < 2log d;(m)



Moll’s Inequality

How does d;(m) behave for fixed m?

dy(50) log,d:(50)
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Theorem (Moll) d;(m) is unimodal wrt. [ for any fixed m.
Conjecture (Moll) d;(m) is log-concave wrt. [ for any fixed m.

di(m) log-concave : <= log d;(m) concave
1 <= logd;_1(m) + log d;4+1(m) < 2log d;(m)
> dj_1(m)di41(m) < dj(m)?



Moll’s Inequality

How to show d;_1(m)d;y1(m) < d;j(m)??
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Moll’s Inequality

How to show d;_1(m)d;.1(m) < di(m)??

» “Human-mathematics” failed.
CAD + induction on [ failed.
Extending induction hypothesis did not help.

v

v

Same with induction on m.

v

» There is no witness recurrence.

Another trick is needed here.

v



Moll’s Inequality

How to show d;_1(m)d;.1(m) < di(m)??
Using CAD and some recurrence equations, it can be found that

di—1(m)dir1(m) < dy(m)?

—2124(m~+1)(4m+3)++/1(413—31—4m(m+1))
2(m+1)(\n<—l+1) di(m)
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Moll’s Inequality

How to show d;_1(m)d;.1(m) < di(m)??

Using CAD and some recurrence equations, it can be found that

di—1(m)dir1(m) < dy(m)?

—2124(m41)(4m+3)++/U(4B3—31—4m(m+1)) dy(m)

= d(m+1)> 20m 1) (m—141)

» This is better because the d;(m) occur only linearly.

» |t is worse because of the root expression



Moll’s Inequality

How to show d;_1(m)d;.1(m) < di(m)??

Observation: It suffices to show the stronger condition

—2124+(m+1)(4m+3)++/1(483—31—4m(m+1))+u(l,m) di(m)

di(m+1) > 2(m+1)(m—I+1)

for some appropriate u(l, m) > 0.
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How to show d;_1(m)d;.1(m) < di(m)??

Observation: It suffices to show the stronger condition

—202+(m+1)(4m+3)++/1(43 31— 4m(m~+1))+u(l,m
dy(m + 1) > (m+1)( 2()m4\r/1)((m—l+1) (m+1))+u( )dl(m)
for some appropriate u(l, m) > 0.

Choosing u(l,m) = 412 + 413 + 4lm(m + 1) turns the radicand into
a square and we are left with

m2+7m
dl(m + 1) > Zén—&-—i_lz—l)??—?lz—:-ll)dl(m)



Moll’s Inequality

How to show d;_1(m)d;.1(m) < di(m)??

Observation: It suffices to show the stronger condition

—2124(m+1)(4m~+3)++/1(43—31—4m(m~+1))+u(l,m)
di(m + 1) > S L di(m)

for some appropriate u(l, m) > 0.
Choosing u(l,m) = 412 + 413 + 4lm(m + 1) turns the radicand into
a square and we are left with

m2+7m
dl(m + 1) > Zén—&-—i_lz—l)??—?lz—:-ll)dl(m)

This can be done with CAD and induction. .



